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ABSTRACT
Creating system setups for controlled performance evalua-
tion experiments of distributed systems is time-consuming
and expensive. Re-creating experiment setups and repro-
ducing experimental results that have been published by
other researchers is even more challenging. In this paper,
we present an experiment automation approach for evalu-
ating distributed systems in compute cloud environments.
We propose three concepts which should guide the design of
experiment automation tools: (1) capture experiment plans
in software modules, (2) run experiments in a publicly ac-
cessible cloud-based Elastic Lab, and (3) collaborate on ex-
periments in an open, distributed collaboration system. We
developed two tools which implement these basic concepts
and discuss challenges and lessons learned during our im-
plementation. An initial exemplary use case with Apache
Cassandra on top of Amazon EC2 provides a first insight
into the types of performance and scalability experiments
enabled by our tools.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—distributed da-
tabases; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—performance evaluation

Keywords
cloud services; experiment automation; cloud testbeds; NoSQL
databases; Cassandra

1. INTRODUCTION
Complex experiment setups on top of compute clusters

are widely used in science and industry. Controlled experi-
ments can provide evidence for both scientific reasoning and
industrial decision making. Experiment-driven tuning, per-
formance evaluation, and benchmarking of distributed da-
tabases and data processing frameworks have become hot
topics in cloud computing. Several benchmarking tools have
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been developed for evaluating the performance and scalabil-
ity of cloud databases, like Cassandra, HBase, MongoDB,
etc. Unfortunately, controlled experiments with complex,
distributed systems are still challenging due to the difficulty
to deploy and properly configure the systems (table 1). This
work argues to make better use of cloud services as an open
environment for reproducible experiments with distributed
systems, in particular for experiments for evaluating cloud
database systems.

We suggest a generic framework, described in section 2,
and in more detail in a previous publication [13], which au-
tomates the setup and execution of experiments with dis-
tributed database systems on top of compute cloud infras-
tructure. The approach enables experiment creation, vari-
ation, and re-creation on an open, collaborative, and elas-
tically scalable environment. A major contribution of our
work is the experiment tool design which abstracts from
Infrastructure-as-a-Service providers and operating system
resources, and furthermore allows deployment and bench-
marking of a variety of cloud database systems.

Section 3.1 provides a brief overview of the cloud database
benchmarking approach and tool used in our implementa-
tions. Sections 3.2 and 3.3 present two experiment toolkits
that implement the concepts laid out in section 2. We dis-
cuss lessons learned from the initial tool design 3.2, and how
it influenced the subsequent tool implementation 3.3. In sec-
tion 4 we demonstrate an initial use case of our experiment
tools, i.e., benchmarking the distributed database system
Apache Cassandra on top of Amazon EC2, and discuss on-
going development work.

2. EXPERIMENT FRAMEWORK
In this section, we present the basic concepts of our exper-

iment approach and framework: experiment modules (2.1)
which can be executed in an Elastic Lab (2.2), accompanied
by experiment collaboration and version control mechanisms
(2.3).

2.1 Experiment Module
The experiment plan which encodes the sequence of ex-

periments according to an experiment design is captured
in a shareable experiment module. An experiment module
consists of a directory structure that contains files which
encode one or more experimental units, treatments, and ob-
servational units. The objective of experimentation is to
measure the effect of a treatment on an experimental unit
by observing the observational unit.
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Challenge Solution

The effort involved in a complex experiment setup, re-
quiring different skills for system, software, and network-
ing configuration, can quickly overwhelm a single exper-
imenter.

Fully automate the experiment setup process with de-
ployment & configuration management tools. Build the
setup on top of virtual appliances.

Working on a continuously evolving shared experiment
setup and experiment plan requires diligent manage-
ment and coordination.

Experiment setups and plans are packaged as experi-
ment modules which can be managed and shared with
a collaborative version control system.

It can be difficult to obtain hardware resources for
experiments, particularly if they do not need to be run
regularly.

Allocate and de-allocate virtualized experiment resources
on-demand (and pay-per-use) in a public compute cloud
or storage cloud.

Table 1: Experimentation challenges and proposed solutions.

2.1.1 Definitions
The following definitions are based on Design of Exper-

iment textbook definitions [2] which we have adapted to
cloud-based experiments.

