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ABSTRACT 
As computing systems evolve and mature, they are also expected 
to grow in size and complexity. With the continuing paradigm 
shift towards cloud computing, these systems have already 
reached the stage where the human effort required to maintain 
them at an operational level is unsupportable. Therefore, the 
development of appropriate mechanisms for run-time monitoring 
and adaptation is essential to prevent cloud platforms from 
quickly dissolving into a non-reliable environment. In this paper 
we present our approach to enable cloud application platforms 
with self-managing capabilities. The approach is based on a novel 
view of cloud platforms as networks of distributed data sources - 
sensors. Accordingly, we propose utilising techniques from the 
Sensor Web research community to address the challenge of 
monitoring and analysing continuously flowing data within cloud 
platforms in a timely manner.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Reliability, availability, and 
serviceability D.4.8 [Operating Systems]: Performance – 
Monitors, Operational analysis 

Keywords 
Cloud application platform; PaaS; Autonomic computing; MAPE-
K; Self-management; Sensor Web; Semantic Sensor Web. 

1. INTRODUCTION 
With the paradigm shift towards cloud computing, the complexity 
of next generation service-based computing systems is soon 
expected to outgrow our capacity to manage them in a manual 
manner [5]. A similar problem was faced in the 1920s with 
telephony [14], when increased telephone usage led to the 

introduction of the automatic branch exchanges which eventually 
substituted human operators. Autonomic computing aims at an 
analogous goal today, seeking to improve complex computing 
systems by decreasing human intervention to a minimum. It is a 
concept that brings together many fields of IT with the purpose of 
creating computing systems that are capable of self-management 
– a feature that is central to the concept of cloud computing. In 
particular, the combination of two research areas, cloud 
computing and autonomic computing, has been attracting more 
and more attention over the past few years. As a recognition of 
the importance of research in this direction, the first Autonomic 
and Cloud Computing Conference1, organised by ACM2, will take 
place this year (2013). 

To date, attempts to enable clouds with autonomic behaviour have 
focussed on the Infrastructure-as-a-Service (IaaS) level of cloud 
computing. Both academia and industry have been investigating 
and trying to develop efficient mechanisms of adapting to varying 
volumes and types of user requests by allocating the incoming 
workload across computational instances (i.e., load balancing), or 
by reserving and releasing computational resources upon demand 
(i.e., elasticity) [1, 19]. Both load balancing and elasticity are 
essential characteristics of cloud computing according to the 
National Institute of Standards and Technology [18]. 

However, more sophisticated adaptation scenarios, such as 
modifying the actual structure and/or behaviour of a deployed 
application at run-time, are much more difficult to automate, and 
at the moment are beyond the capabilities of common cloud 
platforms. As an example, consider a situation when hundreds of 
applications deployed on a cloud platform are using the 
platform’s built-in notification service (e.g., for e-mail 
notifications). At some point this service crashes, affecting the 
quality of service of all the dependent applications. A possible 
solution in such circumstances would be to switch to an external 
notification service, automatically and transparently to the users. 
Unfortunately, at the moment there seem to be no self-
management mechanisms of such a kind at the Platform-as-a-
Service (PaaS) level. Even though much effort has been put into 

                                                                 
1 http://www.autonomic-conference.org/ 
2 http://www.acm.org/ 
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the development of self-management mechanisms at the IaaS 
level, self-adaptation capabilities of services at the PaaS level are 
as yet immature and not well theorised. 

To achieve self-management at the PaaS level we are developing 
a self-adaptation framework, based on our novel concept of 
viewing cloud platforms as sensor networks. A sensor network is 
a computer accessible network of spatially distributed devices 
using sensors to monitor conditions at different locations, such as 
temperature, sound, pressure, etc. [4]. Accordingly, the presence 
of multiple distributed sources of information on a cloud platform, 
which have to be monitored to support self-management, allows 
us to draw a parallel between cloud platforms and sensor 
networks. 

This similarity gives us confidence that we can re-use the positive 
experience of the Sensor Web research community in the context 
of dynamic monitoring and analysis of continuously flowing 
streams of data. To be more precise, we propose to employ 
techniques from the Semantic Sensor Web (SSW) [22] – a 
research field at the intersection of the Sensor Web and the 
Semantic Web. The SSW technologies, namely RDF data streams 
and SPARQL query engines, allow us to address the challenge of 
situation assessment and detection of critical conditions by 
processing multiple heterogeneous data streams. Moreover, by 
reasoning over OWL ontologies and SWRL rules we can benefit 
from existing reasoning machinery for diagnosis and 
identification of adaptation strategies. In our work we are 
following IBM’s MAPE-K reference model for creating 
adaptation loops. As a first step towards the validation of this 
vision, in this paper we present a simple use case study which 
demonstrates the viability of our proposed approach. 

