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ABSTRACT
Designing data centers for Web 2.0 social networking applications
is a major challenge because of the large number of users, the large
scale of the data centers, the distributed application base, and the
cost sensitivity of a data center facility. Optimizing the data center
for performance per dollar is far from trivial.

In this paper, we present a case study characterizing and evaluat-
ing hardware/software design choices for a real-life Web 2.0 work-
load. We sample the Web 2.0 workload both in space and in time
to obtain a reduced workload that can be replayed, driven by in-
put data captured from a real data center. The reduced workload
captures the important services (and their interactions) and allows
for evaluating how hardware choices affect end-user experience (as
measured by response times).

We consider the Netlog workload, a popular and commercially
deployed social networking site with a large user base, and we ex-
plore hardware trade-offs in terms of core count, clock frequency,
traditional hard disks versus solid-state disks, etc., for the differ-
ent servers, and we obtain several interesting insights. Further, we
present two use cases illustrating how our characterization method
can be used for guiding hardware purchasing decisions as well as
software optimizations.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: Modeling of computer
architecture; C.4 [Computer Systems Organization]: Performance
of Systems—Modeling Techniques

General Terms
Design, Performance, Measurement, Experimentation

Keywords
Data center, Web 2.0, performance analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

1. INTRODUCTION
Internet usage has grown by 480% over the past ten years world-

wide according to a recent study by Internet World Stats1. This
fast increase is due to various novel Internet services that are being
offered, along with ubiquitous Internet access possibilities through
various devices including mobile devices such as smartphones, tablets
and netbooks. Online social networking in particular has been
booming over the past few years, and has been attracting an in-
creasing number of customers. Facebook, for example, has more
than 800 million active users as of January 20122, and 50% of these
users log on to Facebook at least once a day. Twitter generates 140
million tweet messages per day as of February 20113. LinkedIn has
more than 135 million professionals around the world as of Novem-
ber 20114. Netlog, a social networking site where users can keep
in touch with and extend their social network, is currently available
in 40 languages and has more than 94 million users throughout Eu-
rope as of January 20125. Clearly, social networking communities
have become an important part of digital life.

Designing the servers and data centers to support social network-
ing is challenging, for a number of reasons. As mentioned above,
social networks have millions of users, which requires distributed
applications running in large data centers [2]. The ensemble of
servers is often referred to as a warehouse-scale computer [3] and
scaling out to this large a scale clearly is a major design challenge.
Because of their scale, data centers are very much cost driven —
optimizing the cost per server even by only a couple tens of dol-
lars results in substantial cost savings and proportional increases in
profit. There are various factors affecting the cost of a data center,
such as the hardware infrastructure (servers, racks and switches),
power and cooling infrastructure, operating expenditure, and real
estate. Hence, data centers are very cost-sensitive and need to be
optimized for the ensemble. As a result, operators drive their data
center design decisions towards a sweet spot that optimizes perfor-
mance per dollar.

A key question when installing a new data center obviously is
which new hardware infrastructure, i.e., which servers, to buy. This
is a non-trivial question given the many constraints. On the one
hand, the hardware should be a good fit for the workloads that
are going to run in the data center. The workloads themselves
1http://internetworldstats.com/stats.htm
2http://www.facebook.com/press/info.php?statistics
3http://blog.kissmetrics.com/twitter-statistics/
4http://press.linkedin.com/about
5http://en.netlog.com/go/about
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could be very diverse — some workloads are interactive, others
are batch-style workloads and thus throughput-sensitive and not
latency-critical; some workloads are memory-intensive while oth-
ers are primarily compute-intensive or I/O-intensive. Hence, some
compromise middle-of-the-road architecture may need to be cho-
sen to satisfy the opposing demands; alternatively, one may opt for
a heterogeneous system where different workloads run on differ-
ent types of hardware. Further, one needs to anticipate what new
workloads might emerge in the coming years, and how existing
workloads are likely to evolve over time. On the other hand, given
how cost-sensitive a data center is, it is of utmost importance that
the correct hardware is purchased for the correct task. High-end
hardware is expensive and consumes significant amounts of power,
which leads to a substantial total cost of ownership. This may be
the correct choice if the workloads need this high level of perfor-
mance. If not, less expensive and less power-hungry hardware may
be a much better choice.

It is exactly this purchasing question that motivated this work:
Can we come up with a way of guiding service operators and own-
ers of data centers to what hardware to purchase for a given work-
load? Although this might be a simple question to answer when
considering a single workload that runs on a single server, answer-
ing this question is quite complicated when it comes to a Web
2.0 social networking workload. A social networking workload
consists of multiple services that run on multiple servers in a dis-
tributed way in a data center, e.g., Web servers, database servers,
memcached servers, etc. The fundamental difficulty that a Web 2.0
workload imposes is that the performance of the ensemble can only
be measured by modeling and evaluating the ensemble, because of
the complex interplay between the various servers and services. In
other words, performance as perceived by the end-user, i.e., the
response times observed by the end user, is a result of the perfor-
mance of the individual servers as well as the overall interaction
among the servers. Put differently, optimizing the performance of
an individual server may not necessarily be beneficial for the en-
semble and may not necessarily have impact on end-user experi-
ence, nor may it have impact on the total cost of ownership.