• Experimental Unit. The smallest unit to which a
treatment can be applied. There are three types of ex-
perimental units: (a) cloud, (b) cluster, and (c) machine
experimental unit.

• Treatment. A treatment is the entire description of
what can be applied to an experimental unit. Treatments
can be applied as (a) cloud, (b) cluster, and (c) machine
treatment.

• Observational Unit. An observational unit is the small-
est unit of the cluster system on which a response can
be measured. There are three types of observational
units: (a) cloud, (b) cluster, and (c) machine observa-
tional units.

2.1.2 Experiment Scaffolding
The experiment module itself can be fairly complex and

consist of a number of files which reference to one another.
Typos in the file names or in the file content can lead to
experiment failures which are difficult to track down. We
therefore propose the technique experiment scaffolding which
helps experimenters to quickly and reliably generate syntac-
tically and semantically correct experiment modules. The
experimenter uses the command line or a graphical user in-
terface to create (“scaffold”) the directory structure filled
with stub files that follow the conventions of an experiment
module. Scaffolding is a technique that has been popular-
ized by the agile Web development framework Ruby on Rails
[18].

2.2 Elastic Lab
The experiments are created and executed on an Elastic

Lab which is provisioned on-demand on top of virtual ma-
chines of a compute cloud. The resource capacity of the
Elastic Lab can thus be adjusted to the experiment.

The following features are essential to the Elastic Lab:

• launch - Provision a cluster or individual machine in
the compute cloud in a given configuration.

• destroy - Destroy the cluster or individual machine by
terminating the virtual machine(s).

• apply-treatment - Apply the experiment treatment
to one of {cloud, cluster, machine}.

• prepare-experiment - Configure the observer servers
and the experimental unit servers.

• run-experiment - Run an experiment and save data
in the local data repository.

We thought of two ways to apply a cluster treatment. One
can either re-launch a new cluster (or a new machine) for
each experiment, i.e., first apply a destroy action, followed
by a launch action with the new treatment configuration.
Alternatively, one can change cloud, cluster, or machine con-
figurations, respectively, during experiment runtime via the
command apply-treatment. The second treatment ap-
proach intentionally creates side-effects of a previous exper-
iment to the next experiment.

Applying a treatment requires the re-configuration of the
cluster which can affect multiple cluster services. We distin-
guish two types of cluster services: experimental unit ser-
vices and observer services. The experimental unit is the
system under test; the observer is the system that collects
observations. For example, when scaling a database cluster
that is observed with a monitoring system, we must add a
new node to the cluster that runs both a database service
and a monitoring service. The new node must be integrated
in both the database cluster and the monitoring cluster.

The command prepare-experiment configures experi-
mental unit servers and observer servers. For example, work-
loads are generated from workload files and database tables
are set up for a performance evaluation experiment. The
command run-experiment executes the experiment, e.g.,
benchmarking clients execute a workload.

2.2.1 System Automation
Automation is key to our experiment approach as is re-

lieves the experimenter from time-consuming manual tasks.
Machines, clusters, and the compute cloud must be set up in
a desired configuration state. Since the compute cloud offers
a homogeneous programming interface, automation is not
too difficult to achieve on this level. Automating the config-
uration of machines and clusters, however, is less straight-
forward. The desired state of a machine, as well as the
desired state of a cluster must be captured in an executable
model. The model can then be instantiated by the experi-
ment workflow (prepare-experiment, apply-treatment).

2.3 Experiment Collaboration
The purpose of an experiment collaboration system is to

facilitate collaboration on a shared experiment workspace,
including features well known from source code manage-
ment, such as branching and merging. In a public repository
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of experiment modules, experimenters can find and copy
experiment modules, and commit their experiment module
changes. Experimenters can also share experimental data
and thus more easily retrieve and compare experimental re-
sults.

3. EXPERIMENT TOOLS

3.1 Cloud Database Benchmarking
Cloud database systems are supposed to adapt quickly to

changing workloads, such as flash crowds [8] causing tempo-
rary hotspots [4]. We are therefore particularly interested
in evaluating the performance and scalability qualities of
distributed database systems, given challenging workloads.
Performance is measured in terms of throughput and upper-
percentile request latency. Scalability is characterized by the
change in throughput and latency if hardware resources are
added to the cluster, or removed from the cluster, respec-
tively.