The rest of the paper is organised as follows. Section 2 gives a 
short introduction to the state of the art in existing self-adaptation 
mechanisms in clouds and presents our motivation for this 
research in more detail. Section 3 introduces the principles of 
autonomic computing and explains the MAPE-K model. Section 4 
is dedicated to related technologies from the areas of Semantic 
Web standards, the Sensor Web and the field of data streams. In 
section 5 we present and justify our vision of cloud platforms as 
sensor networks, as well as sketch out the architecture of the 
envisaged self-adaptation framework. A simple use case study, 
which has already been carried out, is also described in section 5.  

2. MOTIVATION 
2.1 Existing Self-Adaptation Mechanisms at 
the PaaS level 
To support elasticity and load-balancing, two important features 
for cloud computing services,  and ensure that appropriate service 
levels are maintained, cloud platforms continuously monitor the 
usage of deployed applications and available resources. In 
response to reaching a critical level of CPU/memory utilisation, 
additional computational instances can be launched and incoming 
user requests can be spread across instances evenly. In some 
cases, the process of adding/removing computational instances is 
managed by the cloud platform in a completely automated way 
(e.g., in OpenShift3, Google AppEngine4, or AWS Elastic 

                                                                 
3 http://www.openshift.com 
4 https://appengine.google.com/ 

Beanstalk5). In other cases, application developers are expected to 
build such capability by themselves or integrate it into their 
applications’ source code using appropriate cloud platform APIs 
(e.g., in CloudFoundry6 or Heroku7). External solutions may be 
utilised to automate the task of scaling applications up/down (e.g., 
the commercial offering HireFire8 for Heroku). Some platforms, 
including OpenShift and Heroku, are also able to idle inactive 
applications based on users’ recent activity to save resources and 
users’ money. 

A basic technique employed by several existing self-management 
mechanisms is “heart beat monitoring”: detecting if an application 
has crashed and restarting it. Self-management behaviour of this 
kind is rather simple, and does not involve any sophisticated 
analysis of what the underlying problem in an application might 
be. Applications are treated as “black boxes” and usually, if they 
still do not operate after several attempts to restart, they are fully 
stopped and further action needs to be taken by users. 

To support more in-depth monitoring of deployed applications 
and provide customers with visibility into resource utilisation and 
operation performance, some cloud platform operators either offer 
built-in monitoring tools (e.g., Amazon CloudWatch9 or Google 
AppEngine Dashboard) or employ external monitoring 
frameworks (e.g., New Relic10). Common monitored metrics are 
CPU and memory utilisation, disk reads and writes, network 
traffic, etc. However, the monitoring frameworks only deal with 
problem detection and do not provide any means of automatically 
fixing a problem once it appears – this task is left to the 
administrators. 

2.2 Problem Statement 
In the era of the Internet of Services, when applications are 
increasingly dependent on third-party services, a failure of an 
external component at one point may lead to malfunctioning of a 
whole cloud-based application, without the hosting platform 
noticing it. Presently, cloud platforms are incapable of detecting 
and reacting to such situations [8]: they cannot understand 
whether a response from a service is correct or not, cannot 
substitute a malfunctioning or underperforming service with 
another, etc. The existing limitations make it necessary for 
platform administrators and application developers to be involved 
in the lifecycle of an application after it has been deployed to a 
cloud environment. That is, adaptations need to be performed 
manually by rewriting the application/platform code, recompiling, 
redeploying the application or restarting the platform. 

As cloud platforms become more and more complex, the number 
of applications hosted on a platform grows, and changes to these 
applications become more frequent, we are running into the risk 
of a cloud platform becoming unmanageable, because the effort 
required to manage it has outgrown the human resources available 
for the task. The development of appropriate mechanisms for run-
time monitoring and adaptation are therefore essential to prevent 

                                                                 
5 http://aws.amazon.com/elasticbeanstalk/ 
6 http://www.cloudfoundry.com 
7 http://www.heroku.com 
8 http://hirefireapp.com/ 
9 http://aws.amazon.com/cloudwatch/ 
10 http://newrelic.com/ 

12



cloud platforms from quickly dissolving into non-reliable 
environments. 

3. BACKGROUND THEORY 
3.1 Autonomic Computing 
Inspired by the biological concept of autonomic systems, IBM 
introduced the term autonomic computing [13] in 2001 to refer to 
systems which are able to self-manage. IBM compared complex 
computing systems to the human body, and suggested that such 
systems should also demonstrate certain autonomic properties, 
that is, should be able independently to take care of regular 
maintenance and optimisation tasks, thus reducing the workload 
on system administrators. Though autonomic computing is the 
most commonly used and established term, throughout the rest of 
this paper we will be using the terms autonomic computing, self-
management, and self-adaptation interchangeably.  

