
Benchmarking Decentralized Monitoring Mechanisms
in Peer-to-Peer Systems

Dominik Stingl, Christian Gross,
Sebastian Kaune, Ralf Steinmetz

Multimedia Communications Lab
TU Darmstadt

Darmstadt, Germany
{stingl,chrgross,kaune,

steinmetz}@kom.tu-darmstadt.de

Karsten Saller
Real Time Systems Lab

TU Darmstadt
Darmstadt, Germany

karsten.saller@es.tu-darmstadt.de

ABSTRACT

Decentralized monitoring mechanisms enable obtaining a
global view on different attributes and the state of Peer-to-
Peer systems. Therefore, such mechanisms are essential for
managing and optimizing Peer-to-Peer systems. Nonethe-
less, when deciding on an appropriate mechanism, system
designers are faced with a major challenge. Comparing dif-
ferent existing monitoring mechanisms is complex because
evaluation methodologies differ widely. To overcome this
challenge and to achieve a fair evaluation and comparison,
we present a set of dedicated benchmarks for monitoring
mechanisms. These benchmarks evaluate relevant functional
and non-functional requirements of monitoring mechanisms
using appropriate workloads and metrics. We demonstrate
the feasibility and expressiveness of our benchmarks by eval-
uating and comparing three different monitoring mechanisms
and highlighting their performance and overhead.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4.1 [Performance of Systems]: Performance
attributes

General Terms

Performance, Standardization

Keywords

Benchmarking, Decentralized Monitoring Mechanisms, Peer-
to-Peer Systems, Performance Comparison

1. INTRODUCTION
In the last decade, monitoring of Peer-to-Peer (P2P) sys-

tems has gained much research interest resulting in a plethora
of different monitoring approaches, each providing different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

performance characteristics. All approaches have in com-
mon, that they reveal general insights about the network
and application [24], or summarize the characteristics of the
participants [7].

Given the multitude of existing solutions, a fair compari-
son between several solutions is hard to achieve, if not im-
possible. This lack of comparability results from the widely
differing evaluation methodology for decentralized monitor-
ing mechanisms: (i) although designed for the same purpose
with similar functionality, the addressed non-functional re-
quirements vary, (ii) the applied workloads to evaluate the
quality of a mechanism differ widely in their composition,
and (iii) different metrics are used to quantify the quality of
the system.

To overcome this lack of comparability, we present the
following contributions:

(i) We identify the relevant non-functional requirements
for decentralized monitoring mechanisms for P2P systems,
such as scalability and robustness. Given these require-
ments, we propose a set of benchmarks that investigate
how decentralized monitoring mechanisms meet these non-
functional requirements. Therefore, each developed bench-
mark consists of one or several workloads, which evaluate
a specific non-functional requirement by a predefined set of
appropriate metrics. Based on the provided benchmarks,
the quality of decentralized monitoring mechanisms can be
evaluated and compared in a reproducible and unbiased way.
Furthermore, our benchmarks can be applied to tune the
parameter setting of a system to identify an optimal config-
uration for a particular workload scenario.

(ii) To exemplify our methodology, we present a case study
and discuss the benchmarking results of three monitoring
approaches (a gossip-based and tree-based approach as well
as a simple centralized approach as reference). Thus, we are
not interested in declaring one approach “better” or “worse”
than another as denoted by Rhea et al. [19], but in showing
the applicability and expressiveness of our presented bench-
marks.

The rest of this paper is structured as follows: Section 2
provides the background on decentralized P2P monitoring
mechanisms followed by Section 3 presenting our bench-
marking methodology. The benchmarking results are pre-
sented in Section 4. Subsequently, we discuss related work
in Section 5, summarize this paper in Section 6 and give an
outlook on future work.

193



2. DECENTRALIZED MONITORING

MECHANISMS
In this section, we give a brief overview on decentralized

monitoring mechanisms highlighting their offered function-
ality and composition. For the design of benchmarks, it
is indispensable to understand, which functionality is pro-
vided by the considered class of mechanisms, because it in-
fluences the identification of the relevant non-functional re-
quirements for this class. Based on these requirements, the
different benchmarks can be defined, as outlined in Subsec-
tion 3.1. Moreover, the offered functionality serves to design
an interface for the class of mechanisms to access and exe-
cute the relevant operations during a benchmark.

2.1 Functional Description
A decentralized monitoring mechanism [12,16,23,24] gath-

ers different types of data from the whole system to assess
and calculate the global state of the system and its par-
ticipants. The information to collect is represented by a
set of attributes, measured by every participating peer. De-
pending on the focus of a monitoring mechanism, the gath-
ered attributes range from the transmitted traffic [18], over
application-related information [23], to the user and its uti-
lized communication device [7].
Due to the large number of users, the transmission of the

measured attributes and its subsequent collection at one or
several data sinks results in a high amount of data, consum-
ing a considerable amount of bandwidth resources in the
system. Existing approaches, therefore, apply aggregation
of the monitored attributes to compress the size of the data
and to save the bandwidth of the participating peers. Us-
ing this aggregation, a monitoring mechanism calculates the
so-called global view of a monitored attribute, which can be
subsequently used to deduce the aforementioned global state
of the whole system. Typical aggregates that are used for
the calculation of a global view cover functions, such as mini-
mum, maximum, sum, average, or standard deviation [3,16].
After the computation of a global view for a set of aggre-
gates, each participating peer in a P2P system can retrieve
the newly created information.

2.2 Architectural Description
In the following, we present the architecture of a decen-

tralized monitoring mechanism, which provides the previ-
ously mentioned functionality. We sketch how a decentral-
ized monitoring mechanism is composed and integrated into
a P2P system. In contrast to the functional description, the
information about a mechanism’s composition is not manda-
tory for the design of benchmarks, because we evaluate the
whole mechanism and do not study the impact of internal
components on the overall behavior. The overview, however,
justifies the choice of a tree- and gossip-based approach for
the case study in Section 4, because it becomes apparent
that the topology mainly influences the behavior of the mon-
itoring mechanism. In the following, we present the three
basic components, every monitoring mechanism can be re-
duced to.

Topology Construction and Maintenance.
In literature, trees [16, 24] and meshes [11, 12] constitute

the two prominent topologies for a decentralized monitor-
ing mechanism. Within a tree topology, information is only

exchanged between children and parents. Within a mesh
topology, one or several neighbors are randomly chosen to
exchange monitored information [5]. This results in gossip-
based communication, which is often used as a synonym
when describing the communication within mesh-based mon-
itoring mechanisms. Furthermore, there are several hybrid
approaches, combining gossip-based aggregation in trees [23]
or creating trees of mesh-based networks [2, 18].

The topology maintenance depends on the network envi-
ronment and its network topology. Monitoring approaches
that are deployed in static and structured environments,
such as in the area of grid computing [18], heavily differ
from approaches for autonomous systems with highly dy-
namic users. The herein considered mechanisms for P2P
systems must actively maintain the monitoring topology and
additionally manage the arrival and departure of peers [1,2].
Therefore, they rely on additional mechanisms, such as Dis-
tributed Hash Tables (DHT) or membership protocols [10].

Data Collection.
This component sketches how monitored data is exchanged.

