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ABSTRACT
In real-life situations characteristics of Web service systems
evolve in time. Therefore, change detection techniques be-
come substantial elements of adaptive procedures for Web
service systems management, such as resource allocation and
anomaly detection methods. In this paper, we propose an
on-line change detector which uses the Bayesian inference.
We define two models which describe situations with one
change and no change within data. Next we apply Bayesian
model comparison for change detection. In order to obtain
analytical expressions of model evidences used in the model
comparison we provide a coherent framework of change de-
tection which focuses on an approximation of the Bayes
factor. The proposed solution, contrary to state-of-the-art
methods, works in an on-line fashion and the algorithm’s
computational complexity is proportional to the constant
size of the shifting window. Low computational complex-
ity of the change detector enables its application in complex
computer networks. At the end of the research paper, the
quality of the proposed algorithm is examined using simu-
lated Web service system.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time series analysis;
H.3.5 [Online Information Services]: Web-based ser-
vices; I.5.4 [Pattern Recognition]: Applications

General Terms
Algorithms, Performance
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1. INTRODUCTION
In this paper, we explore the issue of context change de-

tection in web service systems for maintaining quality of
service execution. Web service systems consist of the fol-
lowing layers [41]: (i) an execution layer which controls the
execution of composite Web services and manages dataflow
between them, and (ii) an application service layer which
delivers requested functionalities to clients. Web services
are designed according to service oriented computing (SOC)
paradigm [30] and represent encapsulated functionalities of
applications.

Change detection is the identification of abrupt or gradual
changes in the probability distribution of sequential data [1].
Generally, detection of changes in Web service systems is
made due to two reasons: (i) to maintain high quality of
service by controlling resource allocation process [36, 46],
(ii) to detect anomalies [7, 13].

Change detection has proven to be a useful signal pro-
cessing tool in applications such as sound processing [8],
learning of driving behavior [26], video segmentation [35],
environmental time series analysis [15, 33], biomedical sig-
nal analysis [19], anomaly detection [13, 42], outlier detec-
tion [18], adaptive resource allocation [36, 43, 46] and many
others [4, 16]. There are two main groups of methods for
change detection problem, namely, frequentist and Bayesian
approaches.

The first approach focuses on hypothesis testing basing on
likelihood functions [4, 16] or dissimilarity measures between
probability distributions, e.g., Kullback-Leibler divergence,
Bhattacharyya measure [22, 36, 43], and recently Support
Vector Machines [10]. Probability distributions are esti-
mated using data in two consecutive shifting windows. Such
estimation technique enables frequentist detectors to work
in an on-line fashion. Nevertheless, frequentist approach is
very sensitive to the size of shifting windows. In case of
an improper size of the windows the distribution estimation
results in false alarms.

On the other hand, most of Bayesian change detection
methods are retrospective, i.e., changes are detected after
collecting all data. In general, these methods apply Bayesian
model comparison via Bayes factor to select a model which
represents possible changes. The idea of the Bayesian mod-
elling is to treat all quantities occurring in the model, i.e.,
variables and parameters, as random variables. Hence, the
number of changes as well as the length of periods between
consecutive changes are random quantities. Eventually, the
model with the highest value of model evidence (marginal
likelihood) is selected to determine the number of changes
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in the shifting window. Such approach was applied to expo-
nential family of distributions [24], with a special concern on
Poisson processes [12, 34]. To overcome the disadvantage of
working in an off-line manner, several Bayesian on-line de-
tectors have been proposed. In [28] a linear Gaussian model
with conjugate priors is considered and the parameters are
estimated according to recursive expressions based onWood-
bury matrix inverse update formula. Recently, recursive
estimation procedure for general a posteriori distributions
have been proposed. One applies particle filter to sample
from distributions which are analytically intractable [11].
Other method, called Bayesian Online Change Detection
(BOCD) [1], focuses on modelling length of periods between
two consecutive changes and the inference procedure is based
on themessage-passing algorithm and sampling methods like
Markov Chain Monte Carlo (MCMC). Next, in order to ex-
tend the family of distributions that can be modelled using
BOCD, Gaussian processes were used [37]. Nevertheless, all
Bayesian on-line detectors use sampling methods to estimate
a posteriori distributions and thus they are computationally
insufficient in network applications.
In this paper, we present a Bayesian change detection

