
Clock Driven Programming: A Programming Paradigm
which Enables Machine-independent Performance Design

Kenjiro Yamanaka
NTT DATA Corpration
3-3-9 Toyosu, Koto-ku

Tokyo, Japan
yamanakaknj@nttdata.co.jp

ABSTRACT
Cloud computing provides more efficient resource utilization
and reduced costs for software systems. However, perfor-
mance assurance of these systems is difficult because the ex-
ecution environment cannot be precisely specified and can
change dynamically. This paper presents a new program-
ming paradigm, in which software performance is indepen-
dent from execution environments. The paradigm is called
clock driven programming (CDP). The main idea is to in-
troduce the notion of a periodic timer, i.e., clock, for syn-
chronizing program execution timing, just like a clock signal
is used in synchronous circuit design. This paper defines
CDP and derives the theoretical throughput formula of a
CDP program. A CDP program shows the same through-
put, even if it runs on different execution environments when
its timer period is the same. Therefore, using the CDP en-
ables performance assurance in cloud.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes;
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures; D.1.0 [Programming Techniques]: General

1. INTRODUCTION
Cloud computing provides dynamic system environments.

Using a cloud service like Amazon EC2, system resources
can be procured quickly. The pay-as-you-go model can re-
sult in more efficient resource utilization and reduced costs.
Dynamic system environments make performance assurance
difficult. Virtual machine performance varies as a result of
other VMs in the same physical machine. There are varia-
tions in machines provided in the cloud, even if the same in-
stance type is used. Users cannot specify the exact machine.
This is because this restriction enables rapid provisioning
and the pay-as-you-go model. As software performance de-
pends on execution environments, system performance can
vary.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

Performance engineering has been providing performance
prediction methods using a model-based approach. If a pre-
cise model of the system is available, we can estimate an
execution environment which meets performance demand.
However, these methods are not suitable for dynamic sys-
tem environments. In cloud, we cannot obtain some per-
formance parameters required by the performance model.
To handle dynamic system environments, we need new ap-
proaches. Open-world software [2] seems to be one of such
new approaches.

We present a new approach to assure system performance
in dynamic system environments. If software performance
does not depend on execution environments, system perfor-
mance assurance in dynamic system environments can be
resolved. We present a programming paradigm in which
software performance is independent from execution envi-
ronments. We call it clock driven programming because its
model is clock driven, i.e. synchronous, circuit design. In the
synchronous design, performance of circuits does not depend
on the device technology but on the clock frequency. This
feature makes performance assurance easy. Clock driven
programming, as presented here, is a transplantation of syn-
chronous circuit design to software. In CDP, a program is
driven by just one periodic timer. If the execution time of
the program is less than the timer period, software perfor-
mance is determined not by the execution environment but
by the timer period. This is the principle that CDP enables
machine-independent performance design.

In Section 2, the definition of clock driven programming
is presented. In Section 3, we will consider performance of
CDP programs. In Section 4, we present related works and
conclusion.

2. CLOCK DRIVEN PROGRAMMING
Clock driven programming is a subset of event driven pro-

gramming (EDP). Here, C language is used for sample codes,
but any programming languages and operating systems that
support EDP can be used to implement CDP. In CDP, we
write a program in the same procedure as project planning.
1) We list tasks, and then describe each one. 2) We de-
rive a precedence relation between tasks and create a PERT
chart. 3) We create a schedule that satisfy the precedence
constraints. CDP is explained in this order.

2.1 Task
A task is a state machine which performs the task repeat-

edly. A task is driven by a periodic timer and the execution
time of the task needs to be less than the timer period. This

267

requirement can be divided into the following two require-
ments.

Requirement 1. A task has an upper bound of execution
steps.

Requirement 2. Each statement in a task has an upper
bound of execution time.

To fulfill these requirements, we define a task as follows.

Definition 1. (Task) A task is a software module that has
the following elements.

1) Internal variables: One or more variables holding val-
ues. 2) Interface functions: Zero or more global functions
for other tasks to refer to and update internal variables. 3)
A reset function: A global function for initializing inter-
nal variables. 4) A task’s main function: A global function
called from within the timer event handler.

All functions consist of statements composed by sequence
(;) and selection (if then else).

The task’s main function satisfies Requirement 1 because
it does not include repetition. To satisfy Requirement 2,
we do not use blocking I/O in tasks. Execution of read()
is blocked by OS until data become available. This means
there is no upper bound of the execution time of read().
Instead, we use non-blocking I/O in tasks.

Although a task does not include repetition, the com-
putability of a task is equivalent to usual programs. The
following theorem assures this property.

