
OpenCL and the 13 Dwarfs: A Work in Progress∗

W. Feng, H. Lin, T. Scogland, and J. Zhang
Department of Computer Science

Virginia Tech
{feng, hlin2, njustn, zjing14}@cs.vt.edu

ABSTRACT
In the past, evaluating the architectural innovation of par-
allel computing devices relied on a benchmark suite based
on existing programs, e.g., EEMBC or SPEC. However, with
the growing ubiquity of parallel computing devices, we argue
that it is unclear how best to express parallel computation,
and hence, a need exists to identify a higher level of abstrac-
tion for reasoning about parallel application requirements.
Therefore, the goal of this combination “Work-in-Progress
and Vision”paper is to delineate application requirements in
a manner that is not overly specific to individual applications
or the optimizations used for certain hardware platforms, so
that we can draw broader conclusions about hardware re-
quirements. Our initial effort, dubbed “OpenCL and the 13
Dwarfs” or OCD for short, realizes Berkeley’s 13 computa-
tional dwarfs of scientific computing in OpenCL, where each
dwarf captures a pattern of computation and communication
that is common to a class of important applications.

Categories and Subject Descriptors: D.0 [General];
I.6.3 [Simulation & Modeling]: Applications; J.0 [General]

General Terms: Algorithms, Benchmarking, Measurement,
Experimentation.

Keywords: computational dwarfs, OpenCL, GPU, hetero-
geneous computing, portability.

1. INTRODUCTION
The increasing proliferation of heterogeneous computing

platforms presents the parallel computing community with
the challenge of evaluating the efficacy of such parallel archi-
tectures, particularly given the diversity of hardware archi-
tectures and their associated (non-interoperable) program-
ming environments such as Cilk+ and CUDA. For instance,
the graphics processing unit (GPU), which has become an
increasingly popular processor, differs substantially from tra-
ditional CPU architectures. The GPU offers simpler SIMD-

∗This work was supported in part by NSF I/UCRC IIP-
0804155 (via NSF CHREC) and a DoD National Defense
Science & Engineering Graduate Fellowship (NDSEG).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

like processing elements to deliver extraordinary performance
for data-parallel and task-parallel jobs. Its ability to sup-
port massive multi-threaded parallelism indicates its capa-
bility as a high-throughput processor versus the low-latency
CPU, which is optimized for single-threaded performance.

Performance benchmark suites have been playing an im-
portant role in evaluating hardware design. However, tradi-
tional parallel benchmark suites have serious shortcomings
when trying to evaluate evolving heterogeneous computing
systems. First, such suites are written in programming mod-
els designed for CPUs and thus cannot be run directly on the
emergent heterogeneous architectures. Second, such suites
typically focus on concrete implementations of specific ap-
plications. Those applications are not necessarily sufficient
for capturing future trends in parallel computing or for com-
prehensively exercising new heterogeneous architectures.

To address the above issues, we present OpenCL and 13
Dwarfs or OCD for short, a benchmark suite that aims to
provide a “future-proofed” software methodology to enable
the evaluation of hardware innovation across a gamut of ar-
chitectures. We choose to use OpenCL because it is a stan-
dardized industry effort addressing the lack of interoperabil-
ity in heterogeneous programming models. While it began
as a programming model for programming GPUs, and op-
tionally falling back on CPUs, the major processor vendors
— including AMD, ARM, IBM, Intel, and NVIDIA — have
either released or are developing OpenCL compilers and run-
time systems. Using OpenCL as our programming model of
choice will enable our benchmark suite to work well across
a wide range of platforms today and into the future.

In addition, we seek to enable a fundamental re-thinking of
both hardware and programming models by capturing appli-
cation design via high-level computation and communication
patterns. To this end, we select application kernels following
computation and communication patterns from the Berkeley
13 Dwarfs [2]. We focus on these because they offer a diverse
set of patterns, each of which is relevant across a variety of
domains. For example, the n-body method is relevant across
physics, chemistry, and a variety of other domains.

We are populating each dwarf with an application as a
starting point. However, because no single application com-
pletely captures the breadth of a dwarf, our longer-term in-
tent is to include multiple applications that present different
aspects of a given dwarf as well as a synthetic benchmark
that represents the dwarf alone (without other patterns in-
cluded) to form a full application. In this way, we hope to
create a set of implementations which may be used to make

291



generalizations about the higher-level patterns and the ef-
fectiveness of a given platform for executing a given pattern.

The initial release of OCD is meant to provide functionally
portable benchmarks in OpenCL and allow users to draw
conclusions based on the performance of portable code. To
accomplish this, we have made an effort to avoid optimiz-
ing any given benchmark specifically for a given underlying
platform, and instead, focus on writing to the programming
model.1 The result is that more reasonable performance
comparisons across different architectures are possible.