method which is able to work in an on-line fashion and con-
sumes a small amount of computational resources. We ap-
ply the Bayesian model comparison for two models, i.e., one
with no change occurrence, and second with one change. We
use one shifting window for which model evidences are cal-
culated. Further, we make an assumption that the change
in the second model occurs in the middle of the shifting
window. Additionally, we assume that the a priori distri-
butions of the parameters are non-informative. According
to these assumptions we get an approximation of the Bayes
factor which is in fact the Bayesian Information Criterion
(BIC) [38, 40]. Hence, we obtain a closed form of Bayes fac-
tor which can be calculated easily and applying a sampling
method is not needed to compute a posteriori distributions.
Our main contribution is to use a Bayesian inference for
change detection in computer networks so that all calcula-
tions are performed on-line. In addition, we use multinomial
random variables as a flexible method of modelling network
quantities which does not require pre-defined forms of the
probability distributions. For the multinomial random vari-
ables we provide the BIC expression.
The paper is organized as follows. We present the main

contribution of this paper in Sect. 2. We give preliminary
notations and definitions in Sect. 2.1. Next, we describe
details regarding Bayesian inference for change detection. In
Sect. 2.3, we calculate the BIC for the considered models.
Thereafter, we outline the algorithm for change detection.
In Sect. 3, experiments are presented. Section 4 concludes
the research paper.

2. ON-LINE BAYESIAN CONTEXT CHANGE
DETECTION

2.1 Preliminaries
The aim of a Web service system is to meet clients’ re-

quests in order to guarantee required level of Quality-of-
Service (QoS) attributes such as latency, response time,
price, availability, or reliability [14, 29, 30, 45]. Therefore,
the execution system needs to react to changes in its work-
ing regime, e.g., to reduce increasing latency or keep high

reliability by preventing intrusions. In other words, the ex-
ecution systems should be self-adaptive, i.e., be able to re-
allocate resources and reorganize itself.

Let us assume that we observe a quantity x ∈ X , e.g.,
X = R+, which describes the QoS of the execution system1

such as latency. Latency refers to the time delay between
the initial input and the output of the execution system [29,
45]. Additionally, we make an assumption that the execu-
tion system is influenced by a hidden circumstance called
context [17, 21, 23]. The context is denoted by cn ∈ C and
is not observable which means that neither the value of the
variable cn nor C are known. Further, we consider all vari-
ables as random quantities and thus the model can be seen
as a Hidden Markov Model [5]. The system can be described
using probability distributions as follows2,3:

p(cn|cn−1), (1)

p(x|cn) (2)

with initial latent variable:

p(c1). (3)

However, the context is unobservable and no rational as-
sumptions can be made because of unknown C. Hence, we
deal with non-stationarity [44] because (2) cannot be calcu-
lated without knowing cn.

Introduction of a quantity responsible for the context al-
lows us to treat all causes of changes as a context change
[7]. Independently on the domain, a context change is a
change in the probability distribution (2) due to evolving
cn. Therefore, we do not make any distinction between the
reasons for the change. In case of changes caused by anoma-
lies possible values of the context cn may reflect a normal
working regime of the execution system or abnormal situa-
tions caused by, e.g., reduction of computational resources
or temporary server failure. However, in case of evolving
streams of Web service requests the context values reflect
clients’ behavior [9].

2.2 Context change modelling
Let us consider a random variable x ∈ X , X = {1 . . .K},

i.e., x is a discrete random variable4. Next, let us introduce
a K-dimensional binary random variable x having a 1-of-K
representation [5], in which a particular element xk is equal
to 1 and all other elements are equal to 0. The values of
xk thus must satisfy xk ∈ {0, 1} and

∑
k xk = 1. In other

words, instead of x = k we will use xk = 1.