According to Paul Horn [13] from IBM, who first suggested the 
systematic scientific approach of autonomic computing, the four 
fundamental properties of self-managing (i.e., autonomic) systems 
are: self-configuration, self-optimisation, self-healing, and self-
protection. One of the possible ways of achieving these 4 
characteristics is through self-reflection. A self-reflective system 
refers to the use of a causally connected self-representation to 
support the inspection and adaptation of that system [3]. It means 
that such a system is context-aware and self-aware of its internal 
structure and able to perform run-time adaptations, so that applied 
adaptations dynamically reflect on the state of the system (thus, 
possibly, triggering another adaptation cycle) [8]. The motivation 
behind self-reflection stems from the necessity to have systems 
which, when deployed in hostile and/or dynamically changing 
settings, are capable of reacting to various changes in the 
environment, based on the knowledge they already possess. In 
such scenarios, the capability of a remote system to perform 
automatic adaptations at run-time within a specific time frame is 
often of a great importance. 

Depending on the extent to which modern computing systems 
support self-management, we can distinguish 5 levels of 
autonomicity [10], starting from the basic level, through 
managed, predictive and adaptive levels, and finally to the fully 
autonomic level, which is the ultimate goal of our work. At this 
level, system operation is governed by business policies and 
objectives, established by administrators at design-time. Users 
only interact with the system to monitor the business processes or 
alter the objectives. 

3.2 MAPE-K Reference Model 
One of the fundamental components of IBM’s vision of 
autonomic computing is a reference model for autonomic control 
loops [14], which is usually referred to as the MAPE-K (Monitor, 
Analyse, Plan, Execute, Knowledge) adaptation loop, and 
depicted in Figure 1. 

IBM’s vision of autonomic computing was influenced by agent 
theory, and the MAPE-K model is similar to and was probably 
inspired by the generic model for intelligent agents proposed by 
Russell and Norvig [21]. According to this model, agents are 
equipped with sensors to perceive their environment. Then, based 
on the sensed values, they execute some actions on the 
environment. This process of sensing and acting upon sensed 
values clearly corresponds to the closed adaptation loop of the 
MAPE-K model. Applying the model to the domain of 

adaptations at the PaaS level, we now consider each of its 
elements in more detail. 

 

Figure 1. IBM’s MAPE-K reference model for autonomic 
control loops (modified from [14]). 

The managed elements represent any software and hardware 
resources which are enhanced with autonomic behaviour by 
coupling with an autonomic manager. In our case, the managed 
element may be the cloud platform as a whole, a web server, an 
operating system, an application, etc. Managed elements are 
equipped with sensors – they are software or hardware 
components responsible for collecting information about the 
managed elements. Managed elements are also equipped with 
effectors – components responsible for carrying out changes to the 
managed elements. Changes may be coarse-grained (e.g., 
substituting a Web service) or fine-grained (e.g., changing 
configuration of a Web service). 

The autonomic manager is the core element of the model – it is a 
software component which implements the whole MAPE-K 
functionality. Usually it is configured by human administrators 
using high-level goals and uses the monitored data from sensors 
and internal (i.e. self-reflective) knowledge of the system to plan 
and execute low-level actions that are necessary to achieve these 
goals. The internal knowledge of the system, shared between the 
four MAPE components, includes an architectural model of the 
managed element (i.e., its components, connections between 
them, adaptation points, etc.), topological information, system 
logs, adaptation policies, etc. Autonomic computing policies can 
be expressed using some form of event-condition-action (ECA) 
rules, goal policies or utility functions [16]. Often the knowledge 
base is not static (i.e., populated once by humans at design-time), 
but rather evolves dynamically by accumulating new information 
at run-time (e.g., keeping track of detected failures and applied 
solutions).  

The data collected by sensors allows the autonomic manager to 
monitor the execution of the managed element. For instance, we 
may be interested in monitoring such properties of deployed 
applications as CPU and memory utilisation, response times to 
user requests, I/O operations frequency, up time, etc. Two types 
of monitoring are usually identified in the literature [14]:  

• Passive monitoring, also known as non-intrusive, assumes that 
no changes are made to the managed element. This kind of 
monitoring is targeted at the context of the managed element, 
rather than the element itself. 