In this paper, we present a case study in which we characterize a
real-life Web 2.0 workload and evaluate hardware and software de-
sign choices. We sample the Web 2.0 workload both in space and in
time to obtain a reduced workload that can be replayed, driven by
real input data. The reduced workload captures the important ser-
vices (and their interactions) and allows for evaluating how hard-
ware choices affect end-user experience.

We consider Netlog’s commercially used Web 2.0 social net-
working workload, and we evaluate how hardware design choices
such as number of cores, CPU clock frequency, hard-disk drive
(HDD) versus solid-state drive (SSD), etc. affect overall end-user
perceived performance. We conclude that the number of cores per
node is not important for the Web servers in our workload, hence
the hardware choice should be driven by cost per core; further,
we find that the end-user response time is inversely proportional
to Web server CPU frequency. SSDs reduce the longest response
times by around 30% over HDDs in the database servers, which
may or may not be justifiable given the significantly higher cost for
SSD compared to HDD. Finally, the memcached servers show low
levels of CPU utilization while being memory-bound, hence the
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Figure 1: Netlog’s architecture.

hardware choice should be driven by the cost of integrating more
main memory in the server.

We believe that this approach is not only useful to service providers
and data center owners, but also to architects, system builders, and
integrators to understand Web 2.0 workloads and how hardware
choices affect user-perceived performance, server throughput, and
utilization. Further, software developers and data center system
administrators may find the approach useful to identify and solve
performance bottlenecks in the software and experiment with al-
ternative software implementations. To demonstrate the potential
usage of the characterization, we present two uses cases illustrating
how it can be leveraged for guiding hardware purchasing decisions
and software optimizations.

This paper is organized as follows. We first describe the Web 2.0
workload used in this study (Section 2). We then set the goals for
this paper (Section 3) and describe our methodology in more detail
(Section 4). We detail our experimental setup (Section 5) and then
present our results (Section 6). We focus on two important use
cases for this work (Section 7). Finally, we discuss related work
(Section 8) and conclude (Section 9).

2. NETLOG WEB 2.0 WORKLOAD
As mentioned in the introduction, we use Netlog’s software in-

frastructure as a representative Web 2.0 workload. Netlog hosts a
social networking site that is targeted at bringing people together.
As of January 2012, Netlog is currently available in 40 languages
and has more than 94 million members throughout Europe. Ac-
cording to ComScore6, Netlog is the pageview market leader in
Belgium, Italy, Austria, Switserland, Romania and Turkey; and it
is the second market leader in the Netherlands, Germany, France
and Portugal. Netlog has around 100 million viewers per month,
leading to over two billion pageviews per month. Netlog users can
chat with other friends, share pictures, write blog entries, watch
movies and listen to music.

Netlog’s architecture is illustrated in Figure 1. A load balancer

6http://www.comscore.com/
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distributes the incoming requests among the Web servers. The Web
servers process the requests and assemble a response by fetching re-
cently accessed data from the memcached servers. If the requested
data is not present in one of the memcached servers, the Web server
communicates with one of the database servers. There is one global
database that holds general information with user data (like nick-
name and passwords). All other user data is spread among multiple
database servers using a technique called ‘sharding’7. Each of the
servers run on a physical machine. The relative fraction of servers
is as follows: 54% of Netlog’s servers are Web servers, 16% are
memcached servers and 30% are database servers. The Netlog data
center hosts more than 1,500 servers.

Netlog’s data center is partitioned among the languages that it
supports, i.e., servers are devoted to one particular language. The
largest language is Dutch, followed by German, Italian, Arabic,
English, and others. Interestingly, usage patterns are similar across
languages, hence, the same relative occurrence of Web, caching
and database servers is maintained across all the languages.

In terms of software, the Web servers run the Apache HTTP
server8; the caching servers run Memcached9; and the database
servers run MySQL10. For more information, please refer to Sec-
tion 5.

3. CASE STUDY GOALS
Before describing our case study in great detail, we first need to

set out its goals. First, we want to be able to characterize and eval-
uate end-user perceived performance of a Web 2.0 system. This
implies that a representative part of the workload needs to be du-
plicated in the experimental environment which enables evaluating
overall end-to-end performance. This in turn implies that a set of
machines needs to be engaged with each machine running part of
the workload — some run Web servers, some run database servers,
others run memcached servers. Collectively, this set of machines
runs the entire workload. This experimental environment, when
supplied with real user requests, will act like a real data center run-
ning the real workload. This enables measuring user-perceived re-
sponse times as well as server-side throughput and utilization.

