
Addressing Self-Management in Cloud Platforms:
A Semantic Sensor Web Approach

Rustem Dautov
South-East European Research Centre

International Faculty, The University of Sheffield
24 Proxenou Koromila Street
Thessaloniki, 54622, Greece

rdautov@seerc.org

Iraklis Paraskakis
South-East European Research Centre

International Faculty, The University of Sheffield
24 Proxenou Koromila Street
Thessaloniki, 54622, Greece
iparaskakis@seerc.org

Dimitrios Kourtesis
South-East European Research Centre

International Faculty, The University of Sheffield
24 Proxenou Koromila street
Thessaloniki, 54622, Greece
dkourtesis@seerc.org

Mike Stannett
Department of Computer Science

The University of Sheffeld
Regent Court, 211 Portobello Street
Sheffeld S1 4DP, United Kingdom
m.stannett@dcs.shef.ac.uk

ABSTRACT
As computing systems evolve and mature, they are also expected
to grow in size and complexity. With the continuing paradigm
shift towards cloud computing, these systems have already
reached the stage where the human effort required to maintain
them at an operational level is unsupportable. Therefore, the
development of appropriate mechanisms for run-time monitoring
and adaptation is essential to prevent cloud platforms from
quickly dissolving into a non-reliable environment. In this paper
we present our approach to enable cloud application platforms
with self-managing capabilities. The approach is based on a novel
view of cloud platforms as networks of distributed data sources -
sensors. Accordingly, we propose utilising techniques from the
Sensor Web research community to address the challenge of
monitoring and analysing continuously flowing data within cloud
platforms in a timely manner.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and
serviceability D.4.8 [Operating Systems]: Performance –
Monitors, Operational analysis

Keywords
Cloud application platform; PaaS; Autonomic computing; MAPE-
K; Self-management; Sensor Web; Semantic Sensor Web.

1. INTRODUCTION
With the paradigm shift towards cloud computing, the complexity
of next generation service-based computing systems is soon
expected to outgrow our capacity to manage them in a manual
manner [5]. A similar problem was faced in the 1920s with
telephony [14], when increased telephone usage led to the

introduction of the automatic branch exchanges which eventually
substituted human operators. Autonomic computing aims at an
analogous goal today, seeking to improve complex computing
systems by decreasing human intervention to a minimum. It is a
concept that brings together many fields of IT with the purpose of
creating computing systems that are capable of self-management
– a feature that is central to the concept of cloud computing. In
particular, the combination of two research areas, cloud
computing and autonomic computing, has been attracting more
and more attention over the past few years. As a recognition of
the importance of research in this direction, the first Autonomic
and Cloud Computing Conference1, organised by ACM2, will take
place this year (2013).

To date, attempts to enable clouds with autonomic behaviour have
focussed on the Infrastructure-as-a-Service (IaaS) level of cloud
computing. Both academia and industry have been investigating
and trying to develop efficient mechanisms of adapting to varying
volumes and types of user requests by allocating the incoming
workload across computational instances (i.e., load balancing), or
by reserving and releasing computational resources upon demand
(i.e., elasticity) [1, 19]. Both load balancing and elasticity are
essential characteristics of cloud computing according to the
National Institute of Standards and Technology [18].

However, more sophisticated adaptation scenarios, such as
modifying the actual structure and/or behaviour of a deployed
application at run-time, are much more difficult to automate, and
at the moment are beyond the capabilities of common cloud
platforms. As an example, consider a situation when hundreds of
applications deployed on a cloud platform are using the
platform’s built-in notification service (e.g., for e-mail
notifications). At some point this service crashes, affecting the
quality of service of all the dependent applications. A possible
solution in such circumstances would be to switch to an external
notification service, automatically and transparently to the users.
Unfortunately, at the moment there seem to be no self-
management mechanisms of such a kind at the Platform-as-a-
Service (PaaS) level. Even though much effort has been put into

1 http://www.autonomic-conference.org/
2 http://www.acm.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HotTopiCS’13, April 20–21, 2013, Prague, Czech Republic.
Copyright © 2013 ACM 978-1-4503-2051-1/13/04...$15.00.

11

the development of self-management mechanisms at the IaaS
level, self-adaptation capabilities of services at the PaaS level are
as yet immature and not well theorised.

To achieve self-management at the PaaS level we are developing
a self-adaptation framework, based on our novel concept of
viewing cloud platforms as sensor networks. A sensor network is
a computer accessible network of spatially distributed devices
using sensors to monitor conditions at different locations, such as
temperature, sound, pressure, etc. [4]. Accordingly, the presence
of multiple distributed sources of information on a cloud platform,
which have to be monitored to support self-management, allows
us to draw a parallel between cloud platforms and sensor
networks.