• Active monitoring, also known as intrusive, entails designing 
and implementing software in such a way that it provides some 
entry-points for capturing required properties (e.g., APIs). 
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The analysis component’s main responsibility is to assess the 
current situation and detect failures or sub-optimal behaviour of 
the managed element. In its simplest form, the analysis engine, 
based on ECA rules, detects when a single monitored value is 
exceeding its threshold (e.g., CPU utilisation reaches 100%), and 
sends this diagnosis to the planning component, which is 
responsible for generating an appropriate adaptation plan (i.e., an 
action or a set of actions to be executed). Similarly, in its simplest 
form, it just follows the “action” part of an ECA rule. To make 
planning more effective, the autonomic manager uses an 
architectural model of the entire managed system, which reflects 
the managed system’s behaviour, requirements, available 
resources, goals, etc. The model is updated through sensor data 
and used to reason about the managed system to plan adaptations. 
An advantage of the architectural model-based approach when 
planning is that, under the assumption that the model correctly 
mirrors the managed system, the architectural model can be used 
to verify that system integrity is preserved when applying an 
adaptation; that is, we can guarantee that the system will continue 
to operate correctly after the planned adaptation has been 
executed [20]. The execution stage is the final step in the MAPE-
K adaptation cycle. This component is responsible for carrying 
out the adaptation plan generated at the previous stage to the 
managed element by means of effectors. Once changes have been 
applied to the system, a new adaptation cycle is triggered – newly 
generated values are monitored and analysed, an appropriate 
adaptation plan is generated and executed, and so on.  

4. RELATED TECHNOLOGIES 
4.1 Semantic Web 
The Semantic Web is the extension of the World Wide Web that 
enables people to share content beyond the boundaries of 
applications and websites [12]. It is a mesh of information linked 
up in such a way as to be easily readable by machines, on a global 
scale. It can be understood as an efficient way of representing 
data on the World Wide Web, or as a globally linked database. As 
shown in Figure 2, the Semantic Web is realised through the 
combination of certain key technologies [12]. The technologies 
from the bottom of the stack up to the level of OWL have already 
been standardised by the W3C and are widely applied in the 
development of Semantic Web applications. The technologies are: 

Universal Resource Identifiers (URIs) provide means for uniquely 
identifying Semantic Web resources. The Semantic Web should 
be able to represent text documents in different human languages, 
and Unicode serves this purpose. XML provides an elemental 
syntax for content structure within documents. It is not really a 
necessary component of the Semantic Web technologies in most 
cases, as alternative syntaxes exist, such as Turtle11 or N312 for 
RDF. Resource Description Framework (RDF) is a framework for 
creating statements in the form of triples: subject – predicate – 
object. It enables the representation of information about 
resources in the form of graph – that is why the Semantic Web is 
sometimes called a Giant Global Graph. As noted above, an RDF-
based model can be represented in a variety of syntaxes (e.g., 
RDF/XML, N3, and Turtle). RDF Schema (RDFS) provides a 
basic schema language for RDF. For example, using RDFS it is 
possible to create hierarchies of classes and properties.  

                                                                 
11 http://www.w3.org/TeamSubmission/turtle/ 
12 http://www.w3.org/TeamSubmission/n3/ 

Web Ontology Language (OWL) is used to formally define an 
ontology – “a formal, explicit specification of a shared 
conceptualisation” [23]. OWL extends RDFS by adding more 
advanced constructs to describe resources on the Semantic Web. 
By means of OWL and other ontology specification languages it 
is possible to explicitly define knowledge (i.e. concepts, relations, 
properties, instances, etc.) and basic rules in order to reason about 
this knowledge. OWL allows stating additional constraints, such 
as cardinality, restrictions of values, or characteristics of 
properties such as transitivity. It is based on Description Logics 
and thus brings reasoning power to the Semantic Web.  

Semantic Web Rule Language (SWRL) extends OWL with even 
more expressivity, as it allows defining rules so that whenever the 
conditions specified in the body of a rule hold, then the conditions 
specified in the head must also hold. SPARQL is an RDF query 
language - it can be used to query any RDF-based data, including 
statements involving RDFS and OWL.  

 

Figure 2: The Semantic Web technology stack. 

4.2 Semantic Sensor Web 
The rapid development and deployment of sensor technology 
involves many different types of sensors, not necessarily limited 
to physical devices. Anything that can calculate or estimate a data 
value can be perceived as a sensor [22] – an application 
component, an SQL query, a Web service, etc. The Open 
Geospatial Consortium13 has recently launched the Sensor Web 
Enablement (SWE) project [4] – an initiative aiming at 
developing a suite of specifications related to sensors, sensor data 
models, and sensor Web services that will be accessible and 
controllable via the Web. 

