
Refactoring Access Control Policies for Performance
Improvement

Donia El Kateb
Laboratory of Advanced

Software SYstems (LASSY)
University of Luxembourg

Luxembourg
donia.elkateb@uni.lu

Tejeddine Mouelhi
Security, Reliability and Trust

Interdisciplinary Research
Center, SnT

University of Luxembourg
Luxembourg

tejeddine.mouelhi@uni.lu

Yves Le Traon
Laboratory of Advanced

Software SYstems (LASSY) &
Security, Reliability and Trust

Interdisciplinary Research
Center, SnT

University of Luxembourg
Luxembourg

yves.letraon@uni.lu
JeeHyun Hwang

Dept. of Computer Science
North Carolina State

University
U.S.A

jhwang4@ncsu.edu

Tao Xie
Dept. of Computer Science

North Carolina State
University

U.S.A
xie@csc.ncsu.edu

ABSTRACT
In order to facilitate managing authorization, access control archi-
tectures are designed to separate the business logic from an access
control policy. To determine whether a user can access which re-
sources, a request is formulated from a component, called a Policy
Enforcement Point (PEP) located in application code. Given a re-
quest, a Policy Decision Point (PDP) evaluates the request against
an access control policy and returns its access decision (i.e., per-
mit or deny) to the PEP. With the growth of sensitive information
for protection in an application, an access control policy consists of
a larger number of rules, which often cause a performance bottle-
neck. To address this issue, we propose to refactor access control
policies for performance improvement by splitting a policy (han-
dled by a single PDP) into its corresponding multiple policies with
a smaller number of rules (handled by multiple PDPs). We de-
fine seven attribute-set-based splitting criteria to facilitate splitting
a policy. We have conducted an evaluation on three subjects of real-
life Java systems, each of which interacts with access control poli-
cies. Our evaluation results show that (1) our approach preserves
the initial architectural model in terms of interaction between the
business logic and its corresponding rules in a policy, and (2) our
approach enables to substantially reduce request evaluation time for
most splitting criteria.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements; C.4 [Performance of sys-
tems]: Performance attributes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

General Terms
Performance, Design

Keywords
Access Control, Performance, Refactoring, Policy Enforcement Point,
Policy Decision Point, eXtensible Access Control Markup Lan-
guage

1. INTRODUCTION
Access control mechanisms regulate which users could perform

which actions on what system resources based on access control
policies. Access control policies (policies in short) are based on
various access control models such as Role-Based Access Control
(RBAC) [7], Mandatory Access Control (MAC) [6], Discretionary
Access Control (DAC) [10], and Organization-Based Access Con-
trol (OrBAC) [9]. Access control policies are specified in vari-
ous policy specification languages such as the eXtensible Access
Control Markup Language (XACML) [3] and Enterprise Privacy
Authorization Language (EPAL) [1]. A policy-based system al-
lows policy authors to define rules that specify actions (e.g., read)
that subjects (e.g., students) can take on resources (e.g., grades) in
a policy. In the context of policy-based systems, an access con-
trol architecture is often designed with respect to a popular archi-
tectural concept that separates Policy Enforcement Points (PEPs)
from a Policy Decision Point (PDP) [19]. More specifically, a PEP
is located inside an application’s code (i.e., business logic of the
system). Business logic describes functional algorithms to govern
information exchange between access control decision logic and a
user interface (i.e., presentation). Given requests (e.g., student A
requests to read her grade resource B) formulated by the PEP, the
PDP evaluates the requests and returns their responses (e.g., permit
or deny) by evaluating these requests against rules in a policy.

An important benefit of such architecture is to facilitate manag-
ing access rights in a fine-grained way by decoupling the business
logic from the access control decision logic, which can be standard-
ized and separately managed. However, this architecture may cause
performance degradation especially when policy authors maintain

323

a single policy with a large number of rules to regulate the whole
system’s resources. Consider that the policy is centralized with
only one single PDP. The PDP evaluates requests (issued by PEPs)
against the large number of rules in the policy in real-time. Such
centralization can be a major factor for degrading performance as
our previous work [13] showed that efficient request evaluation
with a large number of rules is a challenging task. This perfor-
mance bottleneck issue may impact service availability as well,
especially when dealing with a huge number of requests within a
short time.

In order to address this performance bottleneck issue, we pro-
pose an approach to refactor policies automatically to significantly
reduce request evaluation time. As manual refactoring is tedious
and error-prone, an important benefit of our automated approach
is to reduce significant human efforts as well as improving per-
formance. Our approach includes two techniques: (1) refactor-
ing a policy (handled by single PDP) to its corresponding multiple
policies each with a smaller number of rules (handled by multiple
PDPs), and (2) preserving the architectural property stating that a
single PDP is triggered by a given PEP at a time.

In the first technique, our approach takes a splitting criterion and
an original global policy (i.e., a policy governing all of access rights
in the system) as an input, and returns a set of corresponding sub-
policies, each of which consists of a smaller number of rules. This
refactoring involves grouping rules in the global policy into several
subsets based on the splitting criterion. More specifically, we pro-
pose a set of splitting criteria to refactor the global policy to smaller
policies. A splitting criterion selects and groups the rules handled
by the overall PDP into specific PDPs. Each criterion-specific PDP
encapsulates a sub-policy that represents a set of rules that share
the same combination of attribute elements (Subject, Action, and/or
Resource). In the second technique, our approach aims at preserv-
ing the architectural property that only a single PDP is triggered by
a given PEP at a time. More specifically, given a request, each PEP
should be mapped to a PDP loaded with a policy, which includes a
set of rules to be applicable for the request. Therefore, our refactor-
ing maintains the architectural property of centralized architectures
in policy-based systems.

We collect three subjects of real-life Java systems. Each system
interacts with access control policies, whose corresponding request
evaluation faces performance degradation. The policies are speci-
fied in eXtensible Access Control Markup Language (XACML) [3].
XACML is an XML-based policy specification language popularly
used for web-based applications and services.

While our subjects are based on XACML policies, our approach
could be applicable to any software system that interacts with poli-
cies specified in other policy specification languages. We conduct
an evaluation to show performance improvement achieved by our
approach in terms of request evaluation time. We leverage two
types of PDPs to measure request evaluation time. The first one
is the Sun PDP implementation [2], which is a popular open source
PDP, and the second one is XEngine [13], which transforms an
original policy into its corresponding policy in a tree format by
mapping attribute values with numerical values. Our evaluation re-
sults show that our approach preserves the policy behaviors of the
centralized architectures and the architectural property. Our evalu-
ation results also show that our approach enables reducing the re-
quest evaluation time substantially. This paper makes the following
three main contributions:

• We propose an automated approach that refactors a single
global policy to policies each with a smaller number of rules.
This refactoring helps improve performance of request eval-
uation time.