This similarity gives us confidence that we can re-use the positive
experience of the Sensor Web research community in the context
of dynamic monitoring and analysis of continuously flowing
streams of data. To be more precise, we propose to employ
techniques from the Semantic Sensor Web (SSW) [22] – a
research field at the intersection of the Sensor Web and the
Semantic Web. The SSW technologies, namely RDF data streams
and SPARQL query engines, allow us to address the challenge of
situation assessment and detection of critical conditions by
processing multiple heterogeneous data streams. Moreover, by
reasoning over OWL ontologies and SWRL rules we can benefit
from existing reasoning machinery for diagnosis and
identification of adaptation strategies. In our work we are
following IBM’s MAPE-K reference model for creating
adaptation loops. As a first step towards the validation of this
vision, in this paper we present a simple use case study which
demonstrates the viability of our proposed approach.

The rest of the paper is organised as follows. Section 2 gives a
short introduction to the state of the art in existing self-adaptation
mechanisms in clouds and presents our motivation for this
research in more detail. Section 3 introduces the principles of
autonomic computing and explains the MAPE-K model. Section 4
is dedicated to related technologies from the areas of Semantic
Web standards, the Sensor Web and the field of data streams. In
section 5 we present and justify our vision of cloud platforms as
sensor networks, as well as sketch out the architecture of the
envisaged self-adaptation framework. A simple use case study,
which has already been carried out, is also described in section 5.

2. MOTIVATION
2.1 Existing Self-Adaptation Mechanisms at
the PaaS level
To support elasticity and load-balancing, two important features
for cloud computing services, and ensure that appropriate service
levels are maintained, cloud platforms continuously monitor the
usage of deployed applications and available resources. In
response to reaching a critical level of CPU/memory utilisation,
additional computational instances can be launched and incoming
user requests can be spread across instances evenly. In some
cases, the process of adding/removing computational instances is
managed by the cloud platform in a completely automated way
(e.g., in OpenShift3, Google AppEngine4, or AWS Elastic

3 http://www.openshift.com
4 https://appengine.google.com/

Beanstalk5). In other cases, application developers are expected to
build such capability by themselves or integrate it into their
applications’ source code using appropriate cloud platform APIs
(e.g., in CloudFoundry6 or Heroku7). External solutions may be
utilised to automate the task of scaling applications up/down (e.g.,
the commercial offering HireFire8 for Heroku). Some platforms,
including OpenShift and Heroku, are also able to idle inactive
applications based on users’ recent activity to save resources and
users’ money.

A basic technique employed by several existing self-management
mechanisms is “heart beat monitoring”: detecting if an application
has crashed and restarting it. Self-management behaviour of this
kind is rather simple, and does not involve any sophisticated
analysis of what the underlying problem in an application might
be. Applications are treated as “black boxes” and usually, if they
still do not operate after several attempts to restart, they are fully
stopped and further action needs to be taken by users.

To support more in-depth monitoring of deployed applications
and provide customers with visibility into resource utilisation and
operation performance, some cloud platform operators either offer
built-in monitoring tools (e.g., Amazon CloudWatch9 or Google
AppEngine Dashboard) or employ external monitoring
frameworks (e.g., New Relic10). Common monitored metrics are
CPU and memory utilisation, disk reads and writes, network
traffic, etc. However, the monitoring frameworks only deal with
problem detection and do not provide any means of automatically
fixing a problem once it appears – this task is left to the
administrators.

2.2 Problem Statement
In the era of the Internet of Services, when applications are
increasingly dependent on third-party services, a failure of an
external component at one point may lead to malfunctioning of a
whole cloud-based application, without the hosting platform
noticing it. Presently, cloud platforms are incapable of detecting
and reacting to such situations [8]: they cannot understand
whether a response from a service is correct or not, cannot
substitute a malfunctioning or underperforming service with
another, etc. The existing limitations make it necessary for
platform administrators and application developers to be involved
in the lifecycle of an application after it has been deployed to a
cloud environment. That is, adaptations need to be performed
manually by rewriting the application/platform code, recompiling,
redeploying the application or restarting the platform.

As cloud platforms become more and more complex, the number
of applications hosted on a platform grows, and changes to these
applications become more frequent, we are running into the risk
of a cloud platform becoming unmanageable, because the effort
required to manage it has outgrown the human resources available
for the task. The development of appropriate mechanisms for run-
time monitoring and adaptation are therefore essential to prevent

5 http://aws.amazon.com/elasticbeanstalk/
6 http://www.cloudfoundry.com
7 http://www.heroku.com
8 http://hirefireapp.com/
9 http://aws.amazon.com/cloudwatch/
10 http://newrelic.com/

12

cloud platforms from quickly dissolving into non-reliable
environments.

3. BACKGROUND THEORY
3.1 Autonomic Computing
Inspired by the biological concept of autonomic systems, IBM
introduced the term autonomic computing [13] in 2001 to refer to
systems which are able to self-manage. IBM compared complex
computing systems to the human body, and suggested that such
systems should also demonstrate certain autonomic properties,
that is, should be able independently to take care of regular
maintenance and optimisation tasks, thus reducing the workload
on system administrators. Though autonomic computing is the
most commonly used and established term, throughout the rest of
this paper we will be using the terms autonomic computing, self-
management, and self-adaptation interchangeably.