Theorem 1. (Normal Form Theorem [3] 1)
Every flowchart is equivalent to a while-program with one
occurrence of while-do, provided additional variables are al-
lowed.

The normal form theorem is similar to the famous struc-
ture theorem. The difference is number of occurrences of
while-do: whereas the structure theorem allows any num-
ber, the normal form theorem allows just one. In CDP, just
one while-do is expressed by a periodic timer execution, and
additional variables are expressed as an internal variable,
which usually named ‘state’. Practically, for statements
which have a fixed upper bound of iteration count can be
used. This type of repetition is considered to be an abbre-
viation of the combination of sequence and selection.

Listing 1 shows an example of a task description.

Listing 1: Sample task (TaskA)
1 typedef enum {free, calc1, calc2, fin} taskA_state_t;
2 typedef struct {
3 taskA_state_t state; int x, y, result;
4 } taskA_data_t;
5 static taskA_data_t taskA_data;
6
7 #define LIMIT (100)
8 const int busy = -1;
9 const int param_err = -2;

10
11 extern int F (int);
12
13 int calc (int x, int y) {
14 int ret = busy;
15 if (y > 0) {
16 if (taskA_data.state == free) {

1There is no well-known name of this theorem. Harel [3]
investigated this theorem and pointed out that its ancestor
was Kleene’s 1936 normal form theorem for partial recursive
functions. Therefore, we call it normal form theorem.

����

�����

�����

�	

�������
����������

���������� ����������

�����������������������

� !����

"#��$�����������

%
&�
�����

'�(��
�������

"��$��)�

Figure 1: State diagram of TaskA.

17 taskA_data.state = calc1;
18 taskA_data.x = x;
19 taskA_data.y = y;
20 ret = 0;
21 }
22 } else {
23 ret = param_err;
24 }
25 return (ret);
26 }
27
28 int get_result (int* y) {
29 int ret = busy;
30 if (taskA_data.state == fin) {
31 *y = taskA_data.result;
32 taskA_data.state = free;
33 ret = 0;
34 }
35 return (ret);
36 }
37
38 void taskA_RST () {
39 taskA_data.state = free;
40 }
41
42 void taskA_CLK () {
43 int i, c;
44
45 switch (taskA_data.state) {
46 case calc1:
47 taskA_data.x = F (taskA_data.x);
48 taskA_data.result = taskA_data.x;
49 taskA_data.y--;
50 taskA_data.state = calc2;
51 break;
52 case calc2:
53 if (taskA_data.y > LIMIT) {
54 c = LIMIT;
55 taskA_data.y -= LIMIT;
56 } else {
57 c = taskA_data.y;
58 taskA_data.y = 0;
59 }
60 for (i = 0; i < c && i < LIMIT; i++) {
61 taskA_data.result *= taskA_data.x;
62 }
63 if (taskA_data.y == 0) {
64 taskA_data.state = fin;
65 }
66 break;
67 default:
68 break;
69 }
70 }

TaskA computes F (x)y repeatedly. Internal variable is de-
fined on Line 5. Two interface functions, calc() for request-
ing a calculation and get_result() for getting the result are
defined on Line 13 and 28. The reset function which is de-
noted by name with _RST and the main function with _CLK

are defined on Line 38 and 42.
A state diagram gives a clear view of the task’s behavior.

A state diagram of taskA is shown in Figure 1. Let S be the
whole set of assignment of values to internal variables in a
task, and S1, . . . , Sn be a finite partition of S. We call each
Si (1 ≤ i ≤ n) a state, and denote it as node. In Figure 1, S
is divided in five states by the value of taskA_data.state.

268

A transition Si
f/g−→ Sj means that when the function f is

executed in the state Si, f executes an external function g,
and the result state becomes Sj . We omit transitions from
node Si to Si unless the omission leads misunderstanding.
A state that includes the result of the reset function is called
an accepting state, and denoted by a double line circle. In
Figure 1, the state ‘free’ is the accepting state. On this
state, the machine waits for a new request and accepts it.
The machine executes the requested task, and returns to an
accepting state. In other states, the state machine rejects
the new one, so the requester needs to wait.

Listing 2 shows a task (taskB), which uses taskA.