• We propose a set of splitting criteria to help refactor a policy
in a systematic way. Our proposed splitting criteria do not
alter policy behaviors of the centralized architectures.

• We conduct an evaluation on three Java systems interacting
with XACML policies. We measure performance in terms of
request evaluation time. Our evaluation results show that our
approach achieves substantially faster than that of the cen-
tralized architectures in terms of request evaluation time.

The remainder of this paper is organized as follows. Section 2 in-
troduces concepts related to our research problem addressed in this
paper. Section 3 presents the overall approach. Section 4 presents
evaluation results and discusses the effectiveness of our approach.
Section 5 discusses related work. Section 6 concludes this paper
and discusses future research directions.

2. CONTEXT/PROBLEM STATEMENT
This section further details a centralized architecture, its two de-

sirable features such as synergy and reconfigurability, and its in-
duced penalty (performance bottlenecks). Managing access control
policies is one of the most challenging issues faced by an organi-
zation due to frequent changes in a policy. For example, a policy-
based system has to handle some specific requirements such as role
swapping when employees are given temporary assignments, as
well as changes in the policies and procedures, new assets, users
and job positions in the organization.

2.1 Centralization of Architectures
To facilitate policy management, an access control policy is tra-

ditionally modeled, analyzed, and implemented as a separate com-
ponent encapsulated in a PDP. This separation leads to the central-
ized architecture presented in Figure 1, in which one single PDP
is responsible for granting/denying the accesses that are requested.
This centralized architecture is a simple solution to easily handle
changes in policy-based systems by enabling the policy author to
directly change policies on the single PDP. The separation between
the PEP and the PDP simplifies policy management across many
heterogeneous systems and limits potential risks arising from in-
correct policy implementation or maintenance when the policy is
hardcoded inside the business logic.

2.2 Centralization: A Threat for Performance
In such a centralized system, when a service regulated by an ac-

cess control policy requires an access to some resources in the sys-
tem, the PEP calls the PDP to retrieve an authorization decision
based on the policy encapsulated in the PDP. This authorization
decision is made through the evaluation of rules in the policy. Sub-
sequently, an authorization decision (permit/deny) is returned to the
PEP. When a huge number of access requests are sent by the PEP
to the PDP, two bottlenecks cause performance degradation:

• all the access requests have to be managed through the same
input channel of the PDP.

• the centralized PDP computes an access request by searching
which rule is applicable among all the rules that the encap-
sulated policy contains.

A request evaluation time is thus strongly related to

• the number of rules in the policy that the PDP contains [14].

• the workload (i.e., the number of requests) that have to be
evaluated by the system.

324

Policy Decision
Point

Business
Logic

Policy Enforcement
Point

Security
Policy

Service

Request

 Response
 Response

 Request

Policy Author

– Access Right Definition
– Policy Management

Figure 1: Access Control Request Evaluation

The request evaluation time depends on the size (number of rules)
of the policy that the PDP encapsulates. For a given policy size,
the evaluation time to evaluate requests increases linearly with the
workload (i.e., the number of requests). Our Hypothesis 1 is that
the more rules a policy contains, the higher the slope of the eval-
uation time with an increasing workload. Hypothesis 1 validity is
discussed in Section 4. As a consequence, one possibility to im-
prove performance consists in splitting the centralized PDP into
PDPs with smaller policy sizes. We consider keeping the same
input channel in the decentralized architecture. Therefore, we do
not change the PEP code. Note that if a specific input channel is
required for each PEP, developers are required to change the PEP
code to map each PEP with its corresponding PDP.

2.3 Centralization: PEPs and PDP Synergy
Centralization offers a desirable feature by simplifying the rout-

ing of requests to the right PDP. Figure 2 illustrates the model of
the access control architecture. In this model, a set of business pro-
cesses, which comply to users’ needs, is illustrated by the business
logic, which is enforced by multiple PEPs. Conceptually, the de-
cision is decoupled from the enforcement and involves a decision
making process in which each PEP interacts with the same single
PDP. The key point concerns the cardinality linking PEPs to the
PDP. While a PDP is potentially linked to many PEPs, any PEP is
strictly linked to exactly one PDP (which is unique in the central-
ized model). Since there is only one PDP, the requests are all routed
to this unique PDP. No particular treatment is required to map a
given PEP in the business logic to the corresponding PDP, embed-
ding the requested rules. Another advantage of this many-to-one
association is the clear traceability between what has been speci-
fied by the policy and the PEPs enforcing this policy at the busi-
ness logic level. In such setting, when access control policies are
updated or removed, the related PEPs can be easily located and up-
dated or removed. Thus the application is updated synchronously
with the policy changes. We call this desirable property synergy
of the access control architecture: an access control architecture is
said to be synergic if any PEP always sends its requests to the same

PDP. As a consequence, splitting the centralized PDP into PDPs of
smaller policy sizes may break this synergy since calls issued by
PEPs can be handled by several PDPs. In this work, we consider
various splitting criteria to transform a centralized PDP into PDPs
with smaller policy size. Our Hypothesis 2 is with comparable PDP
policy sizes, the evaluation time will be reduced when the architec-
ture is synergic. This hypothesis is investigated in Section 4.

2.4 Tradeoff for Refactoring
The following facts are taken into account in our work:

• Access control architectures are centralized with a unique
PDP.

• Centralization eases reconfiguration of an access control pol-
icy.

• Centralization threatens performance.

• Direct mapping from any PEP to only one PDP makes the
access control architectures synergic.

• A synergic system facilitates PEP request routing and eases
policy maintenance.

The goal of our work is to improve performance by refactoring the
centralized model into its corresponding decentralized model with
multiple PDPs. The resulting architecture must have an equiva-
lent behavior and should not impact the desirable properties of the
centralized model, namely reconfigurability and synergy. Automat-
ing the transformation from a centralized to a decentralized archi-
tecture is required to preserve reconfigurability. With automation,
we can still reconfigure the centralized policy, and then automat-
ically refactor the architecture. We propose automatic refactoring
of a centralized model into its corresponding decentralized model
while preserving high reconfigurability. However, refactoring the
architecture by splitting the centralized PDP into smaller ones may
break the initial synergy. This phenomenon is studied in the em-
pirical study of Section 4 together with Hypothesis 2. In the next
section, we give an overview of the XACML language since it is
the standard language used in this paper to implement a PDP.