3.1.1 YCSB and YCSB++
YCSB [6] is an extensible, modular benchmarking tool

with adapters to a variety of NoSQL database systems. It
can be used for performance, scalability, and elasticity eval-
uation experiments. YCSB++ [15] extends YCSB with fea-
tures, such as multi-client workload execution, multi-phase
workloads, and system monitoring.

request
peak

spike spike

magnitudestart of spike
end of spike

time / object

spike cluster

Figure 1: Hotspot Workload.

3.1.2 Hotspot Workloads
Bodik et al. [4] have introduced a statistical workload

model for hotspot workloads. A hotspot workload is charac-
terized by two types of spikes. A volume spike is the tempo-
rary increase of user requests. A data spike is the temporary
shift in popularity towards a small number of hot objects
which are requested. The overlap of a volume spike and a
data spike is a hotspot. Figure 1 illustrates a hotspot work-
load with parameters “peak”, “magnitude”, “start of spike”,
“end of spike”, and “spike cluster”.

Based on the statistical workload model in [4], we im-
plement a similar hotspot workload model for YCSB. The
three parameters N, V and α allow generating a workload
with data spikes. N specifies the number of hotspots, V
the variance which determines the entropy of the popularity
distribution, and α the spacial locality of hotspots. Gen-
erating a hotspot distribution is done in two steps. First,
the popularity distribution of all hotspots is computed us-
ing a Dirichlet distribution. Second, the spatial locality of
all hotspots is generated with a Chinese Restaurant Process
[9].

3.2 Implementation #1: Whirr Experiment Tool
We implement an experiment tool on the basis of Apa-

che Whirr1. Whirr can be used for cluster service deploy-
ment on a number of compute clouds, using the Java library
jclouds2, a multi-cloud software abstraction. The cluster
services can thus be deployed on different supported cloud
providers, such as Amazon EC2 and Rackspace. The de-
ployment and configuration of services is remotely executed
as shell scripts which are set up on the machines in the clus-
ter. We extend Whirr with several features and services,
including a performance benchmarking service.

3.2.1 Whirr Experiment Module
The experiment module for benchmarking distributed da-

tabase systems consists of a cluster directory with cluster
specification files, a workload directory with workload model
files. Furthermore, there is a template directory which con-
tains dbcluster and workload template files. User can scaf-
fold an experiment module with a basic directory structure,
a run.sh shell script, as well as dbcluster and workload prop-
erties files which are based on templates and customized by
scaffolding options given on the command line.

3.2.2 Whirr Elastic Lab Architecture
Figure 2 shows a high-level overview of the Elastic Lab ar-

chitecture that we implemented with Whirr and the connec-
tion to an experiment module version control system as well
as an observation data store. The experiment executable
run.sh encodes a sequence of commands, for example the
following sequence, depicted in figure 2: (1) launch clusters
with cassandra database service, ganglia monitoring service,
zookeeper, and ycsb benchmarking service, (2.b/c) clone or
pull the remote modules repository from github and push the
current module (if not yet existing), (2.d) run benchmark-
ing load phase, (3.a) collect benchmarking data from load
phase, (2.e) run benchmarking transaction phase, (3.b) col-
lect benchmarking data from transaction phase, (3.c) push
benchmarking data to Amazon S3, (4) destroy clusters. Whirr
already provides a number of the required features described
in 2.2. We add additional features that enhance Whirr to
enable the missing Elastic Lab features for cluster experi-
ments. The extensions are listed and shortly described in
table 2.

3.2.3 Collaboration via Github, EC2 and S3
There is a plurality of cloud-based services that can be

used to implement the basic experiment collaboration fea-
tures mentioned in section 2.3. For example, a Subversion
service, e.g., Google Code, Assembla.com, or Unfuddle.com
could be used as a basis for the experiment module collabo-
ration system.

We use the distributed version control system git3 with the
cloud service github.com4. Moreover, the features provided
by git are a good fit to requirements stated in section 2.3.

The cluster services are bootstrapped from basic Ubuntu
Linux virtual machine images. Whirr allows specifying the
image id as a parameter in the cluster specification file. The
parameter is passed down to the jclouds multi-cloud ab-

1http://whirr.apache.org
2http://www.jclouds.org
3http://git-scm.com
4https://github.com
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Elastic Lab Features
Command Description
prepare Apply basic experiment setup configu-

rations.
run Run a YCSB benchmarking exper-

iment and save data in the lo-
cal repository. Option parame-
ters are: workload-phase and
workload-file.

push Push measurement data from the ob-
server servers to the remote observation
data store.

converge Apply a new cluster specification.
Launch missing instances, and/or de-
stroy supernumerary instances, respec-
tively.