According to Paul Horn [13] from IBM, who first suggested the
systematic scientific approach of autonomic computing, the four
fundamental properties of self-managing (i.e., autonomic) systems
are: self-configuration, self-optimisation, self-healing, and self-
protection. One of the possible ways of achieving these 4
characteristics is through self-reflection. A self-reflective system
refers to the use of a causally connected self-representation to
support the inspection and adaptation of that system [3]. It means
that such a system is context-aware and self-aware of its internal
structure and able to perform run-time adaptations, so that applied
adaptations dynamically reflect on the state of the system (thus,
possibly, triggering another adaptation cycle) [8]. The motivation
behind self-reflection stems from the necessity to have systems
which, when deployed in hostile and/or dynamically changing
settings, are capable of reacting to various changes in the
environment, based on the knowledge they already possess. In
such scenarios, the capability of a remote system to perform
automatic adaptations at run-time within a specific time frame is
often of a great importance.

Depending on the extent to which modern computing systems
support self-management, we can distinguish 5 levels of
autonomicity [10], starting from the basic level, through
managed, predictive and adaptive levels, and finally to the fully
autonomic level, which is the ultimate goal of our work. At this
level, system operation is governed by business policies and
objectives, established by administrators at design-time. Users
only interact with the system to monitor the business processes or
alter the objectives.

3.2 MAPE-K Reference Model
One of the fundamental components of IBM’s vision of
autonomic computing is a reference model for autonomic control
loops [14], which is usually referred to as the MAPE-K (Monitor,
Analyse, Plan, Execute, Knowledge) adaptation loop, and
depicted in Figure 1.

IBM’s vision of autonomic computing was influenced by agent
theory, and the MAPE-K model is similar to and was probably
inspired by the generic model for intelligent agents proposed by
Russell and Norvig [21]. According to this model, agents are
equipped with sensors to perceive their environment. Then, based
on the sensed values, they execute some actions on the
environment. This process of sensing and acting upon sensed
values clearly corresponds to the closed adaptation loop of the
MAPE-K model. Applying the model to the domain of

adaptations at the PaaS level, we now consider each of its
elements in more detail.

Figure 1. IBM’s MAPE-K reference model for autonomic
control loops (modified from [14]).

The managed elements represent any software and hardware
resources which are enhanced with autonomic behaviour by
coupling with an autonomic manager. In our case, the managed
element may be the cloud platform as a whole, a web server, an
operating system, an application, etc. Managed elements are
equipped with sensors – they are software or hardware
components responsible for collecting information about the
managed elements. Managed elements are also equipped with
effectors – components responsible for carrying out changes to the
managed elements. Changes may be coarse-grained (e.g.,
substituting a Web service) or fine-grained (e.g., changing
configuration of a Web service).

The autonomic manager is the core element of the model – it is a
software component which implements the whole MAPE-K
functionality. Usually it is configured by human administrators
using high-level goals and uses the monitored data from sensors
and internal (i.e. self-reflective) knowledge of the system to plan
and execute low-level actions that are necessary to achieve these
goals. The internal knowledge of the system, shared between the
four MAPE components, includes an architectural model of the
managed element (i.e., its components, connections between
them, adaptation points, etc.), topological information, system
logs, adaptation policies, etc. Autonomic computing policies can
be expressed using some form of event-condition-action (ECA)
rules, goal policies or utility functions [16]. Often the knowledge
base is not static (i.e., populated once by humans at design-time),
but rather evolves dynamically by accumulating new information
at run-time (e.g., keeping track of detected failures and applied
solutions).

The data collected by sensors allows the autonomic manager to
monitor the execution of the managed element. For instance, we
may be interested in monitoring such properties of deployed
applications as CPU and memory utilisation, response times to
user requests, I/O operations frequency, up time, etc. Two types
of monitoring are usually identified in the literature [14]:

• Passive monitoring, also known as non-intrusive, assumes that
no changes are made to the managed element. This kind of
monitoring is targeted at the context of the managed element,
rather than the element itself.

• Active monitoring, also known as intrusive, entails designing
and implementing software in such a way that it provides some
entry-points for capturing required properties (e.g., APIs).

13

The analysis component’s main responsibility is to assess the
current situation and detect failures or sub-optimal behaviour of
the managed element. In its simplest form, the analysis engine,
based on ECA rules, detects when a single monitored value is
exceeding its threshold (e.g., CPU utilisation reaches 100%), and
sends this diagnosis to the planning component, which is
responsible for generating an appropriate adaptation plan (i.e., an
action or a set of actions to be executed). Similarly, in its simplest
form, it just follows the “action” part of an ECA rule. To make
planning more effective, the autonomic manager uses an
architectural model of the entire managed system, which reflects
the managed system’s behaviour, requirements, available
resources, goals, etc. The model is updated through sensor data
and used to reason about the managed system to plan adaptations.
An advantage of the architectural model-based approach when
planning is that, under the assumption that the model correctly
mirrors the managed system, the architectural model can be used
to verify that system integrity is preserved when applying an
adaptation; that is, we can guarantee that the system will continue
to operate correctly after the planned adaptation has been
executed [20]. The execution stage is the final step in the MAPE-
K adaptation cycle. This component is responsible for carrying
out the adaptation plan generated at the previous stage to the
managed element by means of effectors. Once changes have been
applied to the system, a new adaptation cycle is triggered – newly
generated values are monitored and analysed, an appropriate
adaptation plan is generated and executed, and so on.