Business Logic Decision Logic

Figure 2: Access Control Model

325

2.5 XACML Policies and Performance Issues
In this paper, we focus on access control policies specified in

the eXtensible Access Control Modeling Language (XACML) [3].
XACML is an XML-based standard policy specification language
that defines a syntax of access control policies and requests/re-
sponses. XACML enables policy authors to externalize access con-
trol policies for the sake of interoperability since access control
policies can be designed independently from the underlying pro-
gramming language or platform. Such flexibility enables to easily
update access control policies to comply with new requirements.
An XACML policy is constructed as follows. A policy set el-
ement consists of a sequence of policy elements, a combining
algorithm, and a policy target element. A policy element is
expressed through a target, a set of rules, and a rule combin-
ing algorithm. A target element consists of the set of subjects,
resources, and actions to which a policy or a rule is applicable. A
rule consists of a target element, a condition element, and
an effect. A condition element is a boolean expression that
specifies the environmental context (e.g., time and location restric-
tions) in which the rule applies. Finally, an effect is the rule’s
authorization decision, which is either permit or deny. Given a re-
quest, a PDP evaluates the request against the rules in the policy
by matching subjects, resources, and actions in the request. More
specifically, an XACML request encapsulates attributes that define
which subject requests to take action on which resource (e.g., sub-
ject Bob requests to borrow a book). Given a request that satisfies
the target and condition elements in a rule, the rule’s effect is
taken as the decision. If the request does not satisfy the target

and condition elements in any rule, its response yields the “No-
tApplicable” decision.

When more than one rule is applicable to a request, the com-
bining algorithm helps determine which rule’s effect can be finally
given as the decision for the request. For example, given two rules
that are applicable to the same request and provide different deci-
sions, the permit-overrides algorithm prioritizes a permit decision
over the other decisions. More precisely, when using the permit-
overrides algorithm, the policy evaluation produces one of the fol-
lowing three decisions for a request:

• Permit if at least one permit rule is applicable for the request.

• Deny if no permit rule is applicable and at least one deny rule
is applicable for the request.

• NotApplicable if no rule is applicable for the request.

A policy target element describes what the policy applies to
by referring to attributes of subjects, resources, and actions. Figure
3 shows a simplified XACML policy that denies subject Bob to
borrow a book.

XACML policies become more complex when handling increas-
ing complexity of organizations in terms of structure, relationships,
activities, and access control requirements. In such a situation, a
policy often consists of a large number of rules to specify policy
behaviors for various resources, users, and actions in the organiza-
tions. In policy-based systems, policy authors manage a centralized
and a single PDP loaded with a single policy to govern all system
resources. However, due to a large number of rules for evaluation,
this centralization raises performance concerns related to request
evaluation time for access control policies and may degrade the
system efficiency and slow down the overall business processes.

We present the following three main factors that may cause to
degrade XACML request evaluation performance:

• An XACML policy may contain various attribute elements
including target elements. Retrieval of attribute values in

<PolicyId="XACML Policy Example"
 RuleCombiningAlgId="combining-algorithm:permit-overrides">
<Target>
 <Subjects> <AnySubject/> </Subjects>
 <Resources> <AnyResource/> </Resources>
 <Actions> <AnyAction/> </Actions>
</Target>

<Policy>
<Rule RuleId="R1" Effect="Deny">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue>Bob</AttributeValue>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue>Book</AttributeValue>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue>Borrow</AttributeValue>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
</Policy>

Combining Algorithm

 Policy Target

 Rule
 Target

 Resource

 Subject

Action

Figure 3: XACML Policy Example

the target elements for request evaluation may increase the
evaluation time.

• A policy set consists of a set of policies. Given a request,
a PDP determines the final authorization decision (i.e., ef-
fect) of the whole policy set after combining all the appli-
cable rules’ decisions for the request. Computing and com-
bining applicable rules’ decisions contribute to increasing the
evaluation time.

• Condition elements in rules can be complex because these
elements are built from an arbitrary nesting of boolean func-
tions and attributes. In such a situation, evaluating condition
elements may slow down request evaluation time.

3. POLICY REFACTORING
This section describes our approach of refactoring access control

policies to improve performance by reducing the number of policy
rules potentially applicable to a request. For refactoring policies in
a systematic way, we propose seven policy splitting criteria based
on attribute sets. Moreover, we explain how to select a splitting cri-
terion that preserves the synergy in the access control architecture.

3.1 Policy Splitting Criteria
During the evaluation process, the attribute values in a given re-

quest are compared with the attribute values in the target of a rule.
If there is a match between the request’s attribute values and target’s
attribute values, the rule is then applicable to the request. In the de-
cision making process, applicable rules contribute to determining
the final authorization decision whereas non-applicable rules are
not relevant in this process. For request evaluation, not all the rules
are applicable to the request. In other words, only part of the rules
(i.e, relevant rules) are applicable to the request and can contribute
to determining the final decision.

We propose an approach to evaluate a request against only the
relevant rules for the given request by refactoring the access con-
trol policies. Our approach aims at splitting a single global policy

326

into multiple smaller policies based on attribute combination. For
a given policy-based system, we transform its policy P into poli-
cies PSCw containing a smaller number of rules and conforming
to a Splitting Criterion SCw. An SCw defines the set of attributes
that are considered to classify all the rules into subsets each with
the same attribute values and w denotes the number of attributes
that have to be considered conjointly for aggregating rules based
on specific attribute elements. Table 1 shows our proposed splitting
criteria categorized according to attribute element combinations.

Table 1: Splitting Criteria

Categories Splitting Criteria

SC1 〈Subject〉, 〈Resource〉, 〈Action〉

SC2 〈Subject, Action〉, 〈Subject, Resource〉

〈Resource,Action〉

SC3 〈Subject, Resource,Action〉

To illustrate our approach, we present examples that take into
consideration the XACML language features. In Figure 4, our ap-
proach refactors an XACML policy P according to the splitting
criterion SC1 = 〈Subject〉. Our refactoring results in two sub-
policies Pa and Pb. Each sub-policy consists of relevant rules with
regards to the same subject (Alice or Bob in this case).