Table 2: Whirr Elastic Lab API.

elastic lab 
controller

(whirr)

VM instance

cassandra 
service

ganglia-
monitor 
service

VM instance

ycsb 
service

zookeeper 
service

VM instance

ganglia-
collector 
service

observation 
data store

experiment module
version control

2.b pull

2.d run-load-phase
2.e run-transactions

3.a/b collect-data

1.a launch-cluster

1/4.b launch/destroy instances
1.c deploy & configure services

2.a run-experiment 2.c push
4.a destroy-cluster

3.c push data

experiment 
executable

Figure 2: Elastic Lab Architecture.

straction layer and mapped to the specific cloud provider
implementation. One can also prepare pre-packaged vir-
tual appliances [20]. Amazon EC2 offers access control fea-
tures to share access to images with other EC2 users or give
public access to images. Virtual appliances can encode a
time-consuming experiment treatment and thus enable more
rapid bootstrapping of experiment setups.

We decide to use Amazon S3 as central observation data
repository. Each observer server sends its’ observation mea-
surements to an Amazon S3 bucket with the name of the
experiment. Amazon S3 offers access control features that
allow implementing a variety of file sharing features. As an
alternative to S3, one could also use Dropbox or other file
sharing services.

3.2.4 Lessons Learned
The extensible, modular nature of both Whirr and the

benchmarking tool YCSB (Yahoo! Cloud Serving Bench-
mark [6]) allow for a wide variety of distributed system
benchmarking experiments on a variety of compute clouds
by different providers. Whirr is an extensible software project
with good unit and integration test coverage. Whirr offers
deployment features for a wide spectrum of services, such
as Zookeeper, Ganglia, and multiple database and data pro-
cessing services. However, the implementation is not perfect.

In the following, we discuss one design flaw and one missing
feature of the Whirr experiment tool.

Use configuration management software: We suc-
cessfully used the Whirr experiment tool for scalability eval-
uation experiments. We then tried to use it for automated
parameter testing. However, Whirr is not a good choice for
these types of experiments for two reasons. First, the soft-
ware installation and configuration statements which are ap-
plied during the bootstrapping and configuration phases of a
cluster launch must be implemented with shell scripts. Sec-
ond, the main Whirr project is implemented in Java. We
experienced that these two factors combined make it dif-
ficult to efficiently develop and debug additional, complex
service configuration features. Whirr could be extended in
this direction by using configuration management solutions,
such as Chef and Puppet, which are already available as
Whirr services. However, we have decided to implement a
new Ruby-based experiment tool because such a tool inte-
grates natively with State-of-the-Art configuration manage-
ment software.

Faster bulk-loading: Performance benchmarking ex-
periments with a heavily loaded database system deliver
different results than those with lightly loaded databases.
YCSB++ [15] offers an extension to YCSB that allows rapid
bulk-loading of the target database using Hadoop MapRe-
duce. However, Hadoop adds additional complexity to the
experiment software stack. We therefore prefer a simpler
bulk-loading mechanism using database backup-and-restore
features.

3.3 Implementation #2: CSDE Experiment Tool
We built the Cloud System Deployment and Experiment

Tool (CSDE)5 for automated performance evaluation of dis-
tributed database systems. CSDE implements sound design
choices of the Whirr-based experiment tool described in the
previous section, however, takes a different approach to au-
tomating system configuration and adds better bulk-loading
capabilities. We decide to implement CSDE in Ruby as it
more naturally integrates with the configuration manage-
ment software.

3.3.1 CSDE Experiment Module
Listing 3.3.2 shows an excerpt of an experiment profile.

A profile node describes the compute cloud infrastructure
where the distributed system is rolled out. The child node
provider specifies the cloud provider. The child node re-
gion declares the machine setup for database cluster and
workload generator in the region. If more than one region is
declared, CSDE will deploy the database cluster in multiple-
regions.

A service node specifies distributed system services. For
now, CSDE implements only two services, namely the cas-
sandra database and ycsb benchmarking services. The ser-
vice attribute node with key and value node describes all
needed information of this service.