To address the requirements of SWE, the Semantic Sensor Web 
community has combined two research areas, the Semantic Web 
and the Sensor Web, so as to enable situation awareness by 
providing enhanced meaning for sensor observations [22]. It does 
this by adding semantic annotations to existing standard sensor 
languages of the SWE project. These annotations provide more 
meaningful descriptions and enhanced access to sensor data than 
SWE alone, and act as a linking mechanism to bridge the gap 
between the primarily syntactic XML-based metadata standards 
of the SWE and the RDF/OWL-based metadata standards of the 
Semantic Web. In association with semantic annotations, 
ontologies and rules play an important role in SSW for 
interoperability, analysis, and reasoning over heterogeneous 
sensor data [22]. For example, the Semantic Sensor Network 
(SSN) ontology [7] provides a common vocabulary to support 
modelling sensor networks of any complexity. 

                                                                 
13 http://www.opengeospatial.org/ 
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4.3 Data Streams 
According to IBM, the world creates 2.5 quintillion bytes of data 
every day [15]. This data comes from everywhere: sensors used to 
gather climate information, posts to social media sites, digital 
pictures and videos, purchase transaction records, and cell phone 
GPS signals, to name a few. Even though existing technologies 
seem to succeed in storing these overwhelming amounts of data, 
on-the-fly processing of newly generated data is a challenging 
task. An increasing number of distributed applications are 
required to process continuously streamed data from 
geographically distributed sources at unpredictable rates to obtain 
timely responses to complex queries [6]. A key research area 
addressing the issues involved in processing streamed data is 
Information Flow Processing (IFP); in contrast to the traditional 
static processing of data, IFP focuses on flow processing and 
timeliness [11]. The former means that data is not stored, but 
rather continuously flowing and being processed, and the latter 
refers to the fact that time constraints are crucial for IFP systems. 
These two main requirements have led to the emergence of a 
number of systems specifically designed to process incoming 
information streams according to a set of pre-deployed processing 
rules. A data stream consists of an unbounded sequence of values 
continuously appended, each of which carries a timestamp that 
typically indicates when it has been produced [6]. Usually (but 
not necessarily) recent values are more relevant and useful, 
because most applications are interested in processing current 
observations to achieve near real-time operation. Examples of 
data streams include sensor values, stock market tickers, social 
status updates, heartbeat rates, etc.   

To cope with the unbounded nature of streams and temporal 
constraints, so-called continuous query languages [6] have been 
developed to extend the conventional SQL semantics with the 
notion of windows. A window transforms unbounded sequences 
of values into bounded ones, allowing the traditional relational 
operators to be applied. This approach restricts querying to a 
specific window of concern which consists of a subset of 
statements recently observed on the stream, while older 
information is (usually) ignored [2]. In our research we are mainly 
interested in SPARQL-based continuous query languages (see 
Figure 2), which are not yet part of the standardised Semantic 
Web stack, but becoming more and more used to query over RDF 
data streams. Up to date, there are several languages, mainly 
developed by the SSW community – CQELS [17], C-SPARQL 
[2], and SPARQLstream [6], to name a few. 

 

Figure 3: A data stream and a window [9]. 

The concepts of unbounded data streams and windows are 
visualised in Figure 3. The small squares represent tuples 
continuously arriving over time and constituting a data stream, 
whereas the thick rectangular frame illustrates the window 
operator applied to this unbounded sequence of tuples. As time 
passes and new values are appended to the data stream, old values 

are pushed out of the specified window, i.e. become no more 
relevant and may be discarded (unless there is a need for storing 
historical data for later analysis). 

5. OUR APPROACH 
5.1 Our Vision 
Being highly complex and dynamic, cloud platforms are also 
characterised with extremely large volumes of information 
continuously generated and consumed both within and outside the 
platforms. In this context, looking at the cloud platform from an 
information management point of view, we can distil the 
following characteristics: 

 Dynamism: in such dynamic systems as cloud platforms various 
sources of information are constantly generating data (which is 
then processed, stored, deleted, etc.) at an unpredictable rate. 
Moreover, various platform components are always evolving, so 
that new sources of information are coming up, while the old 
ones are disappearing, thus making the whole system even more 
dynamic. 

 Distributed nature: the information may come from various 
logically and physically distributed sources (i.e., sensors). The 
first means that it may originate from databases, file systems, 
running applications, external Web services. The latter refers to 
the fact that all these “logical” sources may be deployed in 
separate virtual machines, servers and even datacentres.  

 Volume: the amount of raw data being generated by (hundreds 
of) deployed applications, components of the platform, users, 
external services, etc. is huge. Even if we neglect the 
information flows that are not directly relevant to the context of 
self-management (i.e., the so called “noise”), the amount of 
information remaining is still considerable. 