Second, the experimental environment by itself will not provide
useful measurement data. It also needs a method to feed real-life
user requests into the experimental environment. In other words,
real user requests need to be captured and recorded in a real data
center and then need to be replayed in our experimental environ-
ment. This will enable us to measure how design choices in the
hardware and the software affect user-perceived performance as
well as server throughput and utilization.

Third, in addition to being able to faithfully replay real-life user
requests, it is useful to be able to stress the setup through experi-
ments in which user requests are submitted at a fixed rate. This al-
lows for gaining insight into the system’s limits and how the system

7Sharding is a horizontal partitioning database design principle
whereby rows of a database table are held separately, rather than
splitting by columns. Each partition forms part of a shard, which
may in turn be located on a separate database server or physical
location.
8http://httpd.apache.org/
9http://memcached.org/

10http://www.mysql.com/

will react in case of high loads. For example, it allows for learning
about how user-perceived response time is affected by server load.
Or, it allows for understanding the maximum allowable server load
before seeing degradations in user response times.

Finally, we need the ability to run reproducible experiments, or
in other words, we want to draw similar performance figures when
running the same experiment multiple times. This allow us to mea-
sure how changes in system configuration parameters affect perfor-
mance. In the end, we want to use the experimental environment
and change both hardware and software settings to understand how
hardware and software design choices affect user-perceived per-
formance as well as server-level throughput and utilization. This
not only enables service providers and data center owners to pur-
chase, provision and configure their hardware and software, it also
enables architects, system builders and integrators, software devel-
opers, etc. where to focus when optimizing overall system perfor-
mance.

4. METHODOLOGY
Our methodology has a number of important features in order to

make the experimental environment both efficient and effective for
carrying out our case study.

• Sampling in space. It is obviously prohibitively costly to du-
plicate an entire Web 2.0 workload with possibly hundreds,
if not thousands, of servers in the experimental environment.
We therefore sample the workload in space and we select
a reduced but representative portion of the workload as the
basis for the experimental framework. For the Netlog work-
load, we select one language out of the many languages that
Netlog’s workload supports; this language is representative
for the other languages and for the Netlog workload at large.
Sampling in space allows us to evaluate a commercial Web
2.0 workload with hundreds of servers in real operation with
only 10 servers in our experimental environment.

• Sampling in time. Replaying a Web 2.0 workload using
real-life user input, as we will describe next, can be very
time-consuming, especially if one wants to replay multiple
days of real-life operation in the data center. Moreover, in
order to understand performance trends across hardware and
software design changes, one may need to explore many con-
figurations and hence run the workload multiple times. This
may make the experimental setup impractical to use. Hence,
we analyze the time-varying behavior of the workload and
we identify representative phases in the execution, which we
sample from, and which we can accurately extrapolate per-
formance numbers to the entire workload. Sampling in time
allows to analyze only a few hours of real time while being
representative for a workload that runs for days.

• Workload warm-up. Sampling in time implies that we eval-
uate only a small fraction of the total run time. A potential
pitfall with this approach is that system state might be very
different when replaying under sampling than if one were to
replay a workload for days of execution. This is referred
to as the cold-start problem. In other words, the system
needs to be warmed up when employing sampling in time
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so that the performance characteristics during the evaluation
are representative for as if we were to run the entire work-
load. Our methodology uses a statistics-based approach to
gauge whether the system is warmed up sufficiently.

• Replaying empirical user request streams. As mentioned
before, we capture and replay real-life user requests. The
user request file that we store on disk and that we use as
input to the experimental environment contains sufficient in-
formation for faithfully replaying real-life users requests. In
other words, the input served to the load balancer of the Net-
log workload is identical under replay as when we captured
it during real-life operation.

We now discuss the various steps of our methodology in more
detail.

4.1 Sampling in space
As part of this study we duplicated Netlog’s workload. Because

it is infeasible to duplicate Netlog’s entire workload, we chose to
duplicate a small part only, namely the part associated with the
Slovene language. This is feasible to do, and leads to a represen-
tative workload. Netlog organizes its servers such that there are a
number of physical servers per language domain. Hence, by se-
lecting a language domain and by only duplicating that language
domain, we sample in space while being representative for the en-
tire workload. The Slovene part is representative for Netlog’s entire
workload because it exhibits the same partitioning of servers as the
rest of Netlog’s workload. Also, we observe similar degree of ac-
tivity and access behavior (access to profiles, photos, videos, etc.)
for the Slovene language as for the other languages.

Duplicating the Slovene language part of Netlog’s workload can
be done with a reasonable number of servers. Our setup includes
6 Web servers, 1 memcached server and 2 database servers; this
distribution across server types is identical to what is observed for
the entire Netlog workload, across all the languages. Further, our
setup includes the entire Slovene database and all of its records.
The data present in our duplicate copy is anonymized. This is done
through hashing while maintaining the length of the records.