Listing 2: Sample task (TaskB)
1 void taskB_CLK()
2 {
3 switch (taskB_data.state) {
4 ...
5 case state_10:
6 if (calc (taskB_data.a, taskB_data.b) == 0) {
7 taskB_data.state = state_11;
8 }
9 break;

10 case state_11:
11 if (get_result (&taskB_data.z) == 0) {
12 taskB_data.state = state_12;
13 }
14 break;
15 case state_12:
16 ...
17 }
18 }

Listing 2 describes a part of taskB’s main function, to
show how to use taskA. TaskB requests taskA to calculate
F (a)b at state_10. If the request is accepted, taskB’s state
is changed to state_11. At state_11, taskB waits the result
by calling get_result(). If taskB gets the result, taskB’s
state is changed to state_12.

When taskA is working for taskB, another task should
wait for until taskA become free. If there are multiple tasks
with the same features, we can handle multiple requests si-
multaneously. In CDP, we represent multiple tasks with the
same features using arrayed task. An arrayed task has inter-
nal variables as an array. Each global function of an arrayed
task has an additional parameter to select internal variables
in the array.

2.2 Creating a PERT Chart
After describing tasks, we derive the precedence relation

between tasks. A task’s main function calls an interface
function of other task to get a processing result. For exam-
ple, taskB calls get_result() to get F (a)b. TaskB can get
the result after the execution of taskA_CLK(), because pro-
cessing is performed taskA_CLK(). Therefore, taskA_CLK()
must be executed earlier than taskB_CLK(). This means
that the precedence relation between tasks can be deter-
mined by caller-callee relation of task’s interface functions.
We can create a PERT chart of a CDP program by reversing
arrows in the static call-graph of the program. This proce-
dure is shown in Figure 2. A PERT chart must be a directed
acyclic graph (DAG). To keep the created chart DAG, we
need to meet the following requirement.

Requirement 3. A call-graph of a CDP program must be
acyclic.

The parallel execution of a task’s main function and inter-
face function may cause data hazard. If this happens, the

����� �����
����� �	

��������	

����� �����

����
��

���������� ��

�����
	���

����� �����
����� �	

��������	

����� �����

����
��

���������� ��

�����
	���

Figure 2: Conversion from call graph to PERT chart

assignment of values to internal variables may change non-
deterministically. Data hazard between them can be pre-
vented by using the precedence relation. If scheduling is
carried out by using this, the task’s main function and in-
terface function are not executed in parallel. There is an-
other source of data hazard. This is parallel execution of
the task’s interface functions. To prevent this hazard, CDP
requires the following.

Requirement 4. If interface functions of a task can be ex-
ecuted in parallel, these functions satisfy Bernstein’s condi-
tions.

We can determine the parallel executability of interface func-
tions using the following procedure. Let graph G =< V, A >
be a PERT chart derived from a CDP program, and G+ =<
V, A+ > be the transitive closure of G. If two tasks u, w sat-
isfy < u, w > 6∈ A+ and < w, u > 6∈ A+, u and w are likely
to be scheduled in parallel. If there exists a task v such that
< v, u >∈ A, < v, w >∈ A, interface functions of v called in
u and ones called in w can be executed in parallel.

Theorem 2. (Bernstein’s conditions[1])
Let R(f) be a set of internal variables which are referred in
function f , and W (f) be a set of internal variables which
are updated in function f .

R(f) ∩ W (g) = φ, R(g) ∩ W (f) = φ, W (f) ∩ W (g) = φ.
If these three conditions are upheld, parallel execution of

functions f and g does not cause any data hazard.

If a program does not satisfy Requirement 3 and 4, the pro-
gram has static semantic errors. A CDP program has the
following property.

Property 1. A CDP program is data hazard free if tasks
in the program are scheduled to satisfy the precedence con-
straint given by the PERT chart of the program.

This is obvious because module scope rule protects illegal
access to internal variables. In CDP, data hazard is pre-
vented by static semantics checks. This is possible because
there is no repetition in tasks.

2.3 Scheduling
The last step of CDP is making the schedule of tasks that

satisfy precedence constraints. A PERT chart used explain-
ing the scheduling method is shown in Figure 3.

To represent a schedule, we usually assign start times
of tasks. If execution times of tasks are known and con-
stant, this method is easy to understand. However, execu-
tion times of tasks are neither fixed nor known because these

269

����� �����
����� �	

����� �����

Figure 3: Sample PERT chart

varies with execution environments. In CDP, we represent a
schedule using sequential composition. To create a sequen-
tial schedule, we use the topological sort of the PERT chart.
We can create three schedules from Figure 3.