PolicySet:P

Policy: P
1 Policy: P

2

Rule: R
1

Rule: R
2

Rule: R
1

Resource: Book

Subject: Bob

Action: Borrow

PolicySet:Pa

Policy: P
1

Subject: Bob

Rule: R
2

Resource: Book

Subject: Alice

Action: Borrow

Resource: Book

Subject: Bob

Action: Borrow

Resource: Book

Subject: Alice

Action: Borrow

Policy: P
2

Rule: R
1

Rule: R
1

Resource: Book

Action: Borrow

Subject: Bob

Resource: Book

Action: Borrow

PolicySet:Pb

Resource: Book

Subject: Alice

Action: Borrow

Resource: Book

Action: Borrow

Resource: Book

Subject: Alice

Action: Borrow

Resource: Book

Action: Borrow

Policy: P
1

Policy: P
2

Rule: R
1

Rule: R
1

PDP
1

PDP
2

PDP
initial

Figure 4: Refactoring a Policy According to SC1 = 〈Subject〉

Technically, to split a given policy P according to SC1 = 〈Subject〉,
we start by parsing the global policy P and by collecting the over-
all subject attribute values in the policy. For each collected subject
attribute value Sa, we consider the global policy and we delete the

Algorithm 1 Policy Splitting Algorithm for SC1 = 〈Subject〉
Input: XACML Policy P , Splitting Criterion SC1=〈Subject〉
Output: Sub-policies Set: S
SplitPolicy()
S=Ø
/* Collect all subjects in all the rules /*
for each Rule Ri in Policy P do

/* Fetch all the targets to extract attribute collection based on SC
*/
for each Target.Subject in Ri do

SubjectCollection.add(SubjectElement.attribute)
end for

end for
/* Build sub-policies based on subjects collected in SubjectCollec-
tion */
for int i = 0; i < SubjectCollection.size(); i++ do

/* Remove all the rules that do not contain SubjectCollec-
tion.at(i) in their Target */
for each Rule Ri in Policy P do

if Ri.Target.SubjectElement ! = AnySubject then
if (Target.SubjectElement.attribute in Ri) ! = SubjectCol-
lection.at(i) then

Remove Ri

end if
end if

end for
/* P(SubjectCollection.at(i)) is a sub-policy with only rules where
the subjectAttribute is equal to SubjectCollection.at(i) */
/* Add the sub-policy to the set of sub-policies */
S = S ∪ P(SubjectCollection.at(i))

end for

rules that do not contain Sa as a subject attribute value in the tar-
get element attributes. After all the successive deletions, the global
policy is refactored to a policy that contains only the rules with Sa
in their subject attribute values. Algorithm 1 describes the splitting
process for SC1 = 〈Subject〉.

Our algorithm is safe in the sense that it does not change the
authorization behavior of the PDP. There are two important issues
to be considered when reasoning about the safety of the algorithm:

• Can the splitting impact authorization results when a policy
set includes multiple policies with different combining algo-
rithms?

• When AnySubject, AnyAction or AnyResource are used as
target element values, does the splitting change the behavior
of the PDP?

The first issue is addressed by the way the algorithm operates. The
first step of the algorithm goes through all the rules and extracts
the set of target element values (the set of subjects, the set of ac-
tions, and/or the set of resources) based on the splitting criterion.
Then, based on the extracted result, the splitting is performed by
removing the rules with different splitting criterion values (such as
a subject different from the splitting criterion subject). The rules
that are kept are therefore not modified and their behavior is not
altered. When there are several policies with different combining
algorithms, the rules that are kept do not impact the evaluation be-
havior because they remain attached to the same combining algo-
rithm. Moreover their order and their content are not modified.

The second issue is addressed by keeping all the rules that in-
volve AnySubject, AnyAction, or AnyResource in all sub-policies

327

because by definition during evaluation, these values are taken into
consideration for evaluating all possible values of subjects, actions,
and resources. It is worth mentioning this following consideration
related to the refactoring process: XACML supports multi-valued
attributes in policies and requests. In XACML policies, target
elements define a set of attribute values, which match with the con-
text element in an access control request. In Figure 5, the subject at-
tribute includes two attributes (one is “role” and the other is “isEq-
subjUserId-resUserId”). In order to match the subject with multi-
valued attributes, a request should include at least pc-member and
true for “role” and “isEq-subjUserId-resUserId”, respectively. Our
approach considers such a whole subject element as a single entity,
which is not split by the policy splitter component.

<Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue>Administrator</AttributeValue>
 <SubjectAttributeDesignator AttributeId="role"/>
 </SubjectMatch>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue >true</AttributeValue>
 <SubjectAttributeDesignator AttributeId="isEq-subjUserId-resUserId"/>
 </SubjectMatch>
 </Subject>
</Subjects

Figure 5: Multi-attribute Values in target Element

After the splitting is performed, our approach creates one or
more PDPs that comply with the splitting criterion. We use the Sun
PDP [3] to evaluate a request against policies specified in XACML.
During request evaluation, the Sun PDP checks the request against
the policy and determines whether the decision is permit or deny.
Given a request, our approach runs the Sun PDP loaded with the
request’s relevant policy, which is used during the decision making
process. The PDP then retrieves the rules that are applicable to the
request. Figure 6 presents our approach to handling request evalu-
ation with multiple policies. During the evaluation process, given
a request, our approach verifies the matching between the request’s
attribute value and the policy target elements attributes. Our ap-
proach then selects only the relevant policy among all the policies
for a given request. After the selection of the relevant policy, all
of its relevant rules for the decision making are evaluated. Figure
7 shows an overview of our approach. In our approach, the policy
splitter component plays a role to refactor access control policies.
Given a single PDP loaded with the initial global policy, the pol-
icy splitter component conducts automated refactoring by creating
multiple PDPs loaded with XACML policies, which are split from
the initial global policy based on the user-specified splitting cri-
terion. If the initial global policy is changed, the policy splitter
component is required to refactor the policy again to create PDPs
with the most recent relevant policies. Our refactoring approach is
safe in the sense that the approach does not impact existing security
aspects in a given system.

3.2 Architecture Model Preservation: PEP-PDP
Synergy

We propose to preserve the synergy property in the access con-
trol architecture by mapping a PEP and a PDP loaded with the rel-
evant policy for a request dynamically at runtime. As shown in
Section 3.1, given multiple PDPs after the policy refactoring, we
consider (1) how PEPs are organized at the application level, and
(2) how PEPs are linked to their corresponding PDPs. In the worst
case, splitting the initial PDP into multiple PDPs may lead to a non-

Response

Policy Configuration File

 <Policy n-1>
 <Target n-1>
 …
 </Target n-1>
 </Policy n-1>

<Policy n>
 <Target>
 …
 </Target>
</Policy n>

<Policy 1>
 <Target 1>
 …
</Target 1>
</Policy 1>

….......
….......