4.2 Validating the setup
Duplicating a Web 2.0 workload is a significant effort and in-

volves fine-tuning various software settings and configurations that
necessitates proper validation. We validated our experimental frame-
work both functionally and with respect to behavior and timing. In
particular, we automatically verified whether the file sizes returned
by the duplicated workload match the file sizes observed in the real
workload. The reason for doing so is that some of the Web pages
returned by the Web 2.0 workload are composed semi-randomly,
and hence its content may not be perfectly identical when request-
ing the same page multiple times. In our experimental environment,
we found that 99.3% of the responses fall within a 5% error bound
with respect to file size compared to the real workload environment,
as shown in Figure 2.

4.3 Replaying user requests
An important aspect of the experimental environment is the re-

play of user requests. In order to do so, we collect user requests
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Figure 2: Distribution of response sizes when comparing real
versus replayed requests.

as observed at the load balancer. The information collected by the
user input recorder consists of the following items — recall that the
data is anonymized:

• Header information. All HTTP header information is recorded
so the same request can be reconstructed. This includes the
requested URL, browser information, supported encoding for-
mats, etc.

• Timing information. The date and time the request was sub-
mitted is recorded (at microsecond resolution). This allows
for maintaining precise timing information when replaying
the user request file. This is important to model bursty be-
havior in user requests.

• User data. The input recorder captures all POST data that
is sent to the Web servers. Note that GET data is already
captured as part of the URL in the header. All HTTP cookies
are saved as well, and are used to do automated login.

The file that contains these user requests is fairly large and con-
tains 24 GB of data per day on average. Our user input recorder
uses tcpdump11 to log the network traffic to a file in pcap12

format. pcap defines an API for capturing network traffic. On
Linux/Unix systems, this is implemented in the libpcap library
which most network tools like tcpdump, Wireshark, etc. imple-
ment. A limitation of tcpdump/pcap is that it may drop pack-
ets; however, packet loss rate was less than 0.002% for a 1 Gbps
network in our setup.

The replayer reads the user request file and replays the requests
one by one. This means that the replayer picks the first request,
sends the request to the Web 2.0 workload at the time specified in
the request file. It then picks the next request and sends it at its
time, etc. The replayer does not wait for the response to come back
to determine the next request; all the requests are available in the
user request file.

Implementing the user request replayer is a challenge in itself.
The reason is that the user request file is huge in size, and the re-
quests need to be submitted to the workload at a fine time granu-
larity. Reading the request file from disk, and submitting requests
in real-time is too slow. On the other hand, it is impractical to store

11http://www.tcpdump.org/
12http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html
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Figure 3: Netlog traffic profile for four days to the Slovene lan-
guage domain.

the entire request file in main memory. We therefore developed a
two-thread replayer. The first thread reads the pcap file and fills in
the requests in the request pool in memory. The second thread then
reads from the request pool and submits the requests to the work-
load using libcurl13, which is a client-side URL transfer library
that supports sending requests using the HTTP protocol to a remote
Web server.

4.4 Sampling in time
We recorded four days (March 13–16, 2011) of user activity to

the Slovene language domain of the Netlog workload. This was
done by capturing all the user requests (and their timing) at the
load balancer. Replaying these four days of activity in real time
would require four days of experimentation time. Although this
is doable if one were to evaluate a single design point, exploring
trade-offs by varying hardware and/or software parameters, quickly
leads to impractically long experimentation times. We therefore
employ sampling in time to evaluate only parts of the workload
activity while being representative for the entire workload.

Figure 3 shows traffic over a four day period in number of re-
quests per second. Clearly, we observe cyclic behavior in which
there is much more activity in the evening than during the day.
Traffic increases steeply in the morning between 6am and 9am, and
remains somewhat stable or increases more slowly between 9 am
and 5pm. Once past 5pm, traffic increases steeply until 8pm. We
observe a sharp decrease in the number of requests past 9pm. This
traffic pattern suggests that sampling in time is a sensible idea, i.e.,
by picking samples that represent different traffic patterns, one can
significantly reduce the load that needs to be replayed, which will
lead to significant improvements in experimentation speed, while
reproducing a representative workload.

We set ourselves a number of goals for how to sample in time.
We want the samples to be representative in a number of ways:
we want the samples to represent diverse traffic intensity as well
as the sort of activity that the samples cover, i.e., as mentioned
before, Netlog offers various sorts of services ranging from chat-
ting to watching videos, etc., hence the samples should cover these
different types of activity well. Further, we prefer having a few
long representative samples over having many small samples. The
reason is that small samples require more precise warmup of the
system than longer samples in order to be accurate.