4. RELATED TECHNOLOGIES
4.1 Semantic Web
The Semantic Web is the extension of the World Wide Web that
enables people to share content beyond the boundaries of
applications and websites [12]. It is a mesh of information linked
up in such a way as to be easily readable by machines, on a global
scale. It can be understood as an efficient way of representing
data on the World Wide Web, or as a globally linked database. As
shown in Figure 2, the Semantic Web is realised through the
combination of certain key technologies [12]. The technologies
from the bottom of the stack up to the level of OWL have already
been standardised by the W3C and are widely applied in the
development of Semantic Web applications. The technologies are:

Universal Resource Identifiers (URIs) provide means for uniquely
identifying Semantic Web resources. The Semantic Web should
be able to represent text documents in different human languages,
and Unicode serves this purpose. XML provides an elemental
syntax for content structure within documents. It is not really a
necessary component of the Semantic Web technologies in most
cases, as alternative syntaxes exist, such as Turtle11 or N312 for
RDF. Resource Description Framework (RDF) is a framework for
creating statements in the form of triples: subject – predicate –
object. It enables the representation of information about
resources in the form of graph – that is why the Semantic Web is
sometimes called a Giant Global Graph. As noted above, an RDF-
based model can be represented in a variety of syntaxes (e.g.,
RDF/XML, N3, and Turtle). RDF Schema (RDFS) provides a
basic schema language for RDF. For example, using RDFS it is
possible to create hierarchies of classes and properties.

11 http://www.w3.org/TeamSubmission/turtle/
12 http://www.w3.org/TeamSubmission/n3/

Web Ontology Language (OWL) is used to formally define an
ontology – “a formal, explicit specification of a shared
conceptualisation” [23]. OWL extends RDFS by adding more
advanced constructs to describe resources on the Semantic Web.
By means of OWL and other ontology specification languages it
is possible to explicitly define knowledge (i.e. concepts, relations,
properties, instances, etc.) and basic rules in order to reason about
this knowledge. OWL allows stating additional constraints, such
as cardinality, restrictions of values, or characteristics of
properties such as transitivity. It is based on Description Logics
and thus brings reasoning power to the Semantic Web.

Semantic Web Rule Language (SWRL) extends OWL with even
more expressivity, as it allows defining rules so that whenever the
conditions specified in the body of a rule hold, then the conditions
specified in the head must also hold. SPARQL is an RDF query
language - it can be used to query any RDF-based data, including
statements involving RDFS and OWL.

Figure 2: The Semantic Web technology stack.

4.2 Semantic Sensor Web
The rapid development and deployment of sensor technology
involves many different types of sensors, not necessarily limited
to physical devices. Anything that can calculate or estimate a data
value can be perceived as a sensor [22] – an application
component, an SQL query, a Web service, etc. The Open
Geospatial Consortium13 has recently launched the Sensor Web
Enablement (SWE) project [4] – an initiative aiming at
developing a suite of specifications related to sensors, sensor data
models, and sensor Web services that will be accessible and
controllable via the Web.

To address the requirements of SWE, the Semantic Sensor Web
community has combined two research areas, the Semantic Web
and the Sensor Web, so as to enable situation awareness by
providing enhanced meaning for sensor observations [22]. It does
this by adding semantic annotations to existing standard sensor
languages of the SWE project. These annotations provide more
meaningful descriptions and enhanced access to sensor data than
SWE alone, and act as a linking mechanism to bridge the gap
between the primarily syntactic XML-based metadata standards
of the SWE and the RDF/OWL-based metadata standards of the
Semantic Web. In association with semantic annotations,
ontologies and rules play an important role in SSW for
interoperability, analysis, and reasoning over heterogeneous
sensor data [22]. For example, the Semantic Sensor Network
(SSN) ontology [7] provides a common vocabulary to support
modelling sensor networks of any complexity.

13 http://www.opengeospatial.org/

14

4.3 Data Streams
According to IBM, the world creates 2.5 quintillion bytes of data
every day [15]. This data comes from everywhere: sensors used to
gather climate information, posts to social media sites, digital
pictures and videos, purchase transaction records, and cell phone
GPS signals, to name a few. Even though existing technologies
seem to succeed in storing these overwhelming amounts of data,
on-the-fly processing of newly generated data is a challenging
task. An increasing number of distributed applications are
required to process continuously streamed data from
geographically distributed sources at unpredictable rates to obtain
timely responses to complex queries [6]. A key research area
addressing the issues involved in processing streamed data is
Information Flow Processing (IFP); in contrast to the traditional
static processing of data, IFP focuses on flow processing and
timeliness [11]. The former means that data is not stored, but
rather continuously flowing and being processed, and the latter
refers to the fact that time constraints are crucial for IFP systems.
These two main requirements have led to the emergence of a
number of systems specifically designed to process incoming
information streams according to a set of pre-deployed processing
rules. A data stream consists of an unbounded sequence of values
continuously appended, each of which carries a timestamp that
typically indicates when it has been produced [6]. Usually (but
not necessarily) recent values are more relevant and useful,
because most applications are interested in processing current
observations to achieve near real-time operation. Examples of
data streams include sensor values, stock market tickers, social
status updates, heartbeat rates, etc.