Typically, gossip-based monitoring approaches actively send
data to neighboring peers [12], also denoted as push. If the
message sent triggers the transmission of an answer at the
receiver, the gossip-based approach applies push-pull -based
data collection [11]. Tree-based approaches can decide to
either push data [7] or to alternatively pull data from neigh-
bors [16, 18]. To trigger the collection of measured data,
monitoring mechanisms rely on a periodic or event-based
collection. For the latter case, the activating event may be,
for example, (i) a newly measured value of an attribute at
a peer, (ii) a query for the global view of an attribute, (iii)
or the attempt of the system to generate a snapshot of an
attribute at a certain point in time.

Result Dissemination.
This component highlights the possibilities to disseminate

the global view of the monitored attributes. The existing
strategies comprise proactive and reactive result dissemina-
tion. While proactive dissemination transmits the created
global view to all or only a subset of peers, reactive dissemi-
nation sends the global view of attributes only to requesting
peers. Tree-based monitoring approaches allow choosing be-
tween the different dissemination strategies, whereas proac-
tive dissemination is implicitly integrated in gossip-based
monitoring, due to the push-based collection of data.

3. BENCHMARKING DECENTRALIZED

MONITORING MECHANISMS
In this section, we describe the design of our benchmarks,

which will be used for the comparison of the different moni-
toring mechanisms in our case study. The designing process
for a particular benchmark consists of the following three
aspects: (i) The system specification provides the basis for
the definition of benchmarks (Section 3.1). It illustrates the
functional and non-functional requirements, each system has
to fulfill. (ii) Given the requirements, appropriate workload
schemes to benchmark a system are identified (Section 3.2).
(iii) To quantify the obtained results of an applied workload,
a set of metrics is created (Section 3.3). Finally, Section 3.4
outlines the combination of the three mandatory aspects in
one or several benchmarks.

194



3.1 System Specification
Our system under test (SUT) consists of a decentralized

monitoring mechanism, which is set up on top of a P2P
system. To benchmark the SUT, it provides an interface
to apply different workloads on the system and to measure
the produced results. In case that the class of mechanisms
being benchmarked does not provide a predefined interface,
it must be derived based on the functional requirements of
that class. To cover a wide range of existing approaches,
the common functionality must be carefully analyzed and
merged in a set of methods within the interface.
Due to the fact that neither an interface nor the pro-

vided functionality of a decentralized monitoring mechanism
is specified, we examined existing approaches to highlight
the key aspects. As outlined in Section 2, a decentralized
monitoring mechanism calculates and provides the global
view for a set of attributes. For that reason, each partici-
pant locally measures and stores the specified attributes for
the overall collection. When the collection process is fin-
ished, the global view of attributes can be retrieved by the
participating peers. Based on this description, the common
functionality of a decentralized monitoring mechanism can
be defined within the following interface.

• setLocalValue(String name, double value) stores a
locally measured value of an attribute for the latter
collection.

• getGlobalViewOfAttributes() returns the global view
of all monitored attributes.

Every monitoring approach, applying our benchmarks,
must provide this functionality and implement the specified
interface in order to be evaluated or compared to another
solution. Thus to apply the different workloads and to mea-
sure the produced results, the resulting interface of the SUT
is located at each peer, which participates and monitors the
system.
Besides the architecture and the design of the interface,

the system specification also outlines the non-functional re-
quirements of a system. Therefore, we identified the follow-
ing quality aspects, representing the relevant non-functio-
nal requirements of decentralized monitoring mechanisms.
These requirements build the basis for the subsequent iden-
tification of workloads and metrics.

• Performance characterizes the quality of the pro-
vided functionality of a mechanism. In the context of
monitoring, we divide performance into validity and
timeliness. With validity, we address the accuracy
of the delivered results, which can be characterized
through the difference between the measured and the
actual global view of an attribute. Since the provi-
sioning of correct information is the primary function
of a decentralized monitoring mechanism, validity rep-
resents a central aspect. Besides the delivery of correct
results, timeliness covers the aspect how fast the mon-
itoring mechanism captures the global view and how
fast it can deliver or distribute this view in the system.

• Costs comprise the communication or computation
overhead produced by the monitoring mechanism to
perform its task with a certain performance.

• Fairness can be evaluated with respect to performance
and costs. On the one hand, a fair system should of-
fer the same access to the provided services and avoid
starving peers. On the other hand, a fair system should
distribute the operational costs that peers are not over-
loaded.

• Scalability refers to the ability of a monitoring mech-
anism to preserve its performance at reasonable costs,
while increasing the number of participating nodes or
monitored attributes. A threshold for acceptable per-
formance or costs must be defined by the application
scenario.

• Robustness deals with the behavior of the whole P2P
system in the presence of external and unpredictable
events. These events mainly comprise massive fluctu-
ations of participants due to, e.g., a network collapse
or flash crowd behavior.

• Stability characterizes the ability of a decentralized
monitoring mechanism to deal with the random be-
havior of autonomous peers in a P2P system. We con-
sider the random behavior in terms of churn, which
describes the varying frequency of arriving and leav-
ing peers.

The identified non-functional requirements can be divided
into two classes of quality aspects. On the one hand, there
are quality aspects, such as performance, costs, and fairness,
which can be quantified by metrics. Based on these met-
rics, it is possible to estimate if a mechanism meets these
requirements. In contrast, the second class of quality as-
pects cannot directly be assessed by individual metrics, but
is quantifiable by metrics, which are related to the first class
of quality aspects. Instead, the second class of quality as-
pects characterizes the properties of a workload.

3.2 Workloads
For benchmarking decentralized monitoring mechanisms,

we elaborated several workloads to address the identified
quality aspects. These workloads are applied on the SUT,
while the participating peers perform their tasks and mea-
sure a set of predefined attributes. Using the captured at-
tributes, the monitoring mechanism calculates the global
view for each attribute, as described in Section 2.1. Af-
terwards, this global view is disseminated to the peers. To
examine validity of a monitoring mechanism under the spec-
ified workloads, the measured global view is compared to the
so-called correct global view. In contrast to the global view
obtained by the monitoring mechanism, the correct global
view of an attribute is calculated based on a snapshot of the
system at a certain point in time. Except for the peer count
of a monitoring mechanism, we do not measure common
system attributes (e.g., network traffic or number of mes-
sages) nor domain-specific attributes (e.g., lookup-rates or
file-downloads for file-sharing systems) to evaluate validity.
Instead, the peers in our benchmark obtain their monitored
values from a value generator, as presented by Graffi [6].
This generator calculates a new value for each monitoring
peer based on the current time and on the defined function.
Afterwards, the calculated global view is compared with the
actual value retrieved from the value generator to assess the
validity of the monitoring mechanism.

195



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0  20  40  60  80  100  120  140  160  180

A
tt

ri
b

u
te

 V
a

lu
e

 [
u

n
it
s
]

Time [min]

Figure 1: Sine reference signal with a period of
30min.