2. THE 13 DWARFS
Below is a brief description of each of the 13 Berkeley

dwarfs, along with a description of our initial instantiation
of the dwarf in OCD, if applicable.

Dense linear algebra consists of dense matrix and vector
operations. It has a high ratio of math-to-load operations
and a high degree of data interdependency between threads.
We are finalizing a benchmark for this dwarf based on LU
factorization, but for the time being, we include the k-means
clustering algorithm, denoted as kmeans in OCD.

Sparse linear algebra solves the same problem as dense
linear algebra but has matrices with few non-zero entries. To
reduce space and computation, such algorithms store and
operate on a list of values and indices rather than proper
matrices, resulting in more indirect memory accesses. For
OCD, we implement a pattern for matrix-vector multiplica-
tion that uses a compressed spare row format to store sparse
matrices. As such, the implemented dwarf is denoted as csr.

Spectral methods transform data from/to either a spa-
tial or temporal domain. The execution profile is typically
characterized by multiple stages of processing, where depen-
dencies within a stage form a “butterfly” pattern of compu-
tation. We capture this pattern via a FFT, i.e., clfft in OCD.

N-body methods calculate interactions between many
discrete points and are characterized by large numbers of in-
dependent calculations within a timestep, followed by all-to-
all communication between timesteps. Our GEM code [1],
denoted as gemnoui in OCD, calculates the effect that all
atoms have on the charge at each point along the surface
of a molecule, leading to O(M ∗N) complexity where N is
atoms and M is points along the surface.

Structured grids organize data in a regular multidimen-
sional grid, where computation proceeds as a series of grid
updates. For each grid update, all points are updated using
values from a small neighborhood around each point. The
neighborhood is normally implicit in the data and deter-
mined by the algorithm. For OCD, we include srad, short for
speckle-reducing anisotropic diffusion, a stencil-based pat-
tern of computation and communication that reduces noise
and enhances feature clarity in 2D images.

Unstructured grids possess data structures, e.g., linked
list of pointers, that keep track of the location and ‘neigh-
borhood’ of points which are used to update the location.
Like sparse linear algebra, updates typically involve multiple
levels of memory reference indirection, as an update to any
point requires first determining a list of neighboring points,
and then loading values from those neighboring points. For
OCD, we include a pattern of computation and communica-
tion that is representative of an unstructured grid code for
computational fluid dynamics, denoted as cfd in OCD.

1 Similarly, other benchmark suites write to MPI or a general
CPU rather than to Intel SSE4 instructions, for example.

MapReduce captures the repeated independent execu-
tion of a “map” function and results are aggregated at the
end via a “reduce” function. No communication is required
between processes in the map phase, but the reduce phase
requires global communication. For OCD, we have a proto-
type dwarf that we dub StreamMR (“streamer”).

Combinational logic exploits bit-level parallelism in or-
der to achieve high throughput. Such a workload involves
performing simple operations on very large amounts of data.
For OCD, we include crc, short for cyclic redundancy check,
which is used to generates hashes or signatures of files to
verify their correct transfer over a network.

Graph traversal visits and evaluates a number of objects
in a graph. Such algorithms typically involve a significant
amount of random memory access for indirect lookups. The
bottleneck is generally due to access latency rather than
access bandwidth. For OCD, we include breadth-first search
(bfs) and bitonic sort (bsort).

Dynamic programming solves a complex problem by
solving a series of simpler subproblems. For OCD, we adopt
the Needleman-Wunsch algorithm, i.e., needle in OCD. This
algorithmic pattern calculates the optimal alignment of two
strings by calculating scores based on all possible alignments
in a matrix and backtracking along the highest scoring path.

Backtrack & branch-and-bound approaches generally
search a very large search space to find a globally optimal
solution. Because the search space is so large, an implicit
method is needed to prune the search space to make this ap-
proach computationally tractable. For OCD, we capture the
computation and communication pattern of the A* search
algorithm (astar in OCD).

Graphical models map variables into nodes and condi-
tional probabilities into edges, e.g., Bayesian networks. For
OCD, we have captured this pattern of computation and
communication via a hidden Markov model.

Finite state machines capture a system whose behav-
ior is defined by states, transitions defined by inputs and
the current state, and events associated with transitions or
states. These dwarf algorithms are highly dependent on con-
ditional operations and interdependent data, which are also
commonly found in graph traversal. For OCD, we provide a
“temporal data mining”algorithm, which discovers temporal
correlations between EEG events from the brain.

3. EXPERIENCES WITH OCD
This section presents our experiences with OpenCL and

the 13 Dwarfs (OCD) across a myriad of CPU and GPU
computing platforms.