<Request>
 <Target>
 ...
 </Target>
 </Request>

Target matching
failure

 The applicable
 policy is selected

Target matching
success

Target matching
 failure

Policy 1
Policy 2
…..
…..
…..
Policy n

Figure 6: Applicable-Policy Selection

PEP
PEP

Managed
Service

PEP
PEP

Managed
Service

PEP
PEP

Managed
Service

PEP
PEP

Managed
Service

PolicySplitter
PDP

PDP

+

Policy

Splitting Criterion

Sub-policy
Sub-policy

Sub-policy
Sub-policy

Sub-policy
Sub-policy

Sub-policy
Sub-policy

Sub-policy
Sub-policy

Sub-policy
Sub-policy

Sub-policy
Sub-policy

Sub-policy
Sub-policy

Sub-policy
Sub-policy

Figure 7: Overview of the Refactoring Process

synergic system: a PEP may send its requests to several PDPs. The
PDP that handles a given request is only known at runtime. Such
a resulting architecture breaks the PEP-PDP synergy and the con-
ceptual simplicity of the initial architecture model. In the best case,
the refactoring preserves the simplicity of the initial architecture by
keeping a many-to-one association between PEPs to PDPs. Given a
request, our approach maps a PEP to a PDP with relevant rules for
the request. Therefore, different requests issued from a PEP should
be handled by the same PDP. Operationally, the request evaluation
involves one policy. In this case, our refactoring does not impact
the conceptual architecture of the system.

Figure 8 presents a PDP encapsulating a global policy that has

328

been refactored. The system that is presented on the left is resulted
from a desirable refactoring whereas the one on the right is resulted
from an undesirable refactoring.

PEPPEP

PEPPEP
PEPPEP

PEPPEP
PEPPEP

PDPPDP

PEPPEP

PEPPEP
PEPPEP

PEPPEP PEPPEP PEPPEP

PEPPEP
PEPPEP

PEPPEP
PEPPEP

PDPPDP

PDPPDPPDPPDP PDPPDP PDP
PDP

PDP
PDP

PDP

Initial Architecture

Synergic Architecture Non-Synergic Architecture

Figure 8: Synergic vs Non-synergic System

At the application level, a PEP is represented by a method call
that triggers a decision making process. Figure 9 presents a sam-
ple PEP code snippet from our previous work [11]. This code
snippet shows an example of a PEP represented by the method
checkSecurity, which calls a method of the class SecurityPoli
cyService, which formulates a request to invoke the PDP compo-
nent. The PEP represented by the method ServiceUtils.checkS
ecurity may issue requests that have subject “user” along fixed
action and resource (“LibrarySecurityModel.BORROWBOOK_METH
OD”), (“LibrarySecurityModel.BOOK_VIEW”). Consider that we
refactor a policy using SC2 = 〈Resource,Action〉, SC1 = 〈Action〉,
or SC1 = 〈Resource〉. Given a request issued from the PEP, our
approach runs a PDP loaded with a policy containing rules sharing
the same action and resource attribute values. Thus the splitting
process that preserves the mapping between the PEPs and the PDP
is the one that considers the following splitting criteria: SC2 =
〈Resource,Action〉, SC1 = 〈Action〉, and SC1 = 〈Resource〉
in this case. In the evaluation section, we investigate the impact of
the synergy property on performance.

public void borrowBook(User user, Book book) throws
SecuritPolicyViolationException {

// call to the security service
 ServiceUtils.checkSecurity(user,
LibrarySecurityModel.BORROWBOOK_METHOD,
LibrarySecurityModel.BOOK_VIEW),
ContextManager.getTemporalContext());}

 // call to business objects
 // borrow the book for the user
book.execute(Book.BORROW, user);
 // call the dao class to update the database
bookDAO.insertBorrow(userDTO, bookDTO);}

Figure 9: PEP Deployment Example

4. EVALUATION
We carried out our evaluation on a desktop PC running Ubuntu

10.04 with a Core i5, 2530 Mhz processor, and 4 GB of RAM. We
have implemented a tool, called PolicySplitter to split policies
according to a given splitting criterion automatically. The tool is
implemented in Java and is available for download [4].

4.1 Objectives and Metrics
Our evaluation intends to answer the following research ques-

tions:

1. RQ1. How faster can request evaluation time of multiple Sun
PDPs with policies split by our approach achieve compared
to that of an existing single Sun PDP? This question helps
show that our approach can improve performance in terms
of request evaluation time. Moreover, we compare request
evaluation time for different splitting criteria.

2. RQ2. With comparable PDP policy sizes, is request evalua-
tion time of a system faster when its architecture is synergic?
This research question investigates Hypothesis 2 presented in
Section 2.

3. RQ3. How faster can request evaluation time of multiple
XEngines with policies split by our approach achieve com-
pared to that of an existing single XEngine? This question
helps show that our approach can improve performance in
terms of request evaluation time for other advanced policy
evaluation engines such as XEngine.

4. RQ4. How faster does request processing time of multiple
XEngines with policies split by our approach achieve com-
pared to that of the Sun PDP with policies split by our ap-
proach? This question aims at checking whether XEngine in
combination with our approach performs better than the Sun
PDP combined with our approach as well.

5. RQ5. For larger PDP policy size, do we observe higher slope
of the evaluation time with an increasing workload? This re-
search question investigates Hypothesis 1 (presented in Sec-
tion 2) on the impact of the number of rules in a given PDP
on the evaluation time.

To address these research questions, we go through the following
evaluation setup based on two different empirical studies:

• First, we evaluate the performance improvement regarding
the decision making process by taking into consideration the
whole system (PEPs and PDPs). We compared request eval-
uation time with a single global policy (handled by a single
PDP) against request evaluation time with split policies. All
the splitting criteria have been considered in our evaluation.
IA denotes an “Initial Architecture”, which uses the single
global policy for request evaluation. This step allows study-
ing the behavior of splitting criteria that preserve the synergy
property in the access control architecture.

• Second, we apply our approach on the Sun PDP and XEngine
[13], respectively, to investigate the effectiveness of our ap-
proach on various decision engines. We aim at showing that
our approach is complementary to an existing decision en-
gine, even an optimized one such as XEngine.

329

4.2 Subjects
The subjects include three real-life Java systems each of which

interacts with access control policies. Full details on our subjects
are available elsewhere [11, 17, 18]. We next describe our three
subjects.

• The Library Management System (LMS) provides web ser-
vices to manage books in a public library.

• The Virtual Meeting System (VMS) provides web confer-
ence services. VMS allows users to organize online meetings
in a distributed platform.

• The Auction Sale Management System (ASMS) allows users
to buy or sell items online. A seller initiates an auction by
submitting a description of an item that she wants to sell with
its expected minimum price. Users then participate in the
bidding process by bidding the item. To bid on the item, user
must have enough money in his/her account before bidding.