The value generator facilitates a more detailed analysis,
because we can define functions with differing complexity,
which refer to constant or highly varying attributes. It is
possible to design individual functions that exhibit desired
characteristics, such as steep slopes or periodicity, in order
to estimate to which extent a monitoring mechanism is able
to capture a varying signal. For example, it is easier to cap-
ture the values of a slightly increasing linear function than
of a sine or a rectangular function. Moreover, the value
generator improves the comparability of results in terms of
validity. The monitored values of a function are independent
from the enclosing P2P system (e.g., P2P file-sharing appli-
cation) and current workload scenario (e.g., churn), thus, the
values are not biased. In order to evaluate validity within
our benchmarks, we implement a sine function, as displayed
in Figure 1.
Besides this function for the value generator, we propose

a set of workloads. These workloads are not application-
related but synthetic workloads. They are domain-specific
and model typical scenarios that are common for P2P sys-
tem, such as churn or an increasing number of peers. We de-
cided to apply synthetic workloads (i) to provide application-
independent results and (ii) to stress a system regarding a
particular, isolated quality aspect.

Baseline.
The baseline workload represents idealized conditions and

provides insights on the behavior of the monitoring mech-
anism under these conditions. In contrast to the remain-
ing workloads, this workload does neither include message
loss, which is enabled for the rest of workloads, nor consider
churn, which is addressed in a separate workload. Moreover,
other workload parameters, such as the number of peers or
the amount of monitored attributes, are fixed during this
workload. This results in a static workload scenario with a
fixed number of peers and perfect network conditions.

Churn.
In this workload scenario, we evaluate stability of a mon-

itoring mechanism in the presence of churn. As underlying
model, we employ an exponential churn model, which as-
sumes an exponentially distributed mean session time per
peer. The workload consists of several runs, which model
the peers with different mean session times per run.

Massive join/crash.
The massive join workload consists of one run. During

this run, we assume that a predefined fraction of new peers

Symbol Description

T The set of time samples
P (t) The set of online peers at time t ∈ T

A(t) The set of attributes being monitored
at time t

Xm(a, t, p) The measured global aggregate X of
an attribute a ∈ A(t) at time t ∈ T

available at a peer p ∈ P (t)
Xc(a, t) The correct global aggregate X of an

attribute a ∈ A(t), which is calculated
based on a snapshot of the system at
time t ∈ T

τmin(X(a, t, p)) The time of the oldest sample being
included into an aggregate

τmax(X(a, t, p)) The time of the most recent sample
being included into an aggregate

∆tagg(X(a, t, p)) The aggregation time considers all in-
cluded values for a global view and is
calculated as
∆tagg(X(a, t, p)) = τmax − τmin

∆tprop(X(a, t, p)) The propagation time for a global ag-
gregate from a data sink to a peer

∆treq(X(a, t, p)) The time to answer a request for a
global aggregate

Table 1: List of mathematical symbols

simultaneously joins the system. Within the context of a
massive crash, the workload consists of a single run as well
and covers the ungraceful departure of a predefined frac-
tion of peers. These workloads evaluate the robustness of
a decentralized monitoring mechanism, since it has to deal
with a sudden change in the system state as well as in the
amount of peers. For both workloads, one has to differen-
tiate between a collapse of the monitoring mechanism due
to the breakdown of the whole P2P system or due to the
inability of the monitoring mechanism to reorganize itself.

Increasing number of attributes.
In this workload scenario, we investigate scalability of a

monitoring mechanism by scaling the amount of transmit-
ted and processed data. We denote this type of scalabil-
ity as vertical scalability. The workload consists of several
runs. For each run, we increase the number of monitored
attributes, which results in a higher amount of transmitted
and processed data.

Increasing number of peers.
With the linear increase of peers in the system, this work-

load investigates another type of scalability of a monitoring
mechanism, which we denote as horizontal scalability. In
contrast to the previously described workload, which ad-
dresses vertical scalability, this workload increases the num-
ber of peers to an upper bound during one run and not
during several runs.

3.3 Metrics
In this subsection, we introduce the metrics being mea-

sured to evaluate a decentralized monitoring mechanism. In
order to describe the metrics below, we use the set of sym-
bols shown in Table 1.

196



3.3.1 Per peer metrics

The following metrics are measured on a per peer basis for
each participant of the P2P system. They can be mapped
onto the quality aspects performance and costs.

Performance Metrics:

• tstale(X(a, t, p)) denotes the staleness or age of an ag-
gregate in seconds, observed at peer p ∈ P (t) and is
calculated as

tstale(X(a, t, p)) = ∆tagg +∆tprop +∆treq

• ǫX(a, t, p) represents the relative monitoring error in
percent for an aggregate X of on attribute a ∈ A(t) at
peer p ∈ P (t) at time t ∈ T and is defined as:

ǫX(a, t, p) =
|Xm(a, t, p)−Xc(a, t)|

Xc(a, t)
∗ 100%

Cost Metric:

• l(t, p) represents the total traffic in kB
s

at peer p ∈ P (t)
at time t ∈ T . It comprises the up- and download
traffic and is calculated as follows:

l(t, p) = lup(t, p) + ldown(t, p)

3.3.2 Global Metrics

Based on the per peer metrics the following global metrics
can be calculated:

• The mean of a metric x over the set of peers at time
t ∈ T :

x(t) =
1

|P |

∑

p∈P

x(p, t).

• The mean of a metric x over the set of time samples
per peer p ∈ P :

x̃(p) =
1

|T |

∑

t∈T

x(p, t).

• The total mean of a metric x:

x̂ =
1

|T ||P |

∑

t∈T

∑

p∈P

x(p, t).

3.4 Benchmark Implementation
Having introduced the system specification, workloads,

and metrics, we present the benchmark implementation. This
implementation combines the three components and creates
the different benchmarks to evaluate the SUT. We have de-
rived four different benchmarks that investigate and evaluate
the system in a baseline, robustness, stability, and scalability
benchmark. Before presenting all benchmarks, we describe
the basis for each benchmark, which consists of three dif-
ferent phases as shown in Figure 2: (i) the setup phase of
60min in which 1,000 peers join the system, (ii) the stabiliza-
tion phase of additional 20min, which ensures that the whole
P2P system is set up correctly and stable, and (iii) a work-
load and measurement phase of 180min, where the different
workload schemes are applied and where the benchmarking
metrics are captured.

Figure 2: Schematic drawing of the schemes for
varying the number of peers: (1) constant number of
peers, (2) massive join, (3) massive leave, (4) linear
increase, and (5) regular churn.

Baseline Benchmark.
The baseline benchmark provides insights on performance

and costs in an idealized environment without message loss
or peer churn. Using the baseline workload, this benchmark
represents a reference for the remaining benchmarks regard-
ing (i) the examined quality aspects of a particular monitor-
ing mechanism as well as (ii) the comparison between the
different monitoring mechanisms.

Scalability Benchmark.
To examine the scalability of a decentralized monitoring

mechanism, we divide scalability into horizontal and ver-
tical scalability. Horizontal scalability is benchmarked by
the workload with an increasing number of peers. Within
this workload the number of peers is linearly increased from
1,000 to 10,000 peers during the workload and measurement
phase. In contrast, the workload with an increasing number
of attributes benchmarks vertical scalability. The workload
consists of three runs and covers scenarios with 10, 100, and
1,000 attributes, which are monitored by the system.

Stability Benchmark.
For investigating the stability of the system, we apply the

workload for churn. The workload consists of three runs,
which model peers with a mean session time of 60, 30, and
15min. With the increasing frequency of arriving and leav-
ing peers per run, this workload examines the stability of a
decentralized monitoring mechanism.