3.1 Experimental Setup
For all of our experiments, we ran OCD on a single test

box consisting of two quad-core Intel Xeon E5405 CPUs,
4GB of DDR3 memory, and at any one time, a single GPU.
We physically swapped between an AMD HD5450, AMD
HD5870, NVIDIA GT520, and NVIDIA C2050 to ensure
comparable results between the different GPU platforms.
The software environment is x86 64 Ubuntu 10.04 with Linux
kernel 2.6.32, using GCC 4.4.3 along with NVIDIA SDK 4.0,
AMD APP SDK 2.5 RC2 and Intel OpenCL SDK 1.5. The
drivers used are AMD Catalyst 11.11 and NVIDIA 290.10.

3.2 Runtime Diversity
In theory, OpenCL performance on a single piece of hard-

ware ought to be consistent regardless of the runtime sys-

292



OpenCL CPU SDK vendor

Ti
m

e 
(m

s)

2

4

6

8

astar

●

●

A
M

D

Intel

9.5

10.0

10.5

11.0

bfs
●

A
M

D

Intel

2

4

6

8

10

12

bsort

●

●
●

A
M

D

Intel

90

100

110

120

cfd
●

A
M

D

Intel

0.7

0.8

0.9

1.0

1.1

1.2

1.3

clfft
●

●

A
M

D

Intel

2400

2600

2800

3000

3200

3400

3600

crc

A
M

D

Intel

4

5

6

7

8

csr
●

●

A
M

D

Intel

57000

57500

58000

58500

59000

59500
gemnoui

●

A
M

D

Intel

34

35

36

37

38

kmeans

A
M

D

Intel

220

240

260

280

300

needle
●

A
M

D

Intel

1500

2000

2500

3000

3500

srad

A
M

D

Intel

Figure 1: Time for each benchmark on two quad-core Intel Xeon CPUs across OpenCL CPU runtimes from
AMD and Intel for all implemented dwarfs. Each box represents the interquartile range with a line at the
median, whiskers reach to the data point closest to 1.5x the interquartile range outside of the middle 50
percent without going over, and dots are those points which fall past that mark.

Device

S
pe

ed
up

 o
ve

r 8
 C

P
U

 c
or

es
 w

ith
 In

te
l S

D
K

10−2
10−1
100
101

100

101

10−2

10−1

100

astar

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

bfs

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

bsort

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

cfd

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

clfft

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

crc

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870
csr

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

gemnoui

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

kmeans

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

needle

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870

srad

A
M

D
G

T520
H

D
5450

C
2050

H
D

5870
to

com
pute

from

Figure 2: Speedup of the three segments of each application, i.e., data transfer to the device, computation
on the device and data transfer back from it, over the Intel OpenCL SDK on eight Intel Xeon cores.

tem; but in practice, this is rarely the case. To illustrate this
point, we compared the performance of our OCD across two
different SDKs, namely the AMD OpenCL SDK and the
new Intel OpenCL SDK, while running on identical hard-
ware. Figure 1 shows the empirical results.

Since our experimental platform consisted of a pair of
Intel Xeon CPUs, the initial expectation was that Intel’s
SDK would either match AMD’s or outperform it for each
case, but that was not the case. For example, the combina-
tional logic dwarf performed approximately 50% faster on
the AMD SDK than on the Intel SDK. In addition, the per-
formance of the Intel SDK was much more erratic than with
the AMD SDK. In some cases, like astar and csr, the perfor-
mance range spanned an order of magnitude more than the
range of the results using the AMD SDK. In general, the
results show that the more compute-intensive applications
performed better with the Intel SDK while the data-transfer-
heavy applications perform better with AMD. Overall, what
the above tells us is that the compiler and runtime of a sys-
tem can have a significant effect on realized performance.

3.3 Architecture Diversity
For an ecosystem like OpenCL, which works across mul-

tiple architectures, there exists a wide diversity in the ca-

pabilities of the underlying architectures. To analyze the
behavior of the dwarfs across such diverse platforms, we col-
lected performance results across all the OCD benchmarks
running on the aforementioned devices. Figure 2 presents
the results as speedup over the Intel SDK CPU results, on a
log10 scale. The devices in these plots are grouped by type —
CPU, low-power GPUs, and high-power GPUs. The GT520
and C2050 are low-power and high-power NVIDIA GPUs,
respectively, while the HD5450 and HD5870 are low-power
and high-power AMD GPUs, respectively.