Our subjects are initially built upon the Sun PDP [3] as a deci-
sion engine, which is a popularly used PDP to evaluate requests.
We started by a processing step, in which we have augmented the
rules in the three original policies for these studies, as it would be
difficult to observe performance improvement results with systems
including few rules. In our evaluations, LMS policy contains 720
rules, VMS has 945 rules, and ASMS has 1760 rules. The rules that
we added do not modify the system behavior as they are conform to
the specifications. Moreover, to assess performance improvement
over an existing advanced PDP, we adopt XEngine (instead of the
Sun PDP) in our subjects to evaluate requests. XEngine is an ad-
vanced policy evaluation engine, which transforms the hierarchical
tree structure of the XACML policy to a flat structure to reduce
request evaluation time. XEngine also handles various combining
algorithms supported by XACML.

4.3 Performance Improvement: Sun PDP
In order to answer RQ1, we generated the resulting sub-policies

for all the splitting criteria defined in Section 3.1. For each split-
ting criterion, we have executed system tests to generate requests
that trigger all the PEPs in the evaluation. The test generation step
leads to the execution of all combinations of possible requests de-
scribed in our previous work [18]. The process of test generation
is repeated ten times to alleviate the impact of randomness. We
applied this process for each splitting criterion and calculated eval-
uation time on average of a system under test. Figure 10 presents
evaluation time for policies split based on each splitting criterion
and the global policy of the subjects. We can make two observa-
tions:

• Compared to the evaluation time of IA, our approach im-
proves performance for all of splitting criteria in terms of
evaluation time. This observation is consistent with our ex-
pected results; the evaluation time against policies with a
smaller number of rules (compared with the number of rules
in IA) is faster than that against policies in IA.

• The splitting criterion SC = 〈Action,Resource〉 enables
to show the fastest evaluation time. Such observation is due
to the fact that the PEPs in our three subjects are organized
based on SC2 = 〈Action,Resource〉. This observation
pleads in favor of applying a splitting criterion that takes into
account the PEP-PDP synergy.

To identify the splitting criterion that generates the smallest num-
ber of PDPs, we have studied the number of policies generated by

Table 2: Splitting Criteria Classification
S A R SA SR AR SAR IA

Synergic x x x x

Not-Synergic x x x x

the splitting. Figure 11 shows the results. We observed the num-
ber of policies based on our proposed three categories: (1) the SC1

category leads to the smallest number N1 of PDPs, (2) the SC2 cat-
egory leads to a medium number N2 (N1<N2<N3) of PDPs, and
(3) SC3 leads to the largest number N3 of PDPs. While the SC1

category leads to the smallest number of PDPs, each PDP encapsu-
lates a relatively large number of rules in a policy (compared with
that of SC2 and SC3, which leads to performance degradation).
We have classified splitting criteria according to their preservation
of the synergy property considering our subjects. The classification
is shown in Table 2 where S denotes Subject, R denotes Resource,
A denotes Action, and IA denotes Initial Architecture. For exam-
ple, AR denotes SC=< Action,Resource >. AR, A, and R are
synergic splitting criteria since all the PEPs in our considered three
systems are organized as shown in Figure 9.

To answer RQ2, we have evaluated PDPs in the three systems
and for the different splitting criteria. The results presented in Fig-
ure 12 show the average number of rules in each PDP, for each
splitting criterion in the three systems. We can observe that the AR
criterion produces comparable size of PDPs with the SR criterion;
however, as shown in Figure 10, AR is the best splitting criterion
in terms of evaluation time performance. Moreover, the number of
PDPs produced with the splitting critera S and A is comparable;
the criterion A, which is synergic, has evaluation time less than the
one produced by the splitting criterion S, which is not synergic.
This result supports our Hypothesis 2, which states that with com-
parable PDP sizes, the evaluation time would be reduced when the
architecture is synergic.

4.4 Performance Improvement: XEngine
In order to answer RQ3 and RQ4, we measure request evalua-

tion time of multiple XEngines with policies split by our approach
compared with that of an existing single XEngine and that of mul-
tiple Sun PDPs with policies split by our approach, respectively.
The goal of this empirical study is to show the impact of combin-
ing XEngine with our splitting process. XEngine itself improves
dramatically the performance of the Sun PDP mainly for three rea-
sons:

• It uses a refactoring process that transforms the hierarchical
structure of the XACML policy to a flat structure.

• It converts multiple combining algorithms to a single one.

• It relies on a tree structure that minimizes the request evalu-
ation time.

We propose to use XEngine conjointly with the refactoring process
presented in this work. We have evaluated our approach in two
settings:

• Considering evaluation with decision engines based on XEngine
with split policies and with the initial policy.

• Considering evaluation with decision engines based on the
Sun PDP with split policies and with the initial policy.

In this step, we do not reason about the synergy, since we do not
consider the application level for the three systems. We measure

330

IA R S SAR SR SA A AR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evaluation Time

Splitting Criteria

E
va

lu
a

tio
n

 T
im

e
 (

s)

(a) LMS

IA SAR R S SA SR A AR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evaluation Time

Splitting Criteria

E
va

lu
a

tio
n

 T
im

e
 (

s
)

(b) VMS

IA SAR S R SA A SR AR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evaluation Time

Splitting Criteria

E
va

lu
a

tio
n

 T
im

e
 (

s
)

(c) ASMS

Figure 10: Request Evaluation Time for the Three Subjects

SAR SA AR SR A S R

0

50

100

150

200

250

300

350

400

450

500

LMS
VMS
ASMS

Splitting Criteria

P
D

P
 N

u
m

b
er

Figure 11: PDP Number Produced with Splitting Criteria

request evaluation time by evaluating a randomly generated set of
10,000 requests as proposed in our previous work [15]. The request
evaluation time is evaluated for the three systems. The results are
presented in Tables 3, 4, and 5.

In the three tables, the percentage of performance improvement
denoted as "% PI" shows the reduction of request evaluation time
(achieved by our approach) over the request evaluation with the
initial architecture (IA).

Multiple XEngines with split policies, in most cases, enable to
reduce the evaluation time compared to XEngine with a single pol-
icy. This result is shown in Table 5 for ASMS where the evaluation
time is reduced about 33 times from 1639 ms in the initial architec-
ture (IA) to 49 ms with the splittig criterion SAR. This empirical
observation shows that our refactoring conjointly with XEngine en-
ables to improve the performance of the evaluation process for most
of the splitting criteria and thus answers RQ3.