Robustness Benchmark.
In the robustness benchmark, we investigate the system

behavior in two different scenarios defined by the massive
join and massive crash workloads. We look at the system
behavior when (i) 50% of the peers simultaneously leave and
(ii) 100% new peers simultaneously join the system. We con-
sider a system to be robust if these metrics reach predefined
levels after a crash or a massive join. While the levels must
be defined by the application scenario in which the partic-
ular monitoring approach should be used, we restrict the
evaluation of robustness to a comparison of the three differ-
ent systems.

197



4. BENCHMARKING RESULTS
In order to evaluate our benchmarks, we chose three dif-

ferent monitoring mechanisms and implemented them in
the P2P simulation framework PeerfactSim.KOM [21]. We
benchmarked all three systems using the previously defined
benchmarks. Before presenting the results for each bench-
mark and outlining the most important conclusions, Sub-
section 4.1 summarizes the simulation setup and details the
three chosen monitoring mechanisms.

4.1 Simulation Setup
We simulate each of the three monitoring mechanisms on

top of a Chord overlay [22], since the tree-based approach
requires a DHT to build its monitoring topology. Out of the
four presented benchmarks, each benchmark is simulated
with its corresponding workloads and metrics. During the
workload phase, which lasts 180min (cf. Subsection 3.4),
we periodically measure the produced data of the simula-
tion with an interval of a minute. The data comprises the
produced results of the monitoring mechanism and the traf-
fic of the whole system, including the overlay as well. After
sketching the basis for our simulations, we detail our selected
monitoring mechanisms and briefly justify our choice.
Based on the description of decentralized monitoring mech-

anisms in Section 2, it becomes apparent that the selection
of the topology heavily influences the decisions for the re-
maining two components of a monitoring mechanism. Thus,
the topology constitutes the main decision criterion for a
monitoring mechanism, as outlined by Makhloufi et al. [17].
Therefore, we select two decentralized monitoring approaches,
which rely on different topologies, while their mechanisms
for data collection and result dissemination are similar. Data
collection and result dissemination are part of the discus-
sion for future work (cf. Section 6). For the benchmark,
we selected (i) a tree-based approach, (ii) a gossip-based
approach, and (iii) a centralized monitoring solution as ref-
erence, which are detailed in the following.

4.1.1 A Tree-Based Monitoring Mechanism

The monitoring mechanism, introduced by Graffi et al. [7],
relies on the lookup-functionality of the underlying DHT to
build its tree topology based on the given peer IDs. Using
the created topology, every participating peer, either leaf
or inner node of the tree, periodically sends its set of at-
tributes towards the root, which calculates the global view
of all monitored attributes. This results in a push-based
data collection mechanism. Simultaneously, the root reg-
ularly sends the information down the tree to every inner
node and leaf, leading to a proactive result dissemination.
We set both update intervals to 60s as proposed by Graffi
et al. [7].

4.1.2 A Mesh-Based Monitoring Mechanism

To evaluate our benchmark on mesh-based systems, this
subsection details the approach by Jelasity et al. [11], which
relies on gossip-based communication to monitor the P2P
system. For this type of communication, the underlying
overlay network must only allow for the retrieval of neigh-
bors to periodically communicate with a randomly chosen
subset of them. The mesh-based monitoring mechanism di-
vides the time into epochs, which in turn consist of a pre-
defined amount of cycles to calculate the global view of the
monitored attributes. We set the amount of cycles per epoch

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20  25  30  35  40

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Mean Relative Monitoring Error
Sine Function [%]

Tree
Gossip

Centralized

(a) CDF of the mean rela-
tive monitoring error for the
sine function

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Mean Relative Monitoring Error
Peer Count [%]

Tree
Gossip

Centralized

(b) CDF of the mean rela-
tive monitoring error for the
peer count

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Mean Staleness [s]

Tree
Gossip

Centralized

(c) CDF of the mean stale-
ness

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Mean Traffic [kB/s]

Tree
Gossip

Centralized

(d) CDF of the mean traffic

Figure 3: Per peer results for performance and costs,
measured during the baseline workload.

to 30 with a cycle length of 10s, which correspond to the val-
ues indicated by Jelasity et al. [11]. In the beginning of a
new epoch, every participating peer measures its attributes
and periodically sends the current values to a randomly cho-
sen neighbor. Through the aggregation of the measured at-
tributes at each peer, the values converge to the average at
the end of an epoch. Besides periodically pushing the own
data to a neighbor, every peer that receives such a message,
replies to this message with its own data. Thus, the system
implements a push-pull-based data propagation.

4.1.3 A Centralized Monitoring Approach

In order to have a reference for decentralized monitor-
ing mechanisms, we implemented a centralized monitoring
approach, which is set up on top of the overlay. All partici-
pating peers of the centralized monitoring mechanism peri-
odically push their measured attributes to a central server,
which calculates the global view of the monitored attributes.
Afterwards, the server proactively disseminates the com-
puted global view to all peers in the system, resulting in
a proactive result dissemination. Similar to the tree-based
approach, we set both update intervals to 60s. In the fol-
lowing evaluation, the statistics of the centralized approach
represent an optimal monitoring solution and serve as ref-
erence. Therefore, we mainly detail the comparison of the
decentralized solutions and only refer to the centralized ap-
proach where appropriate.

4.2 Baseline Benchmark
We first study the performance and costs of the different

approaches under idealized conditions within the baseline
benchmark. Starting with performance in terms of validity,
Figure 3(a) and 3(b) show the cumulative fraction of the
mean relative monitoring error per peer averaged over a sim-

ulation denoted as ˜ǫavg(a, t, p). Both plots outline that the
tree-based approach outperforms the gossip-based approach
and in terms of the relative error for the peer count even
catches up with the centralized approach. Although, each
mechanism is able to capture the total amount of peers, the

198



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2000  4000  6000  8000  10000

M
e

a
n

 R
e

l.
 M

o
n

it
o

ri
n

g
 E

rr
o

r
S

in
e

 F
u

n
c
ti
o

n
 [

%
]

Number of Peers [#]

Tree
Gossip

Centralized

(a) Mean relative monitoring error for
the sine function

 0

 200

 400

 600

 800

 1000

 1200

 2000  4000  6000  8000  10000

M
e

a
n

 S
ta

le
n

e
s
s
 [

s
]

Number of Peers [#]

Tree
Gossip

Centralized

(b) Mean staleness of monitored data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2000  4000  6000  8000  10000

M
e

a
n

 T
ra

ff
ic

 [
k
B

/s
]

Number of Peers [#]

Tree
Gossip

Centralized

(c) Mean traffic

Figure 4: Per peer results for performance and costs, measured during the horizontal scalability workload.
The x-axes show the actual number of peers in the system, which increases from 1,000 to 10,000 peers over
an interval of 180min.

gossip-based approach exhibits a small deviation. Dealing
with fairness, every participating peer of the gossip-based
approach is provided with a similar monitoring error. Con-
trary to this, the error of the tree-based approach is spread
over a larger interval, due to its hierarchical topology and
the stepwise data propagation down the tree.