1For simplicity of further reasoning and to keep the notation
uncluttered we consider a single variable only. However, an
extension to a high-dimensional formulation of the presented
approach is straightforward.
2In case of higher order dependency, the equation (1) should
be replaced with p(cn|cn−m, cn−m+1, . . . , cn−1), for 1 < m <
n.
3Arguments of probability distributions differentiate distri-
butions, e.g., px(x) ≡ p(x) and py(y) ≡ p(y).
4Presented approach can be easily applied to continuous
variables. However, in order to avoid choosing specific form
of a probability distribution we consider a discrete variable.
Such approach is especially useful if we consider anomaly
detection and anomaly is defined as, e.g., if the value of x
is greater than A, then report an anomaly, or, in case of re-
source allocation, if we are interested in maintaining given
level of QoS.
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We further assume that there is given a sequence of N ob-
servations D = {x1, . . . ,xN}. This sequence may be divided
into non-overlapping product partitions [3]. In other words,
there are M < N context changes within the data, that is,

x1 . . .xn1︸ ︷︷ ︸
ĉ1

xn1+1 . . .xn2︸ ︷︷ ︸
ĉ2

. . .xnM+1 . . .xN︸ ︷︷ ︸
ĉM

(4)

where nm denotes the end of mth context. Context is con-
stant for n = nm−1 + 1, . . . , nm, m = 1, . . . ,M and equals
ĉm, where ĉm ∈ C.
We further assume that the data within each mth par-

tition is independent and identically distributed from the
probability distribution p(x|ĉm), that is,

Dm = {xn : xn ∼ p(x|ĉm), n = nm−1 + 1, . . . , nm} (5)

where ∼ is a symbol denoting that observations are drawn
from a given probability distribution.
The probability distribution of x for given ĉm is as follows:

p(x|θm) =

K∏
k=1

(
θk,m

)xk

, (6)

where θm =
(
θ1,m . . . θK,m

)⊤
and θk,m fulfills the follow-

ing constraints: θk,m ≥ 0 and
∑

k θk,m = 1. Hence, θk,m
denotes probability p(xk = 1|ĉm). Further, to simplify the
notation, we use θm = θ, and θk,m = θk.
In the presented approach we consider a shifting window

which contains L observations starting from (n − L + 1)th

moment to the current nth moment, i.e.,

DL
n = {xn−L+1, . . . ,xn}. (7)

Further, we assume two possible situations: (i) the shift-
ing window contains data from one partition (no context
change), (ii) the shifting window contains data from two
partitions (one context change). Hence, there are two mod-
els reflecting these circumstances:

1. If there is no context change in DL
n , we conjecture that

data is generated from a modelM0 and its likelihood
function is as follows:

p(DL
n |M0,θ0) = p(DL

n |θ0)

=

K∏
k=1

(
θ0,k

)jk
, (8)

where θ0 – parameters of M0, jk – number of occur-
rences of xk = 1 in DL

n .

2. If there is one context change in DL
n at t < n, we

conjecture that data is generated from a model M1

and its likelihood function is as follows:

p(DL
n |M1,θ1, t) = p(DL−n+t−1

t |θ1
1) p(Dn−t+1

n |θ2
1)

=
{ K∏

k=1

(
θ11,k

)j1k
}{ K∏

k=1

(
θ21,k

)j2k
}
,

(9)

where θ1 = (θ1
1 θ2

1)
⊤ – parameters of M1, θ1

1 are
parameters for partition before context change, and
θ2
1 – parameters after context change, jik – number of

occurrences of xk = 1, i = 1 – before context change,
i = 2 – after context change. We assume that θ1

1,θ
2
1, t

are independent random variables.

In order to select one model which is more probable to
generate observed data we need to calculate model evidences
[20]. The model evidence ofM0 can be calculated as follows:

p(DL
n |M0) =

∫
p(DL

n |M0,θ0) p(θ0|M0) dθ0, (10)

where p(θ0|M0) – a priori probability distribution of pa-
rameters. The model evidence of M1 is the following (as-
suming the independence of θ1

1,θ
2
1, t)

p(DL
n |M1) =

∫∫
p(DL

n |M1,θ1, t) p(θ
1
1|M1) p(θ

2
1|M1)×

p(t|M1) dθ1 dt, (11)

where p(θ1
1|M1), p(θ

2
1|M1), p(t|M1) – a priori probability

distributions of parameters.
To calculate model evidences, we need to determine the a

priori distributions of parameters and next to integrate out
the parameters. For the considered likelihood functions (8)
and (9) the calculation of integrals is troublesome because
of choosing the form of the distribution for t, p(t|M1). In
the next section we discuss this problem.