We therefore employ the following two-step sampling proce-
13http://curl.haxx.se/
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Figure 4: Identifying representative samples based on traffic
intensity.

dure. We first aim at finding a number of time periods with dif-
ferent traffic intensity. We employ k-means clustering as our clas-
sification method [5]. The input to the clustering algorithm is a
time series representing the number of requests per minute. The
clustering algorithm then aims at classifying this time series in a
number of clusters N . It initially picks N cluster centroids in a
random fashion, and assigns all data elements in the time series to
its closest cluster. In the next iteration, the algorithm recomputes
the cluster centroid, and subsequently reassigns all data elements to
clusters. This iterative process is repeated until convergence, or un-
til a maximum number of iterations is done. An important question
is how many clusters N should one pick. We use the Bayesian In-
formation Criterion (BIC) [9], which is a measure for how well the
clustering matches the data. Using a maximum value of Nmax = 6

— recall we aim for a limited number of samples — we obtain the
result that N = 3 yields the optimum BIC score. Hence, we ob-
tain three samples. These are shown in Figure 4. Intuitively, these
three samples correspond to low-intensity, medium-intensity and
high-intensity traffic, respectively.

The next question is how long the samples should be in these low,
medium and high-intensity traffic regions. We therefore rely on our
second requirement: we want the samples to cover diverse behavior
in terms of the type of traffic. We identify 30 major types of traffic
including messages, photos, videos, friends, music, etc. This yields
a 30-dimensional time series: each data element in the time series
consists of 30 values, namely the number of requests per minute
for each type of traffic. We then apply k-means clustering on this
30-dimensional time series which yields the optimum number of
four clusters using the BIC score. These four clusters represent the
predominant traffic rates observed at a given point in time. Figure 5
illustrates how the time series of ten hours of the second day is
distributed across these four clusters. Interestingly, some traffic
rates are more predominant during some periods of time, and traffic
rate predominance varies fairly quickly. However, if we take a long
enough snapshot, e.g., two hours, the sample contains all traffic
rates. The end result for sampling in time, thus is that we pick
three samples of two hours of activity from the low, medium and
high-intensity regions.

4.5 Warmup
With sampling in time, an important issue is how to start from a

warmed-up system state so that the performance numbers that we
obtain from our experiments are representative for the real work-
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Figure 6: Quantifying PHP cache warmup behavior. Replay
speed is set to a fixed rate of 10 requests/s.

load. Clearly, starting from a cold state is not going to be accu-
rate because the performance of the workload will be very differ-
ent from what one would observe in a real (and warmed-up) en-
vironment. Warmup of a Web 2.0 workload involves a number
of issues. First, as mentioned before, the Web servers run PHP
code, and hence they rely on an opcode cache that caches the byte-
codes; the PHP engine does not need to interpret cached bytecodes
again, and hence it achieves better performance. This implies that
the performance of the PHP engine is relatively low initially, but
then improves gradually as more and more code gets cached and
optimized; this is obviously reflected in the Web server response
times observed by the end user. In other words, in the context of
this work, it is important that we measure the performance of the
PHP engine in steady-state modus, in which it executes highly op-
timized code as opposed to interpreting the PHP code. As shown
in Figure 6, the CPU load is higher when the PHP engine is first
initialized. In this stage, the PHP engine still has to compile all
PHP code. After 1,000 requests most PHP pages are compiled and
loaded into the cache, hence, we conclude that the PHP cache is
warmed up in the order of a couple seconds.

Second, and more importantly, we also need to warm up the
memcached and database servers. Initially, in a cold system, all
the requests will go to the database server because the memcached
server does not cache any data yet; further, the database server will
need to read from disk to access the database. Hence, we will ob-
serve a significant fraction of time spent waiting for I/O both over
the network and for accessing disks. Indeed, gigabytes of data need
to be read in the database and transferred from the database servers
to a memcached server. This requires a large number of user re-
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Figure 7: Quantifying how long one needs to warmup the
database and memcached servers: I/O wait time on the
database server is shown as a function of time when replaying
the first day.

quests being sent to the system to warmup the database and mem-
cached servers. Figure 7 illustrates the fraction I/O wait time on
the database server starting from a cold state as a function of time.
We observe that the fraction I/O wait time, which is proportional
to how often one needs to access the database on disk and trans-
fer data to the memcached server, decreases as a function of time.
Although there is a steep decrease in I/O wait time in the first few
hours, it takes close to an entire day before I/O wait time drops
below a few percent which represents a fully warmed up system.

In order to get more confidence in this finding we employ the
Kolmogorov-Smirnov statistical test to verify whether the system
is sufficiently warmed up. The Kolmogorov-Smirnov test is a non-
parametric test for the equality of continuous, one-dimensional prob-
ability distributions. It basically measures whether two distribu-
tions are equal or not; the exact form of the distribution is not im-
portant, hence it is labeled a non-parametric test. In this work, we
compare the distribution of user response times starting from a cold
versus a warmed-up system. This is done in steps of 5,000 user
requests, see Figure 8. The P -value reported by the Kolmogorov-
Smirnov test gives an estimate for how good the correspondence is
between starting from no-warmup versus a fully warmed up sys-
tem; the P -value is a higher-is-better metric. We observe that the
P -value saturates after approximately six hours of warmup, and
reaches its highest score after 18 to 20 hours of warmup. Based on
these observations we decided to warm up our experimental system
with one full day of load.