Considering the mean staleness per peer ˜tstale(X(a, t, p)),
as displayed in Figure 3(c), we observe that the tree-based
approach only partially outperforms the gossip-based ap-
proach, because a larger fraction of peers obtains older re-
sults in contrast to the gossip-based approach. This results
in a mean staleness of 462s for the gossip-based and 501s for
the tree-based approach. The obtained results for staleness
lead to the interesting finding that the provided validity of
the tree-based approach is slightly higher than of the gossip-
based approach, whereas the staleness does not support this
trend. Dealing with the distribution of staleness among the
peers, the same characteristics as for the previously pre-
sented error distribution in Figure 3(a) can be observed.
Considering the costs of a peer in terms of the mean to-

tal traffic l̃(t, p) (Figure 3(d)), the produced communication
overhead of the tree-based approach nearly reaches the min-
imum overhead of the centralized approach. In contrast, the
tree-based approach does not evenly balance the load among
the peers. The gossip-based approach produces the highest
traffic due to a shorter update frequency of the mechanism.
Compared to the other monitoring approaches, the distri-
bution of costs is even worse, because the traffic depends
on the amount of neighbors in the network, which differs
among the peers and is not limited as for the tree-based and
centralized approach.

4.3 Scalability Benchmark
At first, we study performance and costs of the consid-

ered monitoring mechanisms during the horizontal scalabil-
ity workload. Looking at validity, displayed in Figure 4(a),
we notice that the tree-based monitoring mechanism pro-
duces a higher mean error ǫavg(a, t, p) than the gossip-based
approach. This results from the fact that the dynamic and
growing system has a higher impact on the tree than on the
mesh topology. Due to the arrival of new peers, the con-
tinuous reorganization of the monitoring tree delays the re-
sult calculation and dissemination, because the data remains
longer in tree. In contrast, we observe a smaller impact on
the mesh topology, because the arrival of new peers does not

 0
 2000
 4000
 6000
 8000

 10000

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Tree
Reference Signal

 0

 10000

 20000

 30000

 40000

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Gossip
Reference Signal

 0
 2000
 4000
 6000
 8000

 10000

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Centralized
Reference Signal

Figure 5: Actual vs. monitored number of peers
over time during the horizontal scalability workload.

require a reorganization of the underlying topology. Instead,
new peers can be inserted anywhere into the mesh.

Figure 4(b) outlines the results for the mean staleness

tstale(X(a, t, p)) and confirms the previous statements re-
garding the mean monitoring error for the reference sig-
nal. Due to the reorganization and the resulting delay, the
tree-based approach exhibits a higher mean staleness of re-
sults with values up to 967s, whereas the gossip-based ap-
proach performs better, but exhibits highly fluctuating val-
ues, which vary between 146s and 805s.

In contrast to the results for the mean error of the mon-
itored function, the drawn conclusion does not hold for the
monitored number of peers. Figure 5 shows that the tree-
based approach outperforms the gossip-based approach, which
exhibits considerable outliers. The opposed outcome in terms
of the peer count originates from the underlying peer count-
ing procedure of the considered gossip-based approach. Con-
trary to the measurement of other attributes, e.g., the refer-
ence signal, peer counting is more susceptible to the dynamic
of the system.

Dealing with the mean total traffic l(t, p) (Figure 4(c)), we
observe a similar trend as for the baseline benchmark. While
the tree-based approach nearly produces as less traffic as
the centralized approach, the gossip-based approach causes
the highest amount of traffic. However, it becomes appar-
ent that both decentralized monitoring approaches scale well
with the increasing number of peers.

Next, we study the results for the vertical scalability work-
load. The plots show the truncated mean after discard-

199



 0

 10

 20

 30

 40

 50

 60

 70

15min 30min 60min

M
e

a
n

 R
e

l.
 M

o
n

it
o

ri
n

g
 E

rr
o

r
S

in
e

 F
u

n
c
ti
o

n
 [

%
]

Mean Session Time

Tree
Gossip

Centralized

(a) Mean relative monitoring error for
the sine function

 0

 200

 400

 600

 800

 1000

 1200

 1400

15min 30min 60min

M
e

a
n

 S
ta

le
n

e
s
s
 [

s
]

Mean Session Time

Tree
Gossip

Centralized

(b) Mean staleness

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

15min 30min 60min

M
e

a
n

 T
ra

ff
ic

 [
k
B

/s
]

Mean Session Time

Tree
Gossip

Centralized

(c) Mean traffic

Figure 6: Per peer results for performance and costs, measured during the churn workload.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10 100 1000

M
e
a
n
 R

e
l.
 M

o
n
it
o
ri
n
g
 E

rr
o
r

S
in

e
 F

u
n
c
ti
o
n
 [
%

]

Number of Attributes

Tree-based
Gossip-based

Centralized

(a) Mean relative monitor-
ing error for the sine func-
tion

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 100 1000

M
e
a
n
 R

e
l.
 M

o
n
it
o
ri
n
g
 E

rr
o
r

P
e
e
r 

C
o
u
n
t 
[%

]

Number of Attributes

Tree-based
Gossip-based

Centralized

(b) Mean relative monitor-
ing error for the peer count

 0

 2000

 4000

 6000

 8000

 10000

 12000

10 100 1000

M
e
a
n
 S

ta
le

n
e
s
s

Number of Attributes

Tree-based
Gossip-based

Centralized

(c) Mean staleness of moni-
tored data

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 100 1000

M
e
a
n
 T

ra
ff
ic

 [
k
B

/s
]

Number of Attributes

Tree-based
Gossip-based

Centralized

(d) Mean traffic

Figure 7: Per peer results for performance and costs,
measured during the vertical scalability workload.

ing the values, which are below the 10- and above the 90-
percentile. For each mechanism, Figure 7(d) shows that
the total traffic per peer increases with the growing number
of monitored attributes. While the mean relative monitor-
ing error for the sine function in Figure 7(a) still indicates
that the decentralized alternatives are able to handle the
increased traffic, the mean relative error for the peer count
(cf. Figure 7(b)) as well as the mean staleness of the pro-
vided results (cf. Figure 7(c)) outline contrary results. In
terms of the peer count error, the underlying procedure for
the peer count of the gossip-based approach reveals again its
weakness in the presence of dynamic and unreliable environ-
ments. Although there are several paths between two peers
inside a mesh, whereby bottlenecks, such as overloaded or
slow peers, can be bypassed, the peer count procedure does
not benefit from the mesh topology. Dealing with staleness,
the age of the provided results of the tree-based approach
significantly increases with a growing number of attributes.
The reason for the degrading performance in terms of timeli-
ness originates from the underlying tree-topology: If a path
from the root to a sub-tree, or the other way round, is con-
gested, the information cannot be forwarded. It resides at
an inner node, leading to a bottleneck in the tree topology.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 80  100  120  140  160  180  200  220  240  260

N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Tree 15min
Tree 30min
Tree 60min

Reference Signal

 0

 500

 1000

 1500

 2000

 2500

 3000

 80  100  120  140  160  180  200  220  240  260

N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Gossip 15min
Gossip 30min
Gossip 60min

Reference Signal

Figure 8: Actual vs. monitored number of peers
over time with a mean peer session time of 15, 30,
and 60 minutes.

4.4 Stability Benchmark
Examining the different monitoring approaches with re-

spect to stability, we start with the evaluation of perfor-
mance. Figure 8 shows the monitored number of peers av-
eraged over all currently participating peers in the system.
We omit the outcome of the centralized approach, since the
results are accurate and do not significantly differ for the dif-
ferent mean session lengths. Instead, we plot the results for
the two decentralized approaches dependent on the mean
session time. Based on the displayed results, it becomes
apparent that the tree-based approach suffers from the in-
creasing peer fluctuations, because it cannot handle the re-
sulting dynamic of the P2P system and degrades in terms
of the provided performance. In contrast, the gossip-based
approach manages the increasing dynamic of the system in
a better way. Although exhibiting some outliers, whose oc-
currences increase with a decreasing mean session time, the
gossip-based approach is capable of monitoring the current
number of peers in the system.