Let us assume for a moment that the model evidences are
known and the a priori probabilities of models are equal,
p(M0) = p(M1). Then, to compare both models, we can
calculate the Bayes factor [20]:

B10 =
p(DL

n |M1)

p(DL
n |M0)

. (12)

The Bayes factor denotes a summary of the evidence pro-
vided by the data in favor of M1 as opposed to M0 [20].
For value of the Bayes factor greater than 1 we get more ev-
idence in favor ofM1. Jeffreys has given an interpretation
of the Bayes factor (see Table 1).

Table 1: Jeffrey’s interpretation of the Bayes factor
[20].

B10 ln(B10) Evidence in favor of M1

1 − 3 0 − 1.1 Weak
3 − 10 1.1 − 2.3 Substantial

10 − 100 2.3 − 4.6 Strong
> 100 > 4.6 Decisive

As we will see shortly, it is more convenient to calculate
logarithm of the Bayes factor, i.e.,

ln(B10) = ln p(DL
n |M1)− ln p(DL

n |M0). (13)

2.3 Model evidence approximation
In order to obtain analytical expressions for model evi-

dences ofM0 andM1 we make the following assumptions:

• the a priori probability distributions of θ0 and θ1 are
considered to be non-informative;

• the context change occurs in the middle of the shifting
window, i.e., ⌈n− 1

2
L⌉, 5 hence the a priori probability

distribution of t is a Dirac delta function in the point
⌈n− 1

2
L⌉.

5⌈·⌉ denotes the ceil function.
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For the assumptions described above we can approximate
the model evidence forM by the Bayesian Information Cri-
terion (BIC) [38, 40]

ln p(DL
n |M) ≈ ln p(DL

n |θ̂)−
|M|
2

ln |DL
n |, (14)

where θ̂ is the maximum likelihood estimator of θ calculated
using DL

n , |M| denotes the number of parameters of the
model M, and |DL

n | is the number of data in the shifting
window.
The log likelihood function for the modelM0 is given by

ln p(DL
n |θ0) = ln

K∏
k=1

(
θ0,k

)jk

=
K∑

k=1

jkθ0,k. (15)

For the modelM0 the number of parameters equals |M0| =
K and the number of observations is |DL

n | = L. Thus, we get
the following approximation of the logarithm of the model
evidence forM0:

ln p(DL
n |M) ≈

K∑
k=1

jkθ̂0,k −
K

2
lnL, (16)

where the maximum likelihood estimators are as follows
θ̂0,k = jk

L
, for k = 1, . . . ,K.

Analogously, the log likelihood function for the modelM1

is given by

ln p(DL
n |θ1) = ln

{ K∏
k=1

(
θ11,k

)j1k
}{ K∏

k=1

(
θ21,k

)j2k
}

(17)

=

K∑
k=1

(
j1k ln θ

1
1,k + j2k ln θ

2
1,k

)
. (18)

For the modelM0 the number of parameters equals |M1| =
2K and the number of observations is |DL

n | = L. Hence,
we get the approximation of the logarithm of the model ev-
idence forM1 in the following form:

ln p(DL
n |M) ≈

K∑
k=1

(
j1k ln θ̂

1
1,k + j2k ln θ̂

2
1,k

)
−K lnL, (19)

where the maximum likelihood estimators are as follows: for

the first part of the window θ̂11,k =
j1k
L/2

, k = 1, . . . ,K, and

for the second part of the window θ̂21,k =
j2k
L/2

, k = 1, . . . ,K.

Finally, we can approximate the Bayes factor (13) using
(16) and (19), that is,

lnB10 ≈
K∑

k=1

(j1k ln θ̂
1
1,k + j2k ln θ̂

2
1,k)−

K∑
k=1

jk ln θ̂0,k −
K

2
lnL.