Note that, in our experimental environment, it does not take a
full day to actually warmup the entire system. During warmup, we
quickly submit an entire day’s user requests to the Netlog workload,
as fast as possible. This takes approximately two hours in our setup.
Once the system is warmed up, we then submit user requests for the
sample of interest at the time stamps as stored in the user request
file, as explained before.

5. EXPERIMENTAL SETUP
As mentioned before, we duplicated the Slovene language do-

main of the Netlog workload to our experimental environment. Our
infrastructure consists of 10 dual AMD Opteron 6168 servers, with
each server having 24 cores in total or 12 cores per CPU. Each
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Figure 8: Using the Kolmogorov-Smirnov test to verify whether
the system is sufficiently warmed up by comparing the distri-
bution of response times under full versus no warmup.

server has at least 64 GB of main memory, and is equipped with
both a regular HDD (1 TB Seagate SATA 7200 rpm) as well as an
SSD (128 GB ATP Velocity MII). We configure the machines as
6 Web servers, 1 memcached server, and 2 database servers. The
tenth server is used to generate workload traffic and inject user re-
quests to the system under test.

Our baseline configuration runs all the cores at 1.9 GHz. We pro-
vision the Web servers as well as the database servers with 64 GB
of main memory. The memcached server is equipped with 128 GB
of RAM. Further, we assume a HDD drive in each of the servers —
we consider SSD in the database servers in one of the experiments.

Our infrastructure uses Ubuntu 10.0414. The Web server is con-
figured with Apache 2.215 and runs PHP 5.216. The database soft-
ware used is a MySQL derivative, Percona 5.1. We use the standard
Memcached 1.4.217 version as our caching mechanism.

6. RESULTS AND DISCUSSION
Using our experimental environment, we now focus on gaining

insights in how hardware trade-offs affect user-perceived perfor-
mance (response times) for the end-to-end workload. We first con-
sider user requests submitted at the rate as measured in the real-life
workload, and we look at hardware trade-offs for the Web server,
memcached server and database server, respectively. Subsequently,
we consider fixed-rate experiments in order to stress the system.

6.1 Web server
We evaluate two hardware trade-offs for the Web server, namely

CPU clock frequency and the number of cores per node. Figure 9
shows the distribution of the user response times while changing
the Web server’s CPU frequency in three steps: 1.9 GHz, 1.3 GHz
and 800 MHz. The distribution of response times is skewed, i.e.,
there is a peak in the response time distribution around 0.04 seconds
at 1.9 GHz, and the distribution has a fairly long and heavy tail for
longer response times. We observe similarly skewed distributions
at lower CPU clock frequencies, yet the distributions shift towards
the right with decreasing frequencies, i.e., user response time in-
creases with lower clock frequencies. This is perhaps intuitive, as

14http://www.ubuntu.com
15http://www.apache.org/
16http://www.php.net
17http://www.memcached.org/
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Figure 9: Distribution of user response times while changing
the Web server’s CPU frequency under (a) low-traffic load and
(b) high-traffic load.

the CPU gets more work done per unit of time at higher clock fre-
quencies. It is interesting to observe though that Web server clock
frequency has a significant impact on user response times (even at
low CPU loads, as we will see next). In conclusion, user response
time is sensitive to Web server clock frequency. Hence, the Web
server should have a sufficiently high clock frequency in order not
to exceed particular bounds on user response time.

An important point of concern in provisioning servers for a Web
2.0 workload is to have sufficient leeway to accommodate bursty
traffic behavior and sudden high peaks of load. For gauging the
amount of leeway on a server, we use CPU load. If the CPU load is
sufficiently low, this means that the server can accommodate addi-
tional work. Figure 10 quantifies Web server CPU load as a func-
tion of clock frequency. Clearly, CPU load increases with lower
CPU frequencies.

As alluded to before, the response time distribution has a fairly
long and heavy tail. A heavy-tailed response time distribution is a
significant issue in Web 2.0 workloads because it implies that some
users are experiencing an unusually long response time. Given the
large number of concurrent users of Web 2.0 workloads, and al-
though the number is small in terms of percentages, still a sig-
nificant number of users will be experiencing very long response
times. Very long and unpredictable response times quickly irritate
end users, which may have a significant impact on company rev-
enue if users sign off because of the slow response times. Because
of this, companies such as Google and others heavily focus on the
99% percentile of the user response times when optimizing over-
all system performance. Figure 11 shows the percentile response
times as a function of Web server CPU clock frequency. For exam-
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Figure 10: Web server CPU load as a function of CPU clock
frequency for the high-traffic load scenario.
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Figure 11: Percentile response times as a function of Web
server CPU clock frequency.

ple, this graph shows that, see the top left, 99.6% of the response
times are below 1.8 seconds at 1.9GHz. The 99.6% percentile goes
up to 2.8 seconds at 800MHz, see the top right. The interesting ob-
servation is that long-latency response times increase sub-linearly
with decreasing Web server clock frequency. The 99.6% percentile
response time increases by 54% only, while decreasing clock fre-
quency from 1.9GHz to 800MHz, or increasing cycle time by 138%
from 0.53ns to 1.25ns.