To cope with the unbounded nature of streams and temporal
constraints, so-called continuous query languages [6] have been
developed to extend the conventional SQL semantics with the
notion of windows. A window transforms unbounded sequences
of values into bounded ones, allowing the traditional relational
operators to be applied. This approach restricts querying to a
specific window of concern which consists of a subset of
statements recently observed on the stream, while older
information is (usually) ignored [2]. In our research we are mainly
interested in SPARQL-based continuous query languages (see
Figure 2), which are not yet part of the standardised Semantic
Web stack, but becoming more and more used to query over RDF
data streams. Up to date, there are several languages, mainly
developed by the SSW community – CQELS [17], C-SPARQL
[2], and SPARQLstream [6], to name a few.

Figure 3: A data stream and a window [9].

The concepts of unbounded data streams and windows are
visualised in Figure 3. The small squares represent tuples
continuously arriving over time and constituting a data stream,
whereas the thick rectangular frame illustrates the window
operator applied to this unbounded sequence of tuples. As time
passes and new values are appended to the data stream, old values

are pushed out of the specified window, i.e. become no more
relevant and may be discarded (unless there is a need for storing
historical data for later analysis).

5. OUR APPROACH
5.1 Our Vision
Being highly complex and dynamic, cloud platforms are also
characterised with extremely large volumes of information
continuously generated and consumed both within and outside the
platforms. In this context, looking at the cloud platform from an
information management point of view, we can distil the
following characteristics:

 Dynamism: in such dynamic systems as cloud platforms various
sources of information are constantly generating data (which is
then processed, stored, deleted, etc.) at an unpredictable rate.
Moreover, various platform components are always evolving, so
that new sources of information are coming up, while the old
ones are disappearing, thus making the whole system even more
dynamic.

 Distributed nature: the information may come from various
logically and physically distributed sources (i.e., sensors). The
first means that it may originate from databases, file systems,
running applications, external Web services. The latter refers to
the fact that all these “logical” sources may be deployed in
separate virtual machines, servers and even datacentres.

 Volume: the amount of raw data being generated by (hundreds
of) deployed applications, components of the platform, users,
external services, etc. is huge. Even if we neglect the
information flows that are not directly relevant to the context of
self-management (i.e., the so called “noise”), the amount of
information remaining is still considerable.

 Heterogeneity: originating from various distributed sources such
as applications, databases, user requests, external services, etc.,
the information is a priori heterogeneous. Apart from the
heterogeneity in the data representation, such as differences in
data formats/encodings, there is also heterogeneity in the
semantics of the data. For example, two separate applications
with different business logic may store logging data in XML. In
this case, the data is homogeneous in its format and, potentially,
structure, but completely heterogeneous at the semantic level.

These characteristics are not unique to the problem domain of
cloud platform monitoring. They are shared by many other
problem domains where solutions based on Sensor Web
technologies have been very successful, such as, for instance,
environmental monitoring and traffic surveillance. The
similarities between the problem domains give us confidence that
we can apply a similar solution to the domain of cloud platform
monitoring. Accordingly, we can think of a particular data source
in a cloud platform as a sensor and the whole platform as a
network of such sensors, similar to a distributed network of
weather or city traffic sensing devices. Treating a cloud platform
as a sensor network allows us to re-use existing solutions,
developed and validated by the Sensor Web community, in the
context of monitoring and analysis of streaming heterogeneous
sensor data. A particularly promising direction to pursue is
applying techniques from the Semantic Sensor Web area to
implement the self-adaptation framework and enable self-
management at the PaaS level. The next subsection presents a
conceptual architecture of the proposed future framework and
explains the role and benefits of SSW technologies.

15

5.2 Framework Architecture
Based on our Sensor Web vision of cloud platforms and
employing the MAPE-K as an underlying model for developing
our future self-adaptation framework, we describe our SSW-
driven approach by sketching out a high-level architecture of the
framework (see Figure 4).

In order to support both self-awareness and context-awareness of
the managed elements, we need to employ some kind of
architectural model describing the adaptation-relevant aspects of
the cloud environment (e.g., platform components, available
resources, connections between them, etc.) and the managed
elements (e.g., entry-points for monitoring and execution). For
these purposes we propose using OWL ontologies to represent the
self-reflective knowledge of the system. Such an architectural
model, represented with OWL, will also serve as a common
vocabulary of terms, shared across the whole managed system. At
this stage of our research we distinguish 3 main elements of the
framework: triplification engine, continuous SPARQL query
engine and OWL/SWRL reasoning engine. Accordingly, our
ontological classes and properties will serve as building blocks for
creating RDF streams, SPAQRL queries and SWRL rules.