S1 = taskX_CLK(); taskY_CLK(); taskW_CLK(); taskZ_CLK();
S2 = taskX_CLK(); taskY_CLK(); taskZ_CLK(); taskW_CLK();
S3 = taskX_CLK(); taskZ_CLK(); taskY_CLK(); taskW_CLK();

The selection of schedules does not affect execution result
of the program because of Property 1. Listing 3 shows the
timer event handler and the main function. This sample
assumes Windows OS. OnTimer() is the timer handler that
executes the schedule S1 (Line 3). In the main function, we
initialize tasks (Line 13, 14), then start timer (Line 19). In
this program, the timer period is 100 ms (Line 10, 19). This
program terminate when the event end is set (Line 20).

Listing 3: Timer handler and main function
1 static Handle end;
2
3 void OnTimer () {
4 /* Schedule S1 */
5 taskX_CLK (); taskY_CLK ();
6 taskW_CLK (); taskZ_CLK ();
7 }
8
9 int main () {

10 unsigned int period = 100; /* Unit: ms */
11 MSG msg;
12
13 taskX_RST (); taskY_RST ();
14 taskW_RST (); taskZ_RST ();
15
16 /* Create Events end */
17 end = CreateEvent (NULL, FALSE, FALSE, NULL);
18
19 SetTimer (NULL, 0, period, OnTimer);
20 while (WaitForSingleObject(end, 0) == WAIT_TIMEOUT) {
21 GetMessage (&msg, NULL, 0, 0);
22 DispatchMessage (&msg);
23 }
24 }

There is no precedence relation between task_clk(i) in
an arrayed task. Therefore, we can make a schedule of
task_clk(i) in any order.

Context switching of multitask OS may cause random de-
lay to the task’s execution. Such delay may cause a critical
error if the schedule is represented based on time. However,
our schedule representation does not depend on the task’s
execution time. Random delay extends the completion time
of the schedule, but the precedence relation between tasks
are kept. Therefore, a CDP program works well under mul-
titask OS.

3. PERFORMANCE OF CDP PROGRAMS
This section defines the throughput of a task, and derives

the theoretical throughput formula. In general, through-
put is represented by transactions per sec. First, we define
transaction for a task.

Definition 2. (Transaction) Transaction is a series of state
transition which satisfy the following three conditions. First,

it starts a state transition from an accepting state to a non-
accepting one. Second, it ends at a state transition from a
non-accepting state to an accepting one. Third, it does not
contain an accepting state in the middle.

The following is a series of state transition of taskA in
section 2. The series of state transition in boldface is a
transaction.

free
CLK/−−→ free

calc(a,5)=0/−−→ calc1
CLK/F (a)=c−→ calc2

CLK/−−→ fin
get result(&z)=0/−−→ free

CLK/−−→ free

Definition 3. (Clocks per transaction: CPT) The CPT of
a transaction is the number of CLK contained in the transac-
tion.

We derive the theoretical throughput formula. If all CLK
belongs to transactions, the throughput of a task becomes
the maximum. In this case, the throughput is denoted by
1/(cT), where c is the CPT and T is the time period. We can
increase the throughput using arrayed task. If the number of
elements of the array is m, the throughput becomes m/(cT).
In order to preserve the timer period, duty ratio D, the ratio
of the task’s execution time to the timer period, must be
kept to less than 1. The reciprocal of T is the frequency f .
From the above, the maximum throughput of a task P is
obtained using the following formula.

P =
m

c
f (if D < 1) (1)

The performance variance of execution environments does
not affect throughput of a CDP program. It affects duty
ratio. The duty ratio is proportional to the frequency f .
Therefore, if the frequency f is chosen appropriately, we can
assure throughput of the program irrespective of execution
environments.

4. RELATED WORKS AND CONCLUSION
The predecessor of the clock-driven programming is a pro-

gramming method that has been used in real-time systems
[4]. The main progress of CDP is introducing Requriment 4,
Bernstein’s conditions, to prevent non-determinism caused
by schedule selection.

Clock driven programming was defined and the theoretical
throughput formula was derived. A CDP program shows the
same throughput even if it runs on different execution envi-
ronments when its timer period is the same. On the other
hand, an adaptation method is required in order to change
performance according to environment. The dynamic con-
trol of timer period enables such adaptation, but needs to
further study.

5. ACKNOWLEDGMENTS
This work was partially supported by Ministry of Internal

Affairs and Communications of the Japanese Government.

6. REFERENCES
[1] A. Bernstein. Analysis of programs for parallel

processing. IEEE Trans. on Electronic Computers,
(5):757–763, 1966.

[2] C. Ghezzi. The challenges of open-world software. In
Proc. of WOSP ’07.

[3] D. Harel. On folk theorems. CACM, 23:379–389, July
1980.

[4] J. W. Liu. Real-time systems. Prentice Hall, 2000.

270