(20)

2.4 Change detection algorithm
Having an analytic form of the approximated Bayes factor

allows us to select one of the two considered models. The se-
lected model indicates whether the context change occurred
in the shifting window DL

n or not. We can propose the fol-
lowing on-line algorithm for change detection which use the

Bayesian model comparison. In the first step move the shift-
ing window and determine the model evidences (16) and (19)
using DL

n . Then, calculate the approximated Bayes factor
using (20). The final step is to report the context change if
the Bayes factor is greater than a given value σ ∈ R+ called
a sensitivity parameter. Determination of the σ is crucial in
the proposed approach and may be seen as a compromise
between detecting true changes and avoiding false alarms
[16]. Nevertheless, we can use the Jeffrey’s interpretation to
determine the value of the sensitivity parameter (Table 1).

Let us denote a sequence of context change detections by
τ . The final procedure of the change detection is presented
in Algorithm 1.

Algorithm 1: Change detection using approximated
Bayes factor

Input : D, L,M0,M1, σ
Output: Moments of context change τ1, . . . , τM
n←− L, m←− 0, τ0 ←− 0;

while n < card{D} do
Calculate ln p(DL

n |M0) using (16);

Calculate ln p(DL
n |M1) using (19);

Calculate lnB10 using (20);
if lnB10 > σ then

m←− m+ 1;
τm ←− n− ⌈L/2⌉;
n←− n+ ⌈L/2⌉;

else
n←− n+ 1;

end

end

The computational complexity of Algorithm 1 for each
new observation is proportional to the size of the shifting
window, i.e., O(L). In order to calculate the model evidences
we need to have the number of occurrences of xk = 1 which
requires to read all values of L observations in the shifting
window only once.

3. APPLICATION TO WEB SERVICE SYS-
TEMS

The purpose of the experiment is to examine the change
detection quality of the proposed algorithm. We take under
consideration a Web service execution environment and av-
erage latency of services’ responses in the system as a QoS
attribute. To reflect the nature of real Web service execu-
tion system we propose a simulation model designed in a
discrete events simulation environment Arena [2]. The sim-
ulation model is presented in Fig. 1. The model consists of
the following components: (i) request generator, which imi-
tates clients’ behaviour by generating Web service requests,
(ii) scheduler, which distributes service requests to proper
computational nodes, (iii) computational nodes, where ser-
vices are executed. Each computational node consists of vir-
tual machines and each virtual machine contains instances
of Web services.

It is worth noting that the proposed detector works in-
dependently on the web service network model complexity.
Therefore, in the simulation process we use two computa-
tional nodes with eight processors each, two virtual machines
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Figure 1: Simulation model of a Web service execu-
tion system.

on each node and four services. In addition, the presented
method can be used to detect changes in characteristics of
single computational node as well as of the entire execution
system.

3.1 Modelling request generator
Typically, in the telecommunication theory, streams of re-

quests are modelled by Poisson process. However, research
conducted by Paxson and Floyd on traffic traces for Wide
Area Networks (WANs) shows that user-initiated ”session”
arrivals are well-modelled by Poisson processes [31]. Never-
theless, packet-level traffic streams may deviate considerably
from Poisson processes, and may exhibit non-stationarity
and self-similarity over different time scales.
In our simulation model we generate Web service requests

from non-stationary Poisson process. This way of generat-
ing requests is methodologically correct in service oriented
systems only if we assume that clients invoke Web services
independently and requests are delivered to the execution
system as as single message, e.g., as SOAP messages. Bas-
ing on the presented assumptions we can treat Web service
requests in the same manner as user-initiated ”session” ar-
rivals.

3.2 Modelling computational nodes
The computational nodes are modelled basing on architec-

tural paradigms for modelling complex Web server networks
presented in [27]. We assume that computational nodes
are represented by Web servers with processors as compu-
tational resources. We estimate the values of processing
parameters for Web servers basing on benchmark research
described in [25]. The Small Static File (KeepAlive) test6

is used to compare performance of servers such as Apache
or LiteSpeed. We set the processing delays for Web servers
equal 0.4 milliseconds and for virtual machines – 0.8 millisec-
onds, by averaging the results gained in testing procedure
described in [25]. Additionally, we assume that each of two
Web servers in the model uses eight processors which are
assigned to virtual machines in the following manner:

• on the first server six processors are used by the first
virtual machine and the remaining two by the second
one;

• on the second server both virtual machines use four
processors.