 Heterogeneity: originating from various distributed sources such 
as applications, databases, user requests, external services, etc., 
the information is a priori heterogeneous. Apart from the 
heterogeneity in the data representation, such as differences in 
data formats/encodings, there is also heterogeneity in the 
semantics of the data. For example, two separate applications 
with different business logic may store logging data in XML. In 
this case, the data is homogeneous in its format and, potentially, 
structure, but completely heterogeneous at the semantic level. 

These characteristics are not unique to the problem domain of 
cloud platform monitoring. They are shared by many other 
problem domains where solutions based on Sensor Web 
technologies have been very successful, such as, for instance, 
environmental monitoring and traffic surveillance. The 
similarities between the problem domains give us confidence that 
we can apply a similar solution to the domain of cloud platform 
monitoring. Accordingly, we can think of a particular data source 
in a cloud platform as a sensor and the whole platform as a 
network of such sensors, similar to a distributed network of 
weather or city traffic sensing devices. Treating a cloud platform 
as a sensor network allows us to re-use existing solutions, 
developed and validated by the Sensor Web community, in the 
context of monitoring and analysis of streaming heterogeneous 
sensor data. A particularly promising direction to pursue is 
applying techniques from the Semantic Sensor Web area to 
implement the self-adaptation framework and enable self-
management at the PaaS level. The next subsection presents a 
conceptual architecture of the proposed future framework and 
explains the role and benefits of SSW technologies.  
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5.2 Framework Architecture 
Based on our Sensor Web vision of cloud platforms and 
employing the MAPE-K as an underlying model for developing 
our future self-adaptation framework, we describe our SSW-
driven approach by sketching out a high-level architecture of the 
framework (see Figure 4). 

In order to support both self-awareness and context-awareness of 
the managed elements, we need to employ some kind of 
architectural model describing the adaptation-relevant aspects of 
the cloud environment (e.g., platform components, available 
resources, connections between them, etc.) and the managed 
elements (e.g., entry-points for monitoring and execution). For 
these purposes we propose using OWL ontologies to represent the 
self-reflective knowledge of the system. Such an architectural 
model, represented with OWL, will also serve as a common 
vocabulary of terms, shared across the whole managed system. At 
this stage of our research we distinguish 3 main elements of the 
framework: triplification engine, continuous SPARQL query 
engine and OWL/SWRL reasoning engine. Accordingly, our 
ontological classes and properties will serve as building blocks for 
creating RDF streams, SPAQRL queries and SWRL rules. 

 

Figure 4: Framework architecture 

The triplification engine is responsible for consuming and 
“homogenising” the data generated by deployed applications, 
platform components, external services, etc. The engine takes as 
input streams of raw data, and generates streams of RDF triples. 
There are already existing tools for converting data stored in 
relational databases into RDF, using special mapping languages 
(e.g., R2RML14), and analogous tools can be envisaged for RDF 
stream generation. Using RDF as a common format for 
representing streaming data, and OWL concepts as subjects, 
predicates and objects of the RDF triples, allows us to benefit 
from human-readability and extensive support of query 
languages. The triplification step may be omitted if the monitored 
data is already represented in RDF format using ontological 
classes and properties. 

The next step of the information flow within our framework is the 
continuous SPARQL query engine. This component takes as input 
the flowing RDF data streams generated by the triplification 
engine and evaluates pre-registered continuous SPARQL queries 
against them, to support situation assessment. In the first instance, 
situation assessment includes distinguishing between usual 

                                                                 
14 http://www.w3.org/TR/r2rml/ 

operational behaviour and critical situations by matching them 
against critical condition patterns. The process of encoding 
patterns is iterative, that is, new critical conditions are constantly 
added to ensure the pattern base remains up-to-date. Machine 
learning techniques may be employed in this context to assist with 
maintaining the list of critical condition patterns. We propose 
using one of the existing continuous SPARQL languages to 
encode critical condition patterns. By registering an appropriate 
SPARQL query against a data stream, we will be able to detect a 
critical situation with a minimum delay - the continuous SPARQL 
engine will trigger as soon as RDF triples in the stream match the 
WHERE clause of the query. With SPARQL as a query language 
it is also possible to benefit from inference capabilities – that is, 
apart from just querying data, we may also be able to perform 
some reasoning over RDF triples. The reasoning capabilities 
depend on the entailment regime of the continuous SPARQL 
language to be selected, and respective tool support. Supporting 
“on-the-fly” processing of constantly flowing data, generated by 
hundreds of sources, as well as employing one of the existing 
RDF streaming engines, help us in achieving near real-time 
behaviour of the adaptation framework. 