A similar trend can also be observed, when looking at
performance of the tree-based approach in terms of validity
and timeliness. Figure 6(a) and 6(b) show an increase of

the mean relative monitoring error ̂ǫavg(a, t, p) as well as of

the mean staleness of results ̂tstale(X(a, t, p)), whereas the
gossip-based approach outperforms the tree-based approach
in terms of validity and reduces the age of monitored results.

200



 0

 20

 40

 60

 80

 100

 90  120  150  180  210

M
e

a
n

 R
e

l.
 M

o
n

it
o

ri
n

g
 E

rr
o

r
S

in
e

 F
u

n
c
ti
o

n
 [

%
]

Time [min]

Tree
Gossip

Centralized

(a) Mean relative monitoring error for
the sine function

 0

 200

 400

 600

 800

 1000

 1200

 90  120  150  180  210

M
e

a
n

 S
ta

le
n

e
s
s
 [

s
]

Time [min]

Tree
Gossip

Centralized

(b) Mean staleness

 0

 1

 2

 3

 4

 5

 6

 7

 90  120  150  180  210

M
e

a
n

 T
ra

ff
ic

 [
k
B

/s
]

Time [min]

Tree
Gossip

Centralized

(c) Mean traffic

Figure 9: Per peer results for performance and costs over time, measured during the massive crash workload.

 0
 200
 400
 600
 800

 1000
 1200

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Tree
Reference Signal

 0
 200
 400
 600
 800

 1000
 1200

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Gossip
Reference Signal

 0
 200
 400
 600
 800

 1000
 1200

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Centralized
Reference Signal

Figure 10: Actual vs. monitored number of peers
over time during the massive crash workload.

Dealing with costs, as displayed in Figure 6(c), the in-
creasing churn rate shows little effect on the mean total

traffic l̂(t, p) of the decentralized monitoring mechanisms.

4.5 Robustness Benchmark
Starting with the massive crash workload, Figure 10 dis-

plays the peer count to examine validity for the considered
monitoring mechanisms during this workload. The gossip-
based approach handles the sudden change in the system,
settles down after 10min at the correct number of peers,
and delivers stable results over time. Figure 9(b) and 9(a)
reveal as well the robust behavior of the gossip-based ap-
proach. Irregardless of the sudden change in the system,
the mean staleness tstale(X(a, t, p)) oscillates around 481s,
while the mean relative monitoring error for the sine func-
tion ǫavg(a, t, p) retains its characteristic oscillation. In con-
trast, the tree-based approach is not able to recover from
the crash and delivers incorrect and fluctuating results, es-
pecially in terms of the mean error for the peer count. The
reason for this failure originates from the collapse of the un-
derlying Chord overlay. The monitoring topology cannot be
created and maintained without the lookup-functionality of
the overlay.
Examining the costs during and after the crash, Figure 9(c)

displays a highly varying mean traffic l(t, p) for each ap-
proach. The highly fluctuating traffic originates from Chord’s
maintenance mechanisms, which react on the departure of
peers and calm down after a certain amount of time.
For the massive join workload, Figure 11 displays the pro-

 0
 500

 1000
 1500
 2000
 2500

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Tree
Reference Signal

 0
 500

 1000
 1500
 2000
 2500

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Gossip
Reference Signal

 0
 500

 1000
 1500
 2000
 2500

 80  100  120  140  160  180  200  220  240  260N
u

m
b

e
r 

o
f 

P
e

e
rs

Time [min]

Centralized
Reference Signal

Figure 11: Actual vs. monitored number of peers
over time during the massive join workload.

vided results of the three alternatives in terms of the moni-
tored number of peers. Contrary to the previously discussed
results of the massive crash workload, each mechanism man-
ages the sudden increase of peers in the system and returns
to its normal state after a period of time. This trend can also
be observed, when looking at other metrics that quantify
the performance of our alternatives: (i) In terms of validity,
Figure 12(a) outlines that all mechanisms recover and pro-
vide similar results. (ii) Figure 12(b) shows that the mean

staleness tstale(X(a, t, p)) of the provided results does not
degrade due to the massive join and the sudden increase in
the system size. Dealing with costs, Figure 12(c) shows that
the mean total traffic does not change and levels off after
short fluctuations.

4.6 Discussion of Results
Having presented the benchmark of the different moni-

toring approaches, this section summarizes the obtained re-
sults. Subsequently, we discuss and compare the initial per-
formance evaluation of the respective papers that introduced
the herein utilized monitoring mechanisms.

Under idealized conditions, the tree-based monitoring ap-
proach outperforms the gossip-based approach in terms of
validity, while producing less traffic, which is balanced more
regularly among the peers. Regarding the mean monitor-
ing error for the peer count, the tree-based approach even
catches up with the centralized approach. In contrast, the
hierarchical structure results in a biased distribution of re-
sults, because leaves or distant nodes from the root obtain

201



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 90  120  150  180  210

M
e

a
n

 R
e

l.
 M

o
n

it
o

ri
n

g
 E

rr
o

r
S

in
e

 F
u

n
c
ti
o

n
 [

%
]

Time [min]

Tree
Gossip

Centralized

(a) Mean relative monitoring error for
the sine function

 0

 200

 400

 600

 800

 1000

 1200

 90  120  150  180  210

M
e

a
n

 S
ta

le
n

e
s
s
 [

s
]

Time [min]

Tree
Gossip

Centralized

(b) Mean staleness

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 90  120  150  180  210

M
e

a
n

 T
ra

ff
ic

 [
k
B

/s
]

Time [min]

Tree
Gossip

Centralized

(c) Mean traffic

Figure 12: Per peer results for performance and costs over time, measured during the massive join workload.

inaccurate and old results. In the presence of churn, the per-
formance of the tree-based approach significantly decreases
dependent on the mean session time of the peers in the sys-
tem. On the contrary, the underlying mesh topology of the
gossip-based approach exhibits a better stability and is ca-
pable of handling the increasing dynamic in the system, still
providing valid and fresh results. Nevertheless, the peer
count procedure shows its susceptibility to the altering mesh
topology. In terms of extreme peer fluctuations, which char-
acterize the robustness of a mechanism, the corresponding
benchmark outlines that the gossip-based approach is ro-
bust enough to handle sudden changes in the system and
even provide results on top of a crashed overlay. Due to
the intensive application of the lookup functionality of the
overlay by the tree-based approach, the monitoring mech-
anism collapses during the crash. Although, it is capable
of handling a sudden increase of peers in the P2P system.
Dealing with scalability of a decentralized monitoring mech-
anism, the horizontal workload outlines that the decentral-
ized mechanisms scale with a growing number of peers. The
increased amount of peers has only a negligible influence on
performance and costs, except for the underlying peer count
procedure of the gossip-based approach, which exhibits con-
siderable outliers. Dealing with the vertical scalability work-
load, the resulting traffic of both decentralized monitoring
mechanisms increases and leads to a decreasing validity and
increasing staleness of the monitored attributes. We ob-
serve that the tree-based approach already suffers from a
smaller increase in traffic regarding its performance, while
the participants in the gossip-based approach must handle
a considerable amount of traffic.
In the following, we discuss and compare the initial per-