Figure 4: Framework architecture

The triplification engine is responsible for consuming and
“homogenising” the data generated by deployed applications,
platform components, external services, etc. The engine takes as
input streams of raw data, and generates streams of RDF triples.
There are already existing tools for converting data stored in
relational databases into RDF, using special mapping languages
(e.g., R2RML14), and analogous tools can be envisaged for RDF
stream generation. Using RDF as a common format for
representing streaming data, and OWL concepts as subjects,
predicates and objects of the RDF triples, allows us to benefit
from human-readability and extensive support of query
languages. The triplification step may be omitted if the monitored
data is already represented in RDF format using ontological
classes and properties.

The next step of the information flow within our framework is the
continuous SPARQL query engine. This component takes as input
the flowing RDF data streams generated by the triplification
engine and evaluates pre-registered continuous SPARQL queries
against them, to support situation assessment. In the first instance,
situation assessment includes distinguishing between usual

14 http://www.w3.org/TR/r2rml/

operational behaviour and critical situations by matching them
against critical condition patterns. The process of encoding
patterns is iterative, that is, new critical conditions are constantly
added to ensure the pattern base remains up-to-date. Machine
learning techniques may be employed in this context to assist with
maintaining the list of critical condition patterns. We propose
using one of the existing continuous SPARQL languages to
encode critical condition patterns. By registering an appropriate
SPARQL query against a data stream, we will be able to detect a
critical situation with a minimum delay - the continuous SPARQL
engine will trigger as soon as RDF triples in the stream match the
WHERE clause of the query. With SPARQL as a query language
it is also possible to benefit from inference capabilities – that is,
apart from just querying data, we may also be able to perform
some reasoning over RDF triples. The reasoning capabilities
depend on the entailment regime of the continuous SPARQL
language to be selected, and respective tool support. Supporting
“on-the-fly” processing of constantly flowing data, generated by
hundreds of sources, as well as employing one of the existing
RDF streaming engines, help us in achieving near real-time
behaviour of the adaptation framework.

Once a critical condition has been detected, a corresponding
adaptation plan has to be generated. This step requires not just
associating the “event” and “condition” parts of an ECA rule with
its “action” part, but rather more complex reasoning over the
possible reasons for a problem, and identification of potential
adaptation strategies. We envisage addressing this challenge (at
least partially) with OWL ontologies and SWRL rules, which
provide sufficient expressivity to define adaptation policies, and
will exempt us from the effort-intensive and potentially error-
prone task of implementing our own analysis engines from
scratch. Rather, we will rely on the built-in reasoning capabilities
of OWL ontologies and SWRL rules, so that the routine of
reasoning over a set of situations and adaptation alternatives is
done by an existing, tested, and highly optimised mechanism.

When defining adaptation policies with OWL and SWRL, we, as
application developers and platform administrators, may benefit
from the following [8]:

 Separation of concerns: with ontologies and rules separated
from the platform/application programming code, it is easier to
make changes to adaptation policies on the fly (i.e. without
recompiling, redeploying and restarting the
platform/application) and to maintain the adaptation framework.

 Flexible adaptation at any adaptation scope: from the lowest
level of programming classes and variables to the upper-most
level of the whole platform. The ontology-based approach is
generic and can be potentially applied to adaptations at the IaaS
level, and any other distributed system as well.

 Increase in reuse, automation and reliability: once implemented
and published on the Web, ontologies are ready to be re-used by
third parties, thus saving ontology engineers from “reinventing
the wheel”. Since the reasoning process is automated and
performed by a reasoning engine, it is not prone to “human
factors” and is more reliable.

5.3 Use Case
Let us consider a scenario where a number of applications are
deployed on a cloud platform and rely on the platform’s built-in
notification service. In this case, the managed elements are the
applications, and the response time of the notification service is

16

the parameter being monitored. The autonomic manager possesses
knowledge about the applications and their dependency on the
notification service, as well as the list of third-party services that
can act as substitutes. The knowledge base, among other things,
also includes a policy stating that if the internal notification
service is slow to respond, then it needs to be replaced with an
external one. At some point in time the notification service gets
overloaded and cannot process all incoming requests. In order to
satisfy Service Level Agreements we need to detect such
situations and switch over all the dependent applications to an
external substitute. In this scenario the main focus has been on the
monitoring and analysis steps of the MAPE-K model, whereas the
planning and execution steps have been left aside (this example is
intended only to demonstrate the viability of our approach, and is
correspondingly simplified).

@prefix : <http://www.seerc.org/ontology.owl#> .
<http://www.seerc.org/ontology.owl> rdf:type owl:Ontology .
 :Service rdf:type owl:Class .
 :Time rdf:type owl:Class .
 :hasResponseTime rdf:type owl:ObjectProperty ,
 rdfs:domain :Time .
 :isEquivalent rdf:type owl:ObjectProperty ,
 owl:SymmetricProperty ;
 rdfs:range :Service ;
 rdfs:domain :Service .
 :hasHighResponseTime rdf:type owl:DatatypeProperty ,
 rdfs:range xsd:Boolean .
 :hasValue rdf:type owl:DatatypeProperty ,
 rdfs:range xsd:int .
 :needsSubstitution rdf:type owl:DatatypeProperty ,
 rdfs:range xsd:Boolean .

Listing 1. Simplified OWL ontology.