3.3.2 CSDE Elastic Lab
The high-level architecture of CSDE is introduced in this

section. CSDE is a Ruby on Rails Web application com-
posed of loosely coupled components, Ruby modules, each
of which is responsible for a particular task: Profile Parser,
Profile Generator, Infrastructure Management, Deployment

5https://github.com/myownthemepark/csde
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and Configuration Management, Workload Executor, and
Bulk-Loader.

Profile Parser. In a first step, CSDE must parse the
experiment profile which is provided as input by a user.
The parser transforms the declarative profile document into
Ruby objects upon which CSDE’s business logic operates.

Profile Generator. The profile generator can be used
to automatically generate experiment profiles that follow a
factorial experiment design [2]. The design ensures that the
number of experiments necessary for producing statistically
useful results is minimized. Figure 3 shows the Web form
where users can enter experiment parameters, e.g., “machine
type”,“heap size”, and“cache”. Each parameter can take two
or three values (low, default, and high).

Listing 1: Experiment Profile Example

service1:
name: cassandra
attributes:

replication_factor: 1

profile1:
provider: aws
regions:

region1:
name: us-east-1
machine type: xlarge
template: 3 cassandra

KIT Cloud Serving Deployment and Benchmark
You’re building the cloud. With KCSDB.

Copyright © | Version 1.0 | 2012 | AIFB | FZI

Hoang Anh Le | Markus Klems

Configuration Monitoring Generator Execution Credentials About

Profile Generator for Caching Experiment

Instance Type  medium  large

 
RAM: 3750 MB

Core(s): 1

RAM: 7450 MB

Core(s): 2

Heap Size  low  high

 recommended value 1,5x of recommended value

Key Cache Size  low  high

 5% of Heap 10% of Heap

Row Cache Size  low  high

 5% of Heap 10% of Heap

  Generate
Figure 3: Profile Generator.

Infrastructure Management. Infrastructure manage-
ment is responsible for launch and termination of virtual
machines in the compute cloud. The database cluster as
well as the benchmarking services are installed on top of
these on-demand machines. Just like Whirr’s jclouds, CSDE
uses a multi-cloud abstraction, the fog6 Ruby library, which
provides a homogeneous programming model for different
compute clouds.

Deployment and Configuration Management. Af-
ter the infrastructure management component has launched
virtual machine instances, the database cluster and bench-
marking services are automatically set up using the deploy-
ment and configuration manager. This component uses Chef
Server7, a popular open source configuration management
software. Chef “cookbooks”, contain collections of configu-
ration scripts, or“recipes”. CSDE uses Chef recipes for setup
and configuration of database and benchmarking services.

6http://fog.io
7http://community.opscode.com

Workload Executor. Once the database cluster and
the benchmarking services are deployed and configured, the
benchmarking service invokes workload generation and runs
the workloads on the database cluster. CSDE saves the
benchmarking results, uploads them to Amazon S3 and in-
forms users via email.

Bulk-Loader.
Preparation of the database cluster for experiments re-

quires bulk-loading the cluster with synthetical data. CSDE
uses a backup-and-restore mechanism to more rapidly load
the cluster. CSDE implements two options: backup-and-
restore with S3 or with EC2 AMIs.

Backup-and-Restore using S3.
In the backup phase, a workload is executed which sends

INSERT statements to the database cluster and thereby
loads the cluster. When the INSERT-only workload has fin-
ished, each database node makes a snapshot of its data. All
snapshot files are compressed in a tarball using pbzip28, a
parallel version of the Unix compression tool bzip2. Each
database node in the cluster uploads its tarball to Amazon
S3.

Restore is the inverse operation of the backup step and
is executed once for each experiment. At first, tarballs
from Amazon S3 are downloaded to the machines running in
Amazon EC2. There is a fast connection of ca. 30 MBytes
per second between Amazon S3 and Amazon EC2. Then,
the tarballs are decompressed, again using pbzip2. Finally,
each database node imports the extracted files. Note that,
each Cassandra node has to download the corresponding tar-
ball, because it is set up with the dedicated data range.