As shown in the three tables, there are some splitting criteria that
lead to decrease of performance such as the splitting criterion R in

SAR SA AR SR A S R
0

50

100

150

200

250

300

350

400

LMS
VMS
ASMS

Splitting Criteria

A
ve

ra
g

e
 R

u
le

 N
u

m
b

e
r

Figure 12: Average of Rule Numbers per PDP in the Three
Systems

VMS system, which leads to degrade the evaluation time to -44%.
These results need to be investigated with further studies.

Through the three tables, we observe that, when our subjects are
equipped with XEngine, our proposed approach substantially im-
proves performance (compared to the results with the Sun PDP) for
most of the splitting criteria. For the splitting criterion SC=〈Action〉
abbreviated as A, in the LMS system, the evaluation time is reduced
about 22 times: from 2703 ms to 120 ms with XEngine, this obser-
vation enables to answer RQ4.

4.5 Impact of Increasing Workload
To investigate RQ5, we have calculated request evaluation time

according to the number of requests incoming to a system. For each
policy in the three systems (ASMS, LMS, and VMS), we generated
5000, 10000, .., 50000 random requests to measure the evaluation
time (ms). The results are shown in Figure 13. For the three sys-
tems, we observe that the evaluation time increases when the num-
ber of requests increases in a system. With an increasing system

331

Table 3: Evaluation Time (ms) in LMS
SAR AR SA SR R S A IA

Sun PDP 485 922 1453 1875 2578 2703 2703 2625

% PI Sun PDP 81.5 64.9 44.6 28.6 1.8 -3 -3 0

XEngine 26 47 67 95 190 164 120 613

% PI XEngine 95.7 92.3 89.0 84.5 69 73.2 80.4 0

Table 4: Evaluation Time (ms) in VMS
SAR AR SA SR R S A IA

Sun PDP 1281 2640 3422 3734 6078 5921 6781 5766

% PI Sun PDP 77.8 54.2 40.6 35.2 -5.4 -2.7 -17.6 0

XEngine 34 67 96 145 384 274 149 265

% PI XEngine 87.2 74.7 63.8 45.3 -44.9 -3.4 43.8 0

Table 5: Evaluation Time (ms) in ASMS
SAR AR SA SR R S A IA

Sun PDP 2280 2734 3625 8297 7750 8188 6859 7156

% PI Sun PDP 68.1 61.8 49.3 -15.9 -8.3 -14.4 4.1 0

XEngine 49 60 104 196 310 566 262 1639

% PI XEngine 97 96.3 93.65 88 81 65.5 84 0

load, the request evaluation time is considerably improved when
using the splitting process compared to the initial architecture. The
results shown in Figure 13 are interpreted by the average of PDP
sizes presented in Figure 12. The results are consistent with Hy-
pothesis 1 (presented in Section 2), which states that the slope of
evaluation time increases with PDP size in a system with an in-
creasing workload.

To deploy our approach, we need to fetch the relevant PDP for
a given request at runtime. Therefore, request processing time in-
cludes both fetching time and request evaluation time. Figure 14
shows percentage of fetching time over the global evaluation time
for request evaluation in LMS. The fetching time increases accord-
ing to the PDP size. The fetching time is relatively small in com-
parison with the total evaluation time and thus does not impact sig-
nificantly the evaluation time.

4.6 Summary
We summarize the results of the evaluation:

• We have experimentally shown the effectiveness of the split-
ting in reducing the evaluation time. Our refactoring process
improves both a typical PDP (the Sun PDP) and an advanced
PDP (XEngine).

• When the sizes of PDPs are comparable, the splitting criteria
that are synergic enable to have the best results in terms of
evaluation time.

The evaluation of the synergy property on improving performance
has to be strengthened by conductinng other experiments on other
evaluation subjects and by considering different organizations of
PEPs at the application level.

4.7 Threats to Validity
The threats to external validity primarily include the degree to

which subjects, policies, and test requests are representative of true
practice. These threats could be reduced by further evaluation on a
wider type and larger number of policies and a larger number of test
requests in future work. In particular, our approach is based on only

seven proposed splitting criteria. We could develop additional split-
ting criteria to split policies and measure efficiency in terms of re-
quest evaluation time. In addition, our approach generates random
test requests, which may induce bias or randomness in our results.
To prevent such a bias, we conduct our evaluation for 10 times and
measure an average value of evaluation results. The threats to in-
ternal validity are instrumentation effects that can bias our results
such as faults in the Sun PDP, XEngine, PolicySplitter, mea-
surement tool in terms of request evaluation, and random request
generators.

5. RELATED WORK
There are several previous approaches about performance issues

in security mechanisms. Ammons et al. [5] have presented tech-
niques to reduce the overhead engendered from implementing a
security model in IBM’s WebSphere Application Server (WAS).
Their approach identifies bottlencks through code instrumentation
and focuses on two aspects: the temporal redundancy (when secu-
rity checks are made frequently) and the spatial redundancy (using
the same security techniques on the same code execution paths).
For the first aspect, they use caching mechanisms to store checks
results, so that the decision is retrieved from the cache. For the sec-
ond aspect, they used a technique based on specialization, which
consists in replacing an expensive check with a cheaper one for
frequent paths. While this previous approach focuses on bottlencks
in program code, in this paper, we propose a new approach to refac-
tor access control policies by reducing the number of rules in each
split policy.

Various approaches [8,12,14] have been proposed to address per-
formance issues in systems interacting with access control policies.
Jahid et al. [8] focus on XACML policy verification for database ac-
cess control. They presented a model that converts attribute-based
policies into access control lists. They implemented their approach
called MyABDAC. While they measured performance of MyAB-
DAC in terms of request evaluation, they did not show how much
MyABDAC gains improvement over an existing PDP.

Marouf et al. [14] have proposed an approach for policy evalu-
ation based on a clustering algorithm that reorders rules and poli-
cies within the policy set so that the access to applicable policies
is faster. Their categorization is based on the subject target ele-
ment. Their approach requires identifying the rules that are fre-
quently used. Our approach follows a different strategy and does
not require knowing which rules are used frequently. In addition,
the rule reordering is tightly related to specific systems. If the PDP
is shared between several systems, their approach could not be ap-
plicable since the most “used” rules may vary between systems.

Lin et al. [12] decomposed a global XACML policy into local
policies related to collaborating parties, and the local policies are
sent to corresponding PDPs. The request evaluation is based on lo-
cal policies by considering the relationships among local policies.
In their approach, the optimization is based on storing the effect
of each rule and each local policy for a given request. Caching
decision results is then used to optimize evaluation time for an in-
coming request. However, there were no experimental results for
measuring the efficiency of their approach when compared to the
traditional architecture. While the previous approaches have fo-
cused on the PDP component to optimize the request evaluation,
Miseldine et al. [16] addressed this problem by analyzing rule lo-
cation on XACML policies and requests at the design level so that
the relevant rules for the request are accessed faster on evaluation
time.