Following our approach, the framework utilises RDF data streams
to support on-the-fly querying and achieve minimal reaction
delays. The monitored values are represented in RDF format
using resources (i.e., subjects and objects) and properties (i.e.,
predicates) defined in an OWL ontology. Its simplified version in
the Turtle notation is presented in Listing 1. Among other things,
it includes the classes Service and Time, and the properties
hasResponseTime, hasHighResponseTime, isEquivalentTo and
needsSubstitution. Listing 2 illustrates the concept of RDF data
streams. Each line is an RDF triple (in the N3 notation),
representing an event (i.e. the fact that a service’s response time
has changed), and is annotated with a timestamp.

@prefix ex:<http://www.seerc.org/ontology/>

ex:#Service1 ex:hasResponseTime; 890. [2012-09-18 13:24:54]
ex:#Service1 ex:hasResponseTime; 1110. [2012-09-18 13:24:56]
ex:#Service1 ex:hasResponseTime; 1300. [2012-09-18 13:24:58]
ex:#Service1 ex:hasResponseTime; 5450. [2012-09-18 13:25:13]
ex:#Service1 ex:hasResponseTime; 6000. [2012-09-18 13:25:20]
ex:#Service1 ex:hasResponseTime; 6700. [2012-09-18 13:26:15]

Listing 2. RDF stream.

Listing 2 shows a sudden increase in the response time of
Service1. In order to detect such a critical situation, we need to
have registered a continuous SPARQL query, returning relevant
results whenever some monitored value has been continuously
exceeding 5000 milliseconds for more than 60 seconds. Listing 3
contains a simple C-SPARQL query and demonstrates the usage
of continuous query languages.

PREFIX ex:<http://www.seerc.org/ontology/>

SELECT DISTINCT ?service
FROM STREAM http://www.seerc.org/stream
 [RANGE 60s STEP 1s]
WHERE { ?service ex:hasResponseTime ?time .
 FILTER (?time > 5000) }

Listing 3. C-SPARQL query.

Once we have detected a critical condition we need to diagnose
the problem and reason about possible adaptation actions. Listing
4 demonstrates the usage of SWRL in the context of diagnosing a
problem and inferring a possible adaptation strategy.

Rule 1: Has high response time
 Service(?s1) ^ Time(?t)
 ^ hasResponseTime(?s1, ?t)
 ^ greaterThan(?t, 5000)
-> hasHighResponseTime(?s1, true)

Rule 2: Needs substitution
 hasHighResponseTime(?s1, true)
 ^ Service(?s2) ^ isEquivalentTo(?s1, ?s2)
-> needsSubstitution(?s1, ?s2)

Listing 4. SWRL rules.

The first rule states that if a response time from a service is
greater than 5 seconds, that service can be considered to have a
high response time. The second rule says that if a service has a
high response time and there is an equivalent service, then the
slow service should be substituted by an alternative one. Please
note that the RDF stream, the C-SPARQL query and the SWRL
rules are defined using concepts from one and the same ontology,
stored at http://www.seerc.org/ontology. Having such a common
shared vocabulary increases the reliability, consistency and
reusability of our approach.

To implement this use case scenario, we have extended the SSN
ontology with the concepts presented above, using the ontology
editor Protege15. We also developed two applications using the
Java Spring framework - an autonomic manager and a client
which continuously calls a Web service. Both were deployed to
CloudFoundry. The choice of CloudFoundry as a sandbox for our
use case was because it offers: (i) an easy-to-use Eclipse plug-in
for developing, testing and deploying Spring applications, (ii) a
portable version of the CloudFoundry cloud platform, which can
run on a single laptop for testing purposes (the so-called
MicroCloudFoundry), (iii) extensive support by the developers’
community.

To support communication between its components, this platform
uses the RabbitMQ16 messaging service – a convenient
environment for implementing RDF data streams, where each
RDF triple is sent as a separate message. Accordingly, every time
the client calls the Web service, it sends an RDF triple containing
information about the response time to a RabbitMQ queue, to
which the autonomic manager is already subscribed. We use the
C-SPARQL engine library to enable the autonomic manager with
capabilities to process RDF streams. Accordingly, the autonomic
manager, by registering an appropriate C-SPARQL query against
the queue, is notified as soon as the RDF triples in the stream
satisfy the WHERE clause of the query.

15 http://protege.stanford.edu/
16 http://www.rabbitmq.com/

17

To support manipulating and reasoning over the OWL ontology
and SWRL rules we have used the OWL API17 Java library,
which implements several reasoners, and is easy to use. As a
result, having detected a critical situation, the autonomic manager
is able to analyse the problem and infer one or more possible
adaptation strategies (the actual generation of plans for executing
adaptation strategies is outside the scope of this work). By means
of reasoning over the SWRL rules, it is able to deduce that the
service has high response time and needs to be substituted.