Backup-and-Restore using EC2 AMIs. With this
mechanism the two disk types “EBS disk” and “ephemeral
disk” are used for each Cassandra machine. Two ephemeral
disks are configured to build a Linux software RAID0 array
and are used for Cassandra data and log storage. RAID0
block striping improves Cassandra’s performance if disk I/O
is a bottleneck. Ephemeral disks are attached to a virtual
machine instance and are lost once the machine is termi-
nated or re-boots. Amazon EBS (Elastic Block Storage) of-
fers services similar to a NetApp filer. We use EBS volumes
for backup and restore of prepared data dumps.

Backup: data from the RAID0 array is transferred to an
EBS volume which is attached to the EC2 instance. Then we
create a snapshot of the EBS volume. Restore: the launch
configuration of a machine instance is provided with an EBS
volume created from a prepared snapshot.

3.3.3 Lessons Learned
Although our experience with CSDE suggests that the

second implementation approach has achieved some of the
desired improvements over the first implementation, there
are still very difficult open problems. A professional config-
uration management solution, in the case of CSDE we use
Chef, provides more reliable service than configuration with
shell scripts. However, the capabilities of Chef to automate
system configuration rely on the quality of the configuration
scripts given to Chef by the CSDE tool user. The user must
still have sufficient knowledge of the system under test to
provide correct Chef scripts and debug the scripts in case
of configuration failures. Moreover, CSDE has grown into a
complex system itself and requires some effort to set up. A

8http://compression.ca/pbzip2
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more lightweight solution for experiment automation would
certainly be desirable.

4. CASE STUDY EXPERIMENTS WITH THE
CASSANDRA DATABASE SYSTEM

4.1 Whirr Experiments
We use the Whirr Experiment tool to run experiments

with the distributed database system Apache Cassandra 1.0
[14]. As cloud provider we choose Amazon EC2 in the US
East Region Virginia zone (us-east-1) and test a variety of
different cluster sizes and different instance types: small,
medium, and large9.

We conduct scalability experiments with a Cassandra clus-
ter using a YCSB workload with an 80/20 read/update ratio
and a Zipfian request distribution. The cluster is only lightly
loaded with 100MB per instance; 100K operations × the
cluster size are performed per benchmarking phase. In our
scalability tests the database cluster is re-launched for every
experiment (first destroy, then launch with increased cluster
size). The results indicate that Cassandra does not scale
well when using small server instances. For clusters with 3,
4, and 5 small instances we measure approximately the same
average maximum throughput of about 1000 ops/s. The 6-
instance cluster shows only slightly better performance with
1,200 ops/s. The medium and large instance clusters offer
better scalability. The database latency is volatile because
of either disk contention or network contention. We can
improve disk I/O considerably by setup of a RAID0 array.
In ongoing experiments we address the problem of network
bandwidth variability by pre-testing to determine a conser-
vative throughput target, given a latency upper bound.
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Figure 4: Cassandra Scalability Measurements.

The Whirr experiment tool is well-suited for running scal-
ability tests. However, we discovered that our system set-
tings were not optimal. For more versatile performance eval-
uation, including automated parameter testing, we devel-
oped CSDE. Some exemplary experiments with CSDE are
presented in the next section.

9EC2 m1.small instance type: 1 EC2 Compute Unit (ECU),
1.7 GB memory, 8 GB of RAID 0 EBS storage, 64-bit. EC2
m1.medium instance type: 2 ECUs, 3.75 GB memory, 8
GB of RAID 0 EBS storage, 64-bit. EC2 m1.large instance
type: 4 ECUs, 7.5 GB memory, 8 GB of RAID 0 EBS stor-
age, 64-bit. ECU: 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor.

4.2 CSDE Experiments and Ongoing Work
Initial experiments with CSDE demonstrate its value for

assessing the performance impact of configuration changes
given a broad variety of synthetical workloads. We con-
ducted several parameter testing experiments, including cache
tuning. We also compared the system performance against
well-known Zipfian workloads as described in [6], and the
hotspot workload model as described in [4] To our surprise,
the hotspot workload, which was intended to stress the Cas-
sandra database performed much better than the Zipfian
workloads. This is the case because the “hot objects” are
served from Cassandra’s cache which resides in the operat-
ing system’s memory. In ongoing work, we run experiments
on different operating systems and on a different cloud in-
frastructure to evaluate the multi-system, multi-cloud ca-
pabilities of our implementation. We plan to extend our
experiments to other database systems, in particular, with
HBase.