The second hardware trade-off that we study relates to the num-
ber of cores per node one should have for the Web server. The rea-
son why this is an interesting trade-off is that systems with more
sockets per node are more expensive, i.e., a four-socket system
is typically more than twice as expensive as a two-socket system.
Similarly, the number of cores per CPU also directly relates to cost.
Figure 12 quantifies Web server CPU load as a function of the num-
ber of nodes and the number of cores per node. (Recall that CPU
load is a good proxy for user response time as observed.) We vary
from one Web server node with 24 cores enabled, to 2 nodes and
12 cores each, to 4 nodes and 6 cores each, to 6 nodes and 4 cores
each. Clearly, CPU load (and response time) is not affected much
by node and core count (as long as the total number of cores is con-
stant). This suggests that the Web server is a workload that scales
well with core count, even across nodes. In conclusion, when pur-
chasing Web server hardware, although total core count is impor-
tant, core count per node is not. This is an important insight to take
into account when determining how many servers to buy with how
many cores each. Determining the best buy (number of servers and
number of cores per server) depends on many factors such as per-
formance, power cost, real estate cost, reliability, availability, etc.,
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Figure 12: Web server CPU load as a function of the number of
nodes and cores per node: m × n means m nodes and n cores
per node.
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Figure 13: Trading off HDD versus SSD and CPU clock fre-
quency for the database servers.

however, this case study shows that the number of cores per server
is a parameter one can tweak to optimize Web server performance
per dollar.

6.2 Database server
As mentioned before, the database servers generate substantial

disk I/O activity. We therefore focus on a hardware trade-off that
involves HDDs versus SSDs in the database servers. We also vary
CPU clock frequency. Figure 13 quantifies the percentile response
times for the four hardware design points that result from changing
clock frequency and hard drives. We observe that, while short re-
sponse times are not greatly affected by replacing the HDD with an
SSD, the 99.6% percentile response time decreases by 30% when
trading an HDD for an SSD. Although this is a significant reduc-
tion in the longest response times observed, it may not justify the
significantly higher cost of SSD versus HDD.

6.3 Memcached server
The memcached server has a very low typical CPU load, and is

primarily memory and network-bound. The average CPU load for
the memcached server is typically below 5% when stressed with
6 Web servers. Figure 14 shows CPU time versus network time
for a memcached experiment in which we generate memcached
GET requests of varying size, more specifically, the responses of
the GET requests are of varying size. This clearly shows that mem-
cached performance is mainly determined by the network. Hence,
CPU performance for the memcached servers is not critical, and
one could for example deploy relatively inexpensive servers. It is
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Figure 14: CPU time versus network time for memcached re-
quests of different size.
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Figure 15: CPU load and average response time as a function
of the number of requests per second under a fixed-rate exper-
iment.

important for the memcached servers to have sufficient amount of
memory though.

6.4 Fixed-rate experiments
The experiments done so far involved replaying the user requests

as recorded in the real-life workload, i.e., the requests are submit-
ted at a rate determined by the users. We now consider experiments
in which we submit requests at a fixed rate. The reason for doing so
is to stress the system under high levels of request rates in order to
understand how CPU load and user response times are affected by
the load imposed on the entire workload. Figure 15 quantifies CPU
load of the Web servers (left axis) and the average response time
(right axis) as a function of the number of requests per second sub-
mitted to the system. Interestingly, the response time remains low
and CPU load increases linearly with request rate, up until a request
rate of 700 requests per second. Beyond 800 requests per second,
CPU load saturates around 65 to 75 percent, and response time in-
creases substantially from 0.2 seconds to approximately 1 second.
The reason why response time saturates beyond 1,000 requests per
second is that requests get dropped once the Web server’s CPU load
gets too high as it runs out of resources and is unable to process all
incoming requests. Note that handling a request is more than just
generating static content: every Web server request typically initi-
ates several memcached and database requests.

7. USE CASES
The approach we have followed can be applied to numerous use

cases. For example, data center owners and service providers can
use the approach to guide purchasing decisions. Similarly, system
architects, integrators and implementors can use the approach to
gain insight in how fundamental design decisions of the data center

architecture affect user perceived performance. Finally, software
architects and system administrators can use the approach to drive
software design decisions, identify and address performance bot-
tlenecks and evaluate alternative software implementations.

In this section, we present two use cases to illustrate the potential
of the approach for making hardware and software design choices.

7.1 Hardware purchasing
The first use case that we present relates to hardware design

choices, and more specifically to data center owners and service
providers who wish to understand which hardware to purchase for
a given workload. As mentioned earlier, this is a challenging ques-
tion because of the many constraints one needs to deal with, rang-
ing from purchasing cost, energy/power cost, cooling cost, perfor-
mance, throughput, density, etc. In this use case, we look at two
of the most important factors, namely performance and purchasing
cost, for guiding the purchasing decisions. We also consider the
implications on a third factor, namely power consumption.