Once a critical condition has been detected, a corresponding 
adaptation plan has to be generated. This step requires not just 
associating the “event” and “condition” parts of an ECA rule with 
its “action” part, but rather more complex reasoning over the 
possible reasons for a problem, and identification of potential 
adaptation strategies. We envisage addressing this challenge (at 
least partially) with OWL ontologies and SWRL rules, which 
provide sufficient expressivity to define adaptation policies, and 
will exempt us from the effort-intensive and potentially error-
prone task of implementing our own analysis engines from 
scratch. Rather, we will rely on the built-in reasoning capabilities 
of OWL ontologies and SWRL rules, so that the routine of 
reasoning over a set of situations and adaptation alternatives is 
done by an existing, tested, and highly optimised mechanism. 

When defining adaptation policies with OWL and SWRL, we, as 
application developers and platform administrators, may benefit 
from the following [8]:  

 Separation of concerns: with ontologies and rules separated 
from the platform/application programming code, it is easier to 
make changes to adaptation policies on the fly (i.e. without 
recompiling, redeploying and restarting the 
platform/application) and to maintain the adaptation framework.  

 Flexible adaptation at any adaptation scope: from the lowest 
level of programming classes and variables to the upper-most 
level of the whole platform. The ontology-based approach is 
generic and can be potentially applied to adaptations at the IaaS 
level, and any other distributed system as well.  

 Increase in reuse, automation and reliability: once implemented 
and published on the Web, ontologies are ready to be re-used by 
third parties, thus saving ontology engineers from “reinventing 
the wheel”. Since the reasoning process is automated and 
performed by a reasoning engine, it is not prone to “human 
factors” and is more reliable. 

5.3 Use Case 
Let us consider a scenario where a number of applications are 
deployed on a cloud platform and rely on the platform’s built-in 
notification service. In this case, the managed elements are the 
applications, and the response time of the notification service is 
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the parameter being monitored. The autonomic manager possesses 
knowledge about the applications and their dependency on the 
notification service, as well as the list of third-party services that 
can act as substitutes. The knowledge base, among other things, 
also includes a policy stating that if the internal notification 
service is slow to respond, then it needs to be replaced with an 
external one. At some point in time the notification service gets 
overloaded and cannot process all incoming requests. In order to 
satisfy Service Level Agreements we need to detect such 
situations and switch over all the dependent applications to an 
external substitute. In this scenario the main focus has been on the 
monitoring and analysis steps of the MAPE-K model, whereas the 
planning and execution steps have been left aside (this example is 
intended only to demonstrate the viability of our approach, and is 
correspondingly simplified). 

@prefix : <http://www.seerc.org/ontology.owl#> . 
<http://www.seerc.org/ontology.owl> rdf:type owl:Ontology . 
  :Service rdf:type owl:Class . 
  :Time    rdf:type owl:Class . 
  :hasResponseTime rdf:type owl:ObjectProperty , 
                   rdfs:domain :Time . 
  :isEquivalent    rdf:type owl:ObjectProperty , 
                            owl:SymmetricProperty ;               
                   rdfs:range :Service ;               
                   rdfs:domain :Service . 
  :hasHighResponseTime rdf:type owl:DatatypeProperty , 
                       rdfs:range xsd:Boolean . 
  :hasValue            rdf:type owl:DatatypeProperty , 
                       rdfs:range xsd:int . 
  :needsSubstitution   rdf:type owl:DatatypeProperty , 
                       rdfs:range xsd:Boolean . 

Listing 1. Simplified OWL ontology. 

Following our approach, the framework utilises RDF data streams 
to support on-the-fly querying and achieve minimal reaction 
delays. The monitored values are represented in RDF format 
using resources (i.e., subjects and objects) and properties (i.e., 
predicates) defined in an OWL ontology. Its simplified version in 
the Turtle notation is presented in Listing 1. Among other things, 
it includes the classes Service and Time, and the properties 
hasResponseTime, hasHighResponseTime, isEquivalentTo and 
needsSubstitution. Listing 2 illustrates the concept of RDF data 
streams. Each line is an RDF triple (in the N3 notation), 
representing an event (i.e. the fact that a service’s response time 
has changed), and is annotated with a timestamp. 

@prefix ex:<http://www.seerc.org/ontology/> 

ex:#Service1 ex:hasResponseTime; 890.  [2012-09-18 13:24:54] 
ex:#Service1 ex:hasResponseTime; 1110. [2012-09-18 13:24:56] 
ex:#Service1 ex:hasResponseTime; 1300. [2012-09-18 13:24:58] 
ex:#Service1 ex:hasResponseTime; 5450. [2012-09-18 13:25:13] 
ex:#Service1 ex:hasResponseTime; 6000. [2012-09-18 13:25:20] 
ex:#Service1 ex:hasResponseTime; 6700. [2012-09-18 13:26:15] 

Listing 2. RDF stream. 