formance evaluation for the gossip- and subsequently the
tree-based approach. Jelasity et al. [11] evaluate their ap-
proach with respect to scalability, robustness, and stability.
In terms of scalability, the paper only addresses horizontal
scalability, which is evaluated based on mathematical anal-
ysis. The paper omits an evaluation in terms of vertical
scalability. While the authors rely on validity, or accuracy
as denoted by the authors, to characterize the performance
of the presented approach, costs are not considered during
the simulative and experimental evaluation. Consequently,
the drawn conclusions in terms of scalability, stability, and
robustness cover only performance. Using our presented
methodology, we have shown in Section 4.3 and 4.5 that the
resulting costs in terms of traffic are not influenced by peer-
related workloads, e.g., horizontal scalability, massive crash
or join. Instead, we could show in Section 4.5, that a grow-

ing amount of monitored attributes results in a considerable
increase of traffic and that the produced traffic influences
the provided results (cf. Section 4.2). In terms of accuracy,
Jelasity et al. only consider the peer count as measurable
attribute in their evaluation, because it represents a “worst-
case” due to its sensitivity to failures. The assessment of
accuracy based on “normal” attributes, such as modeled by
our value generator, is omitted. Based on our methodology,
we showed the increased susceptibility of the peer counting
procedure in contrast to the robust calculation of “normal”
attributes (cf. Section 4.3 and 4.4). Dealing with the exper-
iments on stability and robustness, Jelasity et al. present
an exhaustive evaluation, which examines the effect of peer
crashes, different message loss rates and churn on the per-
formance of the mechanism. Within these experiments, the
authors only concentrate on one epoch of the protocol, while
long-term effects are ignored. Thus, out of the presented re-
sults, it is not obvious if the presented approach can recover
and how long this might take.

In contrast to the previous and our methodology, the tree-
based approach [6,7] is just evaluated in terms of scalability
and stability, but set up on two different overlays. With
respect to stability, the corresponding workload consists of
different churn levels, which are applied on the system dur-
ing one run. In terms of scalability, the decentralized moni-
toring mechanism was evaluated under a varying amount of
peers in separate runs. Similar to our methodology, Graffi
et al. evaluate the performance of the presented approach
in terms of validity and timeliness, which they denote as
precision and freshness. On the contrary, they evaluate va-
lidity and timeliness of the obtained results only at the root,
while dissemination of results back to the remaining peers is
not taken into account. Dealing with validity, they look at
the peer count and other attributes, which are either mea-
sured by the peers or modeled by their implemented value
generator. While examining the resulting costs and their
distribution among the peers, they do not evaluate how va-
lidity of the obtained results differs among the peers. In
this regard, Section 4.2 outlines that the topology of the
tree heavily influences validity and timeliness. Moreover,
we showed that the tree-based approach provides a simi-
lar performance as the centralized approach under idealized
conditions. On the contrary, Section 4.3 outlines that the
approach suffers from an increasing amount of attributes,
while it cannot handle massive crashes, in contrast to mas-
sive joins (cf. Section 4.5), and that performance degrades
if peer fluctuation increases (cf. Section 4.4).

Based on the two examples of performance evaluation, it

202



becomes apparent that there is no standardized way for the
evaluation of decentralized monitoring mechanisms. More-
over, the examples outline that a comparison of several mech-
anisms based on the differing initial evaluations is hard to
achieve. The presented evaluations only agree on a frac-
tion of quality aspects, such as validity, costs, or scalability,
which are examined. On the contrary, other important as-
pects, e.g., robustness, or fairness are neglected. The result-
ing workloads, evaluation scenarios, and setups differ widely
and cannot be compared. Besides a standardized set of qual-
ity aspects or workloads, a unified approach must be estab-
lished to capture the measurements for the evaluation. As
shown by the examples, measurements can be taken at all
peers, while other evaluations rely on measurements at sin-
gle peers, such as the root.

5. RELATEDWORK
The related work in the area of benchmarks for decentral-

ized systems details the methodology and aspects as well
as existing implementations for the performance evaluation.
The considered implementations range from distributed hash
tables (DHT) [15], over networked virtual environments [8,
13], to decentralized monitoring mechanisms [3, 4].
Haeberlen et al. [9] discuss the general benefits of a bench-

mark for decentralized systems, leading to an improved com-
parability between different approaches and a better classifi-
cation of the obtained results. In addition to the positive fea-
tures of a standardized methodology, their paper also high-
lights common dangers of a benchmark, which might origi-
nate from inappropriate or false standardization, incomplete
tests or ossification of a standard. Besides this general de-
scription of benchmarks in decentralized systems, we already
focus on a benchmarking methodology in the area of P2P
systems in our previous work [14]. We outline the specifics
for the design of a P2P benchmark and give a concrete def-
inition for benchmarking search overlays and overlays for
networked virtual environments.
Apart from the description of the benchmarking method-

ology, several approaches exist that present the implemen-
tation of a benchmark for a P2P system. Li et al. [15] de-
velop a methodology to evaluate the efficiency of different
DHTs by examining the trade-off between performance and
cost. Therefore, they define different types of workloads to
test the overlays under varying conditions and to investi-
gate overlays with different parameter settings. Kovacevic
et al. evaluate in [13] the suitability of DHTs in networked
virtual environments. They develop a dedicated benchmark
that addresses the investigation of relevant quality aspects
for these environments by defining appropriate metrics. An
extended version of the benchmark has been proposed by
Gross et al. [8], which allows for the comparison of arbitrary
overlays for networked virtual environments implementing a
certain interface definition.
Regarding the benchmark for decentralized monitoring

mechanisms, Bawa et al. [3] present a benchmark for three
different aggregation approaches ranging from a tree-based
over a gossip-based to a hybrid topology to monitor a P2P
network. Given the made assumptions for the benchmark
(e.g., network topology, distributed state, and communica-
tion failures), the paper compares the three approaches re-
garding different quality aspects, covering flexibility, gener-
ality, termination, and correctness. Our presented bench-
marks extend the work by Bawa et al. concerning the ex-

amination of the identified non-functional requirements. For
the evaluation of accuracy, we define a detailed analysis for
a monitoring mechanism and its produced monitoring error
based on reference signals of the value generator, besides
peer count. Moreover, we identified different workloads to
stress the monitoring mechanisms under different conditions
for the examination of quality aspects, such as robustness.
In [4], Cappos and Hartman compare their developed tree-
based monitoring mechanism with another tree-based ap-
proach [24] and a centralized solution, using analytical mod-
els, simulations, and experiments. We extend the extensive
evaluation in their work by including the examination of
accuracy for decentralized monitoring mechanisms. In addi-
tion, we add the investigation of robustness for decentralized
monitoring mechanisms by massive join/crash workloads.

The problem of missing comparability becomes even more
clear in a survey of decentralized aggregation mechanisms by
Makhloufi et al. [17]. While giving a good overview about
different schemes for aggregation protocols, highlighting the
different design decisions, the concluding table, which lists
the performance of the considered approaches, does not en-
able a fair comparison between them. This results from the
fact that the summary only summarizes the results of the
respective papers.