6. CONCLUSION
In this paper we have presented a framework for introducing self-
management in Platform-as-a-Service environments. Devising
this framework, we drew parallels between the problem domain of
self-adaptation in cloud platforms, and other problem domains
where successful solutions have come from applying the Sensor
Web technology, such as traffic surveillance and environmental
monitoring. Accordingly, our approach is based on a novel view
of cloud platforms as networks of distributed data sources -
sensors. Based on this vision and applying principles of the
Semantic Sensor Web, we described our approach and outlined a
conceptual architecture for our framework. As a proof of concept,
we are planning to further develop the framework by introducing
more sophisticated and complex adaptation policies, increasing
the number of monitored parameters, and trying other existing
continuous SPARQL languages. Future work also includes
investigations of the scalability of the framework and portability
across different cloud platforms.

7. REFERENCES
[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.,

Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I.
and Zaharia, M. 2009. Above the Clouds: A Berkeley View
of Cloud Computing.

[2] Barbieri, D., Braga, D., Ceri, S., Della Valle, E. and
Grossniklaus, M. 2010. Stream Reasoning: Where We Got
So Far. Proceedings of the 4th International Workshop on
New Forms of Reasoning for the Semantic Web: Scalable
and Dynamic (NeFoRS) (2010).

[3] Blair, G.S., Coulson, G. and Grace, P. 2004. Research
directions in reflective middleware: the Lancaster
experience. Proceedings of the 3rd workshop on Adaptive
and reflective middleware (New York, NY, USA, 2004),
262–267.

[4] Botts, M., Percivall, G., Reed, C. and Davidson, J. 2008.
OGC® sensor web enablement: Overview and high level
architecture. GeoSensor networks. (2008), 175–190.

[5] Brazier, F.M.T., Kephart, J.O., Van Dyke Parunak, H. and
Huhns, M.N. 2009. Agents and Service-Oriented Computing
for Autonomic Computing: A Research Agenda. IEEE
Internet Computing. 13, 3 (Jun. 2009), 82 –87.

[6] Calbimonte, J.-P., Jeung, H., Corcho, O. and Aberer, K.
2012. Enabling Query Technologies for the Semantic
Sensor Web. International Journal On Semantic Web and
Information Systems. (to appear. 2012).

[7] Compton, M. et al. 2012. The SSN ontology of the W3C
semantic sensor network incubator group. Web Semantics:

17 http://owlapi.sourceforge.net/

Science, Services and Agents on the World Wide Web. 17, 0
(Dec. 2012), 25–32.

[8] Dautov, R., Paraskakis, I. and Kourtesis, D. 2012. An
ontology-driven approach to self-management in cloud
application platforms. Proceedings of the 7th South East
European Doctoral Student Conference (DSC 2012)
(Thessaloniki, Greece, 2012), 539–550.

[9] Della Valle, E. 2012. Challenges, Approaches, and Solutions
in Stream Reasoning.

[10] Ganek, A.G. and Corbi, T.A. 2003. The dawning of the
autonomic computing era. IBM Systems Journal. 42, 1
(2003), 5–18.

[11] Gucola, G. and Margara, A. 2011. Processing Flows of
Information: From Data Stream to Complex Event
Processing. ACM Computing Surveys. (2011).

[12] Hitzler, P., Krötzsch, M. and Rudolph, S. 2009. Foundations
of Semantic Web Technologies. CRC Press.

[13] Horn, P. 2001. Autonomic Computing: IBM’s Perspective on
the State of Information Technology. Computing Systems.
15, Jan (2001), 1–40.

[14] Huebscher, M.C. and McCann, J.A. 2008. A survey of
autonomic computing—degrees, models, and applications.
ACM Comput. Surv. 40, 3 (2008), 1–28.

[15] IBM 2012. Bringing Big Data to the Enterprise. http://www-
01.ibm.com/software/data/bigdata.

[16] Kephart, J.O. and Walsh, W.E. 2004. An artificial
intelligence perspective on autonomic computing policies.
Fifth IEEE International Workshop on Policies for
Distributed Systems and Networks, 2004. POLICY 2004.
Proceedings (Jun. 2004), 3 – 12.

[17] Le-Phuoc, D., Dao-Tran, M., Parreira, J.X. and Hauswirth,
M. 2011. A native and adaptive approach for unified
processing of linked streams and linked data. Proceedings of
the 10th international conference on The semantic web -
Volume Part I (Berlin, Heidelberg, 2011), 370–388.

[18] Mell, P. and Grance, T. 2009. The NIST definition of cloud
computing. National Institute of Standards and Technology.
53, 6 (2009), 50.

[19] Natis, Y.V., Knipp, E., Valdes, R., Cearley, D.W. and
Sholler, D. 2009. Who’s Who in Application Platforms for
Cloud Computing: The Cloud Specialists. Gartner Research.

[20] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S.
and Wolf, A.L. 1999. An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems and their
Applications. 14, 3 (Jun. 1999), 54 –62.

[21] Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M. and
Edwards, D.D. 1995. Artificial intelligence: a modern
approach. Prentice hall Englewood Cliffs, NJ.

[22] Sheth, A., Henson, C. and Sahoo, S.S. 2008. Semantic sensor
web. Internet Computing, IEEE. 12, 4 (2008), 78–83.

[23] Studer, R., Benjamins, V.R. and Fensel, D. 1998. Knowledge
engineering: Principles and methods. Data & Knowledge
Engineering. 25, 1–2 (Mar. 1998), 161–197.

18