5. RELATED WORK
Cloud and Grid computing research testbeds, e.g., Open-

Cirrus [1] and PlanetLab [5], provide researchers access to
compute and storage resources in globally federated data
centers. The testbeds provide a great service to experiment-
driven research, however, require additional tools for exper-
iments with distributed systems.

Test automation in Grid computing testbeds. A
number of distributed system testing tools have been de-
veloped for Grid computing environments [19]. The NMI
Test & Build Laboratory [16], for instance, enables continu-
ous integration of heterogeneous distributed computing sys-
tems by automating configuration, build processes, and unit
testing. Automating functional testing, however, does not
provide features for software and system quality evaluation.
Most related to our work are experiment automation tools
used in Grid testbeds for performance and scalability eval-
uation of distributed systems. DiPerF [7] is an automated
performance evaluation framework for Grid services which
has been used for experiments with client-server systems,
such as the metadata and directory service of the Globus
Toolkit. The Weevil framework [21] is most related to our
work. Weevil combines a simulation-based workload genera-
tor with a model-based configuration management and sys-
tem automation approach for experiments with distributed
systems on PlanetLab. The framework has been evaluated
with different types of distributed systems, however, not in-
cluding distributed database systems. The automation ap-
proach of Weevil is similar to our initial implementation,
the Whirr-based experiment toolkit. Using shell script tem-
plates for system automation is a mechanism that has several
drawbacks, as discussed in section 3.

Test automation in cloud computing testbeds. A
recent study reviews the state of research in cloud-based
testing techniques [17]. The study lists 23 cloud-based test-
ing frameworks in different categories, such as model based
testing, performance testing, fault injection testing, etc. In
the performance testing category, the study lists five refer-
ences, including performance testing frameworks for virtu-
alized applications [10] and for Network Management Sys-
tems [11]. The Virtualized-Aware Automated Test Service
(VATS) [10] is most related to our work. Similar to our
Whirr-based experiment tool and CSDE, VATS integrates
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automated deployment of the system under test with auto-
mated benchmarking. The capabilities of VATS are demon-
strated with a remarkable case study, the performance eval-
uation of a Xen-virtualized SAP R/3 system. Different to
our approach, VATS seems to be very focused on evaluating
SAP products in a specific virtualized environment. The de-
sign of VATS does not indicate that it can be run on a public
compute cloud, such as Amazon EC2 and Rackspace Cloud,
neither is it suitable for testing a wide array of distributed
systems.

The most significant difference we see with regard to the
related work is that our approach and tools focus on evalu-
ating distributed database systems which are deployed in
cloud computing environments. The use of public cloud
services makes experimentation accessible to a larger audi-
ence, which is in contrast to closed Grid computing environ-
ments or private virtualized data centers. Furthermore, our
tool design is modular and extensible with respect to work-
loads and systems under test. This is enabled by our focus
on a specific type of distributed systems, i.e., open source
distributed database systems, like Cassandra, HBase, etc.
The approach and tools shown in this paper are particularly
useful for developing advanced cloud database performance,
scalability, and fault-tolerance measurement and optimiza-
tion systems, as discussed in [3, 13]. Our tool design builds
on top of a multi-cloud software layer to make experiments
executable on different compute cloud infrastructures. This
design decision, which is similar to the multi-Grid approach
in [7], in combination with using Chef as a configuration
management solution, similar to the use of cfengine in [16],
provide a good starting point for future work on evaluating
the dependence of experimental results on the cloud environ-
ment, a general problem known from related work on exper-
imentation in virtualized computing testbeds and compute
clouds [12, 21].

6. CONCLUSION
We present a new approach to experimentation with dis-

tributed database systems which is characterized by three
basic concepts. First, experiment modules capture experi-
ment plans in an declarative way. Second, an Elastic Lab
can load and execute experiment modules. The lab allocates
and de-allocates experiment resources rapidly on-demand in
a public compute cloud. Third, collaborating on experiment
modules and sharing observation data is supported by cloud-
based collaboration services. We implement the concepts
and evaluate our tools with an initial case study by bench-
marking the performance and scalability of the distributed
database system Apache Cassandra on top of Amazon EC2.
In our experience, the approach of experiment automation
is promising, however, requires a solid solution for configu-
ration management of complex distributed systems. We are
working towards offering a set of out-of-the-box reproducible
experiments which can be executed on heterogeneous oper-
ating systems and compute clouds.
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