3.3 Modelling Web services
In the simulation model we consider four Web services lo-

cated on virtual machines. We model performance of real
data processing services implemented in service oriented data

6The main idea of the test is to send continuously requests
of constant size (100B) to the Web server and to monitor
connection status.

mining system described in [32]. Selected services represent
the functionality of building the following classification mod-
els: Naive Bayes, Logistic Regression, J48 and Multilayer
Perceptron. We assume that the processing time for each
of selected services is modelled with triangular distribution.
We estimate the parameters of distributions for each service
using soapUI tool [39]. For constant size of input message
(16 kB) we gain the following processing times:

• Multilayer Perceptron: minimum processing time = 51
[ms], maximum processing time = 672 [ms], average
processing time = 88 [ms];

• Logistic Regression: minimum processing time = 28
[ms], maximum processing time = 214 [ms], average
processing time = 45 [ms];

• J48 : minimum processing time = 5 [ms], maximum
processing time = 183 [ms], average processing time
= 11 [ms];

• Naive Bayes: minimum processing time = 6 [ms], max-
imum processing time = 53 [ms], average processing
time = 10 [ms].

In addition, we assume that the processing time is divided
by the number of processors assigned to virtual machine
on which considered Web service is executed. Basing on
the estimated distributions for Web services we arbitrarily
allocate resources in the following manner:

• Multilayer Perceptron service allocation: first virtual
machine on the first Web server and first virtual ma-
chine on the second Web server (total number of ten
processors).

• Logistic Regression service allocation: first virtual ma-
chine on the first Web server and first virtual machine
on the second Web server (total number of ten proces-
sors).

• J48 service allocation: second virtual machine on the
first Web server and second virtual machine on the
second Web server (total number of six processors).

• Naive Bayes service allocation: second virtual machine
on the second Web server (total number of four pro-
cessors).

3.4 Simulation scenarios
The following three simulation scenarios are considered:

1. Slight context change. The context changes periodically
(5 times per simulation). For each change the intensity pa-
rameters of Poisson process are increased thrice. After fixed
period of time the intensities are decreased thrice (Fig. 2).
2. Significant context change. The context changes period-
ically (5 times per simulation). For each change the inten-
sities of Poisson process are increased sixfold. After fixed
period of time the intensities are decreased sixfold (Fig. 3).
3. Processors failure (anomaly). Anomaly is gained by fail-
ure of 4 processors on the first virtual machine (Fig. 4).

In the first two cases changes in latency characteristics
are caused by non-stationary clients’ requests arrival rate
to the execution system. The last case represents a typical
anomaly detection problem in which changes are caused by
temporary resource unavailability.
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Figure 2: Exemplary characteristic of average la-
tency in modelled execution system for Slight con-
text change scenario. Moments of changes in the
system are represented by vertical lines.

Figure 3: Exemplary characteristic of average la-
tency in modelled execution system for Significant
context change scenario. Moments of changes in the
system are represented by vertical lines.

Figure 4: Exemplary characteristic of average la-
tency in modelled execution system for Processors
failure scenario. Moments of changes in the system
are represented by vertical lines.

3.5 Results and Discussion
The exemplary characteristics of average latency in execu-

tion system for considered simulation scenarios are presented
in Figures 2–4. For each case the moments of changes are
known before the simulation, thus it is easy to asses if the
change is correctly detected. To evaluate the change de-
tection approaches we use two quality criteria, namely, the
number of correctly and incorrectly detected changes. We

Table 2: Average number of correctly and incor-
rectly detected changes for Slight context change
simulation.

Change detection Correctly Incorrectly
method (L,σ) detected detected

(max. 5)
Bhattacharyya (25, 0.2) 3.2 0.2
Kullback-Leibler (25, 1) 3.8 0.8
Lin-Wong (25, 0.15) 2.8 0.7

mod. Lin-Wong (25, 0.02) 2.9 0.9

Bayesian approach (25, 0) 3 0.2

Table 3: Average number of correctly and in-
correctly detected changes for Significant context
change simulation.