Our contribution in this paper brings new dimensions over our
previous work on access control [13, 17, 18]. We have proposed

332

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

IA
S
A
R
SA
AR
SR
SAR

Requests Number

Ev
al

ua
t io

n
Ti

m
e

(m
s)

(a) LMS

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

IA
S
A
R
SA
AR
SR
SAR

Requests Number

Ev
al

ua
t io

n
Ti

m
e

(m
s)

(b) VMS

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

IA
S
A
R
SA
AR
SR
SAR

Requests Number

E
va

lu
at

io
n

 T
im

e
(m

s)

(c) ASMS

Figure 13: Evaluation Time for Our Subjects, LMS, VMS, and ASMS Depending on the Request Number

5000 100001500020000250003000035000400004500050000
0

5

10

15

20

25

S
A
R
SA
AR
SR
SAR

Request Number

P
e
rc

e
n
ta

g
e
 o

f
F

e
t c

h
in

g
 T

im
e
/ P

ro
c
e
s
s
in

g
 T

im
e

Figure 14: Percentage of Fetching Time

XEngine [13], which focuses particularly on performance issues
addressed with XACML policy evaluation. XEngine proposes an
alternative solution to brute force searching based on an XACML
policy conversion to a tree structure to minimize the request eval-
uation time. It involves a refactoring process that transforms the
global policy to a decision diagram that is then converted to for-
warding tables. In our contribution in this paper, we introduce
a new refactoring process that involves splitting the policy into
smaller sub-policies. Our two refactoring processes are combined
to decrease the evaluation time.

6. CONCLUSION AND FUTURE WORK
In this paper, we have tackled the performance issue in the de-

cision making mechanism for access control and have proposed an
automated refactoring process that enables to reduce request evalu-
ation time substantially. All the reasonings about performance fac-
tors have not included hardware considerations. However, perfor-
mance improvement at the software/logical level as done by our ap-
proach would complement performance improvement at the hard-

ware level to best improve the overall performance. Our approach
has been applied to XACML policies and it can be generalized to
policies in other policy specification languages (such as EPAL). To
support and automate the refactoring process, we have designed
and implemented the PolicySplitter tool, which transforms a given
policy into small ones, according to a chosen splitting criterion.
Most obtained results have shown a significant gain in evaluation
time. The best gain in performance is reached by the criterion that
respects the synergy property. This result pleads in favor of a refac-
toring process that takes into account the way PEPs are scattered
inside the system business logic. In this work, we have easily iden-
tified the different PEPs since we know exactly how our system
functionalities are implemented and thus how PEPs are organized
inside the system. In future work, we plan to automatically identify
the different PEPs of a given system. This technique is an important
step complementary to our current approach, since this technique
enables knowing how PEPs are organized in the system and thus
allows to select automatically the most suitable splitting criterion
for a given system.

7. ACKNOWLEDGMENTS
This work is supported in part by NSF grants CCF-0845272,

CCF-0915400, CNS-0958235, an NIST grant, and ARO Grant No.
W911NF-08-1-0443.

8. REFERENCES
[1] IBM, Enterprise Privacy Authorization Language (EPAL),

Version 1.2 . http://www.w3.org/Submission/2003/SUBM-
EPAL-20031110,
2003.

[2] OASIS eXtensible Access Control Markup Language
(XACML). http://www.oasis-open.org/committees/xacml/,
2005.

[3] Sun’s XACML implementation.
http://sunxacml.sourceforge.net/, 2005.

[4] PolicySplitter Tool.
http://www.mouelhi.com/policysplitter.html, 2011.

[5] G. Ammons, J. deok Choi, M. Gupta, and N. Swamy.
Finding and removing performance bottlenecks in large
systems. In Proceedings of European Conference on
Object-Oriented Programming, pages 170–194, 2004.

[6] E. D. Bell and J. L. La Padula. Secure computer system:
Unified exposition and multics interpretation. MITRE
Corporation, 1976.

333

[7] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Transactions on Information and
System Security, 4(3):224–274, 2001.

[8] S. Jahid, C. A. Gunter, I. Hoque, and H. Okhravi.
MyABDAC: Compiling XACML Policies for
Attribute-Based Database Access Control. In Proceedings of
the first ACM Conference on Data and Application Security
and Privacy, pages 97–108, 2011.

[9] A. A. E. Kalam, S. Benferhat, A. Miège, R. E. Baida,
F. Cuppens, C. Saurel, P. Balbiani, Y. Deswarte, and
G. Trouessin. Organization based access control. In
Proceedings of 10th IEEE International Conference on
Policies for Distributed Systems and Networks, pages
120–131, 2003.

[10] B. Lampson. Protection. In Proceedings of the 5th Princeton
Conference on Information Sciences and Systems, 1971.

[11] Y. Le Traon, T. Mouelhi, A. Pretschner, and B. Baudry.
Test-driven assessment of access control in legacy
applications. In Proceedings of the 2008 International
Conference on Software Testing, Verification, and Validation,
pages 238–247, 2008.

[12] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. Policy
decomposition for collaborative access control. In
Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies, pages 103–112, 2008.

[13] A. X. Liu, F. Chen, J. Hwang, and T. Xie. XEngine: A fast
and scalable XACML policy evaluation engine. In
Proceedings of International Conference on Measurement
and Modeling of Computer Systems, pages 265–276, 2008.

[14] S. Marouf, M. Shehab, A. Squicciarini, and
S. Sundareswaran. Statistics & clustering based framework
for efficient XACML policy evaluation. In Proceedings of
10th IEEE International Conference on Policies for
Distributed Systems and Networks, pages 118–125, 2009.

[15] E. Martin, T. Xie, and T. Yu. Defining and measuring policy
coverage in testing access control policies. In Proceedings of
8th International Conference on Information and
Communications Security, pages 139–158, 2006.

[16] P. L. Miseldine. Automated XACML policy reconfiguration
for evaluation optimisation. In Proceedings of 4th
International Workshop on Software Engineering for Secure
Systems, pages 1–8, 2008.

[17] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Traon. A
model-based framework for security policy specification,
deployment and testing. In Proceedings of 11th International
Conference on Model Driven Engineering Languages and
Systems, pages 537–552, 2008.

[18] T. Mouelhi, Y. L. Traon, and B. Baudry. Transforming and
selecting functional test cases for security policy testing. In
Proceedings of 2009 International Conference on Software
Testing Verification and Validation, pages 171–180, 2009.

[19] R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for
policy-based admission control. RFC Editor, 2000.

334