6. FUTUREWORK
In this paper, we have presented our approach for a set of

benchmarks, which establishes a standardized evaluation of
decentralized monitoring mechanisms to facilitate compara-
bility of results. For the standardized evaluation, we (i) de-
fined a common interface for a unified access of the provided
functionality, (ii) identified relevant non-functional require-
ments of the considered class of mechanisms, and (iii) de-
signed a set of workloads and metrics to evaluate and quan-
tify the non-functional requirements. We presented the im-
plementation of four different benchmarks (baseline, stabil-
ity, robustness, scalability) for evaluating performance and
costs of decentralized monitoring mechanisms. Thereby, we
identified characteristic performance and cost profiles as well
as monitoring capabilities for two decentralized monitoring
mechanisms (a gossip-based and a tree-based approach) as
well as for a centralized approach, which served as a refer-
ence.

We plan to apply our benchmarks on different decentral-
ized monitoring mechanisms, since the presented application
of benchmarks only considered monitoring approaches with
push-based data collection and proactive result dissemina-
tion. Therefore, we intend to benchmark pull-based and
reactive monitoring mechanisms as well, in order to deter-
mine the trade-off between push- and pull-based data ag-
gregation, or proactive and reactive result dissemination, as
already analyzed in our previous work [20].

In the future we plan to exchange the underlying over-
lay with other well known overlays in order to investigate
the interdependencies in terms of performance and costs be-
tween monitoring mechanisms and underlying overlays. Be-
sides, we will not only focus on the communicational over-
head caused by a decentralized monitoring mechanism, but
also consider the computational overhead, such as the re-
sulting I/O- or CPU-usage. Moreover, we plan to execute
our benchmarks in larger simulations, which exceed the ca-
pabilities of typical testbeds, such as PlanetLab.

203



7. ACKNOWLEDGMENTS
This work has been supported by the German Research

Foundation (DFG), Research Group 733, “QuaP2P: Quality
Improvement of Peer-to-Peer Systems”.

8. REFERENCES
[1] K. Albrecht, R. Arnold, M. Gahwiler, and

R. Wattenhofer. Aggregating Information in
Peer-to-Peer Systems for Improved Join and Leave. In
Proc. of the 4th Internat. Conf. on Peer-to-Peer
Computing, pages 227–234, 2004.

[2] M. S. Artigas, P. Garćıa, and A. F. G. Skarmeta.
DECA: A Hierarchical Framework for DECentralized
Aggregation in DHTs. In Large Scale Management of
Distributed Systems, volume 4269, pages 246–257.
Springer, 2006.

[3] M. Bawa, H. Garcia-Molina, A. Gionis, and
R. Motwani. Estimating Aggregates on a Peer-to-Peer
Network. Tech. Rep. 2003-24, Stanford InfoLab, 2003.

[4] J. Cappos and J. H. Hartman. San Fermı́n:
Aggregating Large Data Sets Using a Binomial Swap
Forest. In Proc. of the 5th USENIX Symposium on
Networked Systems Design and Implementation, pages
147–160, 2008.

[5] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulié. Epidemic Information Dissemination in
Distributed Systems. IEEE Computer, 37(5):60–67,
2004.

[6] K. Graffi. Monitoring and Management of
Peer-to-Peer Systems. PhD thesis, Technische
Universtiät Darmstadt, 2010.

[7] K. Graffi, D. Stingl, J. Rueckert, A. Kovacevic, and
R. Steinmetz. Monitoring and Management of
Structured Peer-to-Peer Systems. In Proc. of the 9th
Internat. Conf. on Peer-to-Peer Computing, pages
311–320, 2009.

[8] C. Gross, M. Lehn, C. Münker, A. Buchmann, and
R. Steinmetz. Towards a Comparative Performance
Evaluation of Overlays for Networked Virtual
Environments. In Proc. of the 11th Internat. Conf. on
Peer-to-Peer Computing, pages 34–43, 2011.

[9] A. Haeberlen, A. Mislove, A. Post, and P. Druschel.
Fallacies in Evaluating Decentralized Systems. In
Proc. of the 5th Internat. Workshop on Peer-to-Peer
Systems, 2006.

[10] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. The Peer Sampling Service:
Experimental Evaluation of Unstructured
Gossip-Based Implementations. In Proc. of the 5th
ACM/IFIP/USENIX Internat. Conf. on Middleware,
pages 79–98, 2004.

[11] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-Based Aggregation in Large Dynamic
Networks. ACM Transactions on Computer Systems,
23(3):219–252, 2005.

[12] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proc. of the
44th Annual IEEE Symposium on Foundations of
Computer Science, pages 482–491, 2003.

[13] A. Kovacevic, K. Graffi, S. Kaune, C. Leng, and
R. Steinmetz. Towards Benchmarking of Structured
Peer-to-Peer Overlays for Network Virtual

Environments. In Proc. of the 14th Internat. Conf. on
Parallel and Distributed Systems, pages 799–804, 2008.

[14] M. Lehn, T. Triebel, C. Gross, D. Stingl, K. Saller,
W. Effelsberg, A. Kovacevic, and R. Steinmetz.
Designing Benchmarks for P2P Systems. In From
Active Data Management to Event-Based Systems and
More, volume 6462, pages 209–229. Springer, 2010.

[15] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and
T. M. Gil. A Performance vs. Cost Framework for
Evaluating DHT Design Tradeoffs Under Churn. In
Proc. of the 24th Annual Joint Conf. of the IEEE
Computer and Communications Societies, pages
225–236, 2005.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: A Tiny AGgregation Service for
Ad-hoc Sensor Networks. In ACM SIGOPS Operating
Systems Review, volume 36, pages 131–146, 2002.

[17] R. Makhloufi, G. Bonnet, G. Doyen, and D. Gaiti.
Decentralized Aggregation Protocols in Peer-to-Peer
Networks : A Survey. In Modelling Autonomic
Communications Environments, volume 5844, pages
111–116. Springer, 2009.

[18] M. L. Massie, B. N. Chun, and D. E. Culler. The
Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing,
30(7):817–840, 2004.

[19] S. Rhea, T. Roscoe, and J. Kubiatowicz. Structured
Peer-to-Peer Overlays Need Application-Driven
Benchmarks. In Peer-to-Peer Systems II, pages 56–67.
Springer, 2003.

[20] K. Saller, D. Stingl, and A. Schürr. D4M , a
Self-Adapting Decentralized Derived Data Collection
and Monitoring Framework. In Workshops der
wissenschaftlichen Konferenz Kommunikation in
Verteilten Systemen, pages 245–256, 2011.

[21] D. Stingl, C. Gross, J. Rückert, L. Nobach,
A. Kovacevic, and R. Steinmetz. PeerfactSim.KOM: A
Simulation Framework for Peer-to-Peer Systems. In
Proc. of the Internat. Conf. on High Performance
Computing and Simulation, pages 577–584, 2011.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In Proc. of
the Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages
149–160, 2001.

[23] R. Van Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A Robust and Scalable Technology for
Distributed System Monitoring, Management, and
Data Mining. ACM Transactions on Computer
Systems, 21(2):164–206, 2003.

[24] P. Yalagandula and M. Dahlin. A Scalable Distributed
Information Management System. ACM SIGCOMM
Computer Communication Review, 34(4):379–390,
2004.

204