Change detection Correctly Incorrectly
method (L,σ) detected detected

(max. 5)
Bhattacharyya (25, 0.2) 4.6 0.1
Kullback-Leibler (25, 1) 4.8 0.2
Lin-Wong (25, 0.15) 4.6 0.3

mod. Lin-Wong (25, 0.02) 4.6 0.2

Bayesian approach (25, 0) 5 0

Table 4: Average number of correctly and incor-
rectly detected changes for Processors failure simu-
lation.

Change detection Correctly Incorrectly
method (L,σ) detected detected

(max. 2)
Bhattacharyya (25, 0.2) 1 0.3
Kullback-Leibler (25, 1) 0.7 0.3
Lin-Wong (25, 0.15) 1.1 0.1

mod. Lin-Wong (25, 0.02) 1 0.1

Bayesian approach (25, 0) 1.1 0.1

assume that a change is correctly detected if it is reported
with a delay less than ten time units (which are seconds
in the simulation). Tables 2, 3, 4 contain the experimen-
tal results for simulation scenarios Slight context change,
Significant context change and Processors failure, respec-
tively. For each scenario simulation is repeated ten times
and the obtained results are averaged. We compare the
performance of the Bayesian approach for change detection
with the following frequentist-based dissimilarity measures
[6]: Bhattacharyya, Kullback-Leibler, Lin-Wong and modi-
fied Lin-Wong. The values of parameters for the frequentist
approaches, i.e., size of shifting window (denoted by L) and
sensitivity parameter (denoted by σ), are obtained empiri-
cally.

In general, the results of the experiment show that most
of the changes were successfully detected using all of con-
sidered approaches. The lowest number of detected changes
was gained for Slight context change and Processors failure
simulation scenarios. In Slight context change case a slight
increase of intensity of Web service requests provokes la-
tency changes which are negligible by detectors (see Figure
2). In Processors failure simulation scenario, after gradual
increase of average latency caused by system collapse, the
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execution system returned automatically to the level before
the failure due to smart scheduling Web requests among ex-
ecution units. Therefore, it is difficult to detect reparation
moment of system failure (see second vertical line in Fig. 4).
The comparison of performance of considered change de-

tectors shows that the Bayesian approach performed slightly
better for Significant context change and Processors failure
(anomaly) scenarios in comparison to the frequentist meth-
ods. Moreover, the number of incorrectly detected changes
using the Bayesian model was the lowest for all considered
scenarios. This feature of the Bayesian approach is particu-
larly important in Web service execution systems in which
each notification of change detection implies computation-
ally demanding resource allocation. Last but not least it is
worth mentioning that the Bayesian approach, in contrast
to frequentist-based methods, does not require defining ad-
ditional parameters except shifting windows size. The value
of the sensitivity parameter can be set according to the Jef-
frey’s interpretation (see Table 1) without any additional
empirical tuning.

4. CONCLUSIONS
In this paper, we presented the change detection method

using the approximated Bayes factor. The main advantages
of the proposed algorithm is that it works in the on-line fash-
ion and the algorithm’s computational complexity is O(L)
because of the closed forms of the model evidences. More-
over, the usage of a discrete random variable unifies the ap-
proach for different applications, e.g., in resource allocation
or anomaly detection.
The proposed algorithm was applied in the Web service

system in order to detect changes in the QoS parameter, i.e.,
latency. Three different situations were considered, namely,
recurrent slight change in the mean of the random process,
recurrent significant change in the mean of the random pro-
cess, and the system failure. The obtained results (see Ta-
bles 2, 3, and 4) indicate high efficiency of the proposed
change detector.
It is worth noting that the proposed approach can be

easily applied to continuous random variables. For exam-
ple, considering normal distributions leads to very similar
method to that presented in [8] but with the on-line working
regime. Moreover, our method can be successfully applied
not only in the Web service systems but in other domains
as well. Especially in domains in which the computational
complexity of the change detector needs to be small, e.g.,
like in computer vision (background change detection) or
on-line signal segmentation.
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