The results show that the performance profiles of OCD are
quite diverse, not only with respect to the compute time, but
also transfer times to and from the device. In fact, we were
surprised by the spread of the results for data transfer times.
For virtually all of the dwarfs, the data transfer time from
the CPU to the GPU was actually shorter than the transfer
from the CPU “to” the CPU; the same held true for pulling
the data back. The notable exception to this was the Intel
SDK version of GEM (i.e., gemnoui), the n-body dwarf from
OCD. The code for data transfer in GEM uses the hinting
available in OpenCL to specify that the host buffer supplied
by the user should be used directly by the OpenCL runtime
system, if possible, rather than treating it as a source for
a copy. Only the Intel SDK, however, actually honors that

293



Device

Ti
m

e 
(m

s)

0
1
2
3
4
5
6
7

0

5

10

15

astar

csr

A
M

D
Intel
G

T520
H

D
5450

C
2050

H
D

5870

0

5

10

15

20

25

0
10000
20000
30000
40000
50000

bfs

gemnoui

A
M

D
Intel
G

T520
H

D
5450

C
2050

H
D

5870

0

1

2

3

4

5

0
50

100
150
200
250
300

bsort

kmeans

A
M

D
Intel
G

T520
H

D
5450

C
2050

H
D

5870

0

50

100

150

200

0

100

200

300

400

500

cfd

needle

A
M

D
Intel
G

T520
H

D
5450

C
2050

H
D

5870

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0

1000

2000

3000

4000

clfft

srad
A

M
D

Intel
G

T520
H

D
5450

C
2050

H
D

5870

0
500

1000
1500
2000
2500
3000
3500

crc
A

M
D

Intel
G

T520
H

D
5450

C
2050

H
D

5870
Time segment, data transfer/compute

to compute from

Figure 3: Absolute runtime for all implemented dwarfs across all platforms.

request; the end result is that the transfer time “to” the
CPU is extraordinarily small. So, the question remains as
to why the data transfer from CPU to GPU across PCIe is
generally faster than from one location in CPU memory to
another location in CPU memory, a subject of future work.

Relative to both compute time and transfer time, the
GPUs from each vendor exhibit similar behavior for cer-
tain features, e.g., the performance of data transfer from
AMD GPUs for astar, bfs, and bsort. Perhaps more surpris-
ing are the anomalies. For instance, the clfft dwarf is the
only one for which using low-power GPUs is faster than the
high-power GPUs. This particular implementation of FFT
is written in such a way that it is highly dependent on the
performance of a single processing unit on the GPU rather
than the aggregated performance of all the processing units
in a GPU. In turn, this seems to favor the smaller GPUs.

In addition to the normalized results, we also present the
absolute results as a stack, as shown in Figure 3. While
this represents the same data as in Figure 2, it encompasses
more devices and allows one to more easily compare the
distribution of the actual time spent on data movement and
computation for each of the dwarfs. In this case, the times
can range from well over 50% data transfer (csr) to over
99% computation (gemnoui). Also interesting is how the
performance profile changes from platform to platform. For
example, astar spends almost no time to transfer data to
or from NVIDIA GPUs but spends significantly more time
doing so on the AMD GPUs.

4. CONCLUSION AND FUTURE WORK
In writing and testing the OCD benchmarks, we have

found the Berkeley dwarfs to be an effective way to select
and classify benchmarks. Using OCD, we have found signifi-
cant diversity in the applications, architectures, and runtime
environments.

Overall, we believe that OpenCL and the 13 Dwarfs will
provide a useful baseline for the evaluation of platforms and
runtime systems across application domains. In the future,
we will continue populating each dwarf with representative
applications as well as investigate architecture-aware opti-
mization techniques for the included benchmarks. We are
also investigating the possibility of packaging a subset of the
OCD to the SPEC High Performance Group (SPEC HPG).

5. AVAILABILITY
The initial release of OCD, currently being beta-tested by

selected members of the NSF Center for High-Performance
Reconfigurable Computing (CHREC), includes benchmarks
representing 11 of the 13 patterns, with the rest to follow
in the near future. It has been tested across a multitude of
parallel computing architectures including multicore CPUs,
graphics processing units (GPUs), accelerated processing
units (APUs), i.e., AMD’s fused CPU+GPU on a die, and
soon, field-programmable gate arrays (FPGAs). It is slated
for open-source deployment to the community in April 2012.

6. REFERENCES
[1] R. Anandakrishnan, T. Scogland, A. Fenley, J. Gordon,

W. Feng, and A. Onufriev. Accelerating Electrostatic
Surface Potential Calculation with Multi-Scale
Approximation on Graphics Processing Units. J.
Molecular Graphics and Modelling, June 2010.

[2] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis,
P. Husbands, K. Keutzer, D. Patterson, W. Plishker,
J. Shalf, S. Williams, and K. Yelick. The Landscape of
Parallel Computing Research: A View from Berkeley.
Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Dec. 2006.

294