Listing 2 shows a sudden increase in the response time of 
Service1. In order to detect such a critical situation, we need to 
have registered a continuous SPARQL query, returning relevant 
results whenever some monitored value has been continuously 
exceeding 5000 milliseconds for more than 60 seconds. Listing 3 
contains a simple C-SPARQL query and demonstrates the usage 
of continuous query languages. 

 

PREFIX ex:<http://www.seerc.org/ontology/> 

SELECT DISTINCT ?service  
FROM STREAM http://www.seerc.org/stream 
    [RANGE 60s STEP 1s] 
WHERE { ?service ex:hasResponseTime ?time . 
    FILTER (?time > 5000) } 

Listing 3. C-SPARQL query. 

Once we have detected a critical condition we need to diagnose 
the problem and reason about possible adaptation actions. Listing 
4 demonstrates the usage of SWRL in the context of diagnosing a 
problem and inferring a possible adaptation strategy. 

Rule 1: Has high response time 
    Service(?s1) ^ Time(?t)  
  ^ hasResponseTime(?s1, ?t)  
  ^ greaterThan(?t, 5000)  
->  hasHighResponseTime(?s1, true) 

Rule 2: Needs substitution 
    hasHighResponseTime(?s1, true)  
  ^ Service(?s2) ^ isEquivalentTo(?s1, ?s2)  
->  needsSubstitution(?s1, ?s2) 

Listing 4. SWRL rules. 

The first rule states that if a response time from a service is 
greater than 5 seconds, that service can be considered to have a 
high response time. The second rule says that if a service has a 
high response time and there is an equivalent service, then the 
slow service should be substituted by an alternative one. Please 
note that the RDF stream, the C-SPARQL query and the SWRL 
rules are defined using concepts from one and the same ontology, 
stored at http://www.seerc.org/ontology. Having such a common 
shared vocabulary increases the reliability, consistency and 
reusability of our approach. 

To implement this use case scenario, we have extended the SSN 
ontology with the concepts presented above, using the ontology 
editor Protege15. We also developed two applications using the 
Java Spring framework - an autonomic manager and a client 
which continuously calls a Web service. Both were deployed to 
CloudFoundry. The choice of CloudFoundry as a sandbox for our 
use case was because it offers: (i) an easy-to-use Eclipse plug-in 
for developing, testing and deploying Spring applications, (ii) a 
portable version of the CloudFoundry cloud platform, which can 
run on a single laptop for testing purposes (the so-called 
MicroCloudFoundry), (iii) extensive support by the developers’ 
community. 

To support communication between its components, this platform 
uses the RabbitMQ16 messaging service – a convenient 
environment for implementing RDF data streams, where each 
RDF triple is sent as a separate message. Accordingly, every time 
the client calls the Web service, it sends an RDF triple containing 
information about the response time to a RabbitMQ queue, to 
which the autonomic manager is already subscribed. We use the 
C-SPARQL engine library to enable the autonomic manager with 
capabilities to process RDF streams. Accordingly, the autonomic 
manager, by registering an appropriate C-SPARQL query against 
the queue, is notified as soon as the RDF triples in the stream 
satisfy the WHERE clause of the query. 

                                                                 
15 http://protege.stanford.edu/ 
16 http://www.rabbitmq.com/ 
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To support manipulating and reasoning over the OWL ontology 
and SWRL rules we have used the OWL API17 Java library, 
which implements several reasoners, and is easy to use. As a 
result, having detected a critical situation, the autonomic manager 
is able to analyse the problem and infer one or more possible 
adaptation strategies (the actual generation of plans for executing 
adaptation strategies is outside the scope of this work). By means 
of reasoning over the SWRL rules, it is able to deduce that the 
service has high response time and needs to be substituted.  

6. CONCLUSION 
In this paper we have presented a framework for introducing self-
management in Platform-as-a-Service environments. Devising 
this framework, we drew parallels between the problem domain of 
self-adaptation in cloud platforms, and other problem domains 
where successful solutions have come from applying the Sensor 
Web technology, such as traffic surveillance and environmental 
monitoring. Accordingly, our approach is based on a novel view 
of cloud platforms as networks of distributed data sources - 
sensors. Based on this vision and applying principles of the 
Semantic Sensor Web, we described our approach and outlined a 
conceptual architecture for our framework. As a proof of concept, 
we are planning to further develop the framework by introducing 
more sophisticated and complex adaptation policies, increasing 
the number of monitored parameters, and trying other existing 
continuous SPARQL languages. Future work also includes 
investigations of the scalability of the framework and portability 
across different cloud platforms.  
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