Data center owners and service providers who wish to upgrade
their hardware infrastructure face a challenging problem, and their
decisions are mostly guided by experience and advice given by the
hardware vendor(s). We now describe a scenario in which a hard-
ware vendor would make a recommendation on which hardware to
purchase. This scenario is hypothetical — we did not actually ask
a hardware vendor for making a suggestion for a specific config-
uration for the given Web 2.0 workload. However, the suggested
configuration is based on rules of thumb, and therefore we believe
it is realistic. The hardware prices are based on real cost numbers
of a large online hardware vendor. We now describe the suggested
hardware configuration.

• Web server: It is well-known that Web servers are performance-
hungry. Therefore, a hardware vendor might, for example,
suggest a high-performance system with an Intel Xeon X3480
(3.06 GHz, 8MB LLC Cache, 4 cores, Hyper-Threading), 8
GB RAM and a typical HDD. The price for this web server
is $1,795.

• Memcached server: Because memory is an important factor
in a memcached server, the vendor might suggest including
more memory, leading to an Intel Xeon X3480, with 16 GB
RAM and a typical HDD. The price for this system is $2,015.

• Database server: Finally, because the hard disk is often a
bottleneck on a database server, a hardware vendor might
suggest to replace the HDD with an SSD, leading to a system
with an Intel Xeon X3480, 16 GB RAM and an SSD. The
price for this database server is $2,915.

The total cost of this configuration, including 6 Web servers, 1
memcached server and 2 database servers — recall the 6-1-2 ratio
of web, memcached and database servers in the Netlog configura-
tion as described earlier — equals $18,615.

Now, given the insight obtained from this study as described in
Section 6, we can make the following alternative recommendations
for a hardware configuration.

• Suggestion #1: Low-cost memcached and database server

As previously reported, a memcached server does not need
a high-performance CPU. We therefore suggest a CPU of
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Figure 16: Several performance trade-offs for different hard-
ware suggestions compared to the hardware vendor suggestion.

the same class as proposed by the hardware vendor, but at a
lower clock frequency (e.g., Intel Xeon X3440 at 2.53 GHz).
The same is true for the database server. On top of that we
suggest not to consider an SSD, because of its high cost and
relatively low performance gain over HDD for this particular
workload.

The lower price for the CPU makes the memcached and database
server cost $1,445 each. The total price of our suggested con-
figuration now equals $15,105. This means a purchasing cost
reduction of 18.9%.

Using the results presented in Figure 13, we conclude that,
using this configuration, 50% of all requests will not expe-
rience any extra latency. For the other 50% of the requests,
response times would increase from 11% for the 75% per-
centile to 39% for the 99.6% percentile. In summary, per-
formance as perceived by the end user would be reduced by
9.1% on average. It is then up to the service provider to bal-
ance the purchase cost against the loss in performance for a
small fraction of the user requests.

• Suggestion #2: Low-frequency Web server

We can go one step further and use a CPU at lower clock
frequency for the Web servers as well (Intel Xeon X3440 at
2.53 GHz). The price of the Web server is now $1,225. This
could mean a total purchasing cost reduction of 37.2% over
the hardware vendor suggested configuration.

User requests would now observe a latency increase by 29%
for the 50% percentile, and up to 56% for the 99.6% per-
centile. On average, end-user performance would be reduced
by 36.9%. Again, it is up to the service provider to deter-
mine whether this loss in performance is worth the reduction
in cost.

So far, when computing the cost reduction, we only focused on
purchasing cost and we did not account for savings due to lower
power consumption, leading to reduction in cost for powering and
cooling the servers. Power consumption is a significant cost fac-
tor in today’s servers and data centers [3], hence it should be taken
into account when computing cost savings. In Figure 16, we show
different metrics to help the service provider determine which plat-
form should be chosen; the reason for considering multiple metrics
is that different criteria might be appropriate for different scenarios.
All metrics are higher-is-better metrics, and all values are normal-

ized against the suggestion by the hardware vendor; a value greater
than one thus is in favor of one of our suggestions.

• Performance: As mentioned before, raw performance drops
by 9.1% for suggestion #1 and 36.9% for suggestion #2. This
metric does not take any cost factor into account.

• Performance per server cost: Suggestion #1 reduces cost
without dramatically reducing performance. When using server
hardware costs in our metric, the benefit for suggestion #1 is
12.0%. The benefit for suggestion #2 is almost zero because
of the extra decrease in performance, i.e., cost saving is offset
by performance decrease.

• Performance per Watt: In the above case study, we consid-
ered two server configurations, one at 3.06 GHz and one at
2.53 GHz, which corresponds to a 17.3% reduction in clock
frequency. Dynamic power consumption is proportional to
clock frequency, so CPU dynamic power consumption will
be lowered by 17.3% as well. The Intel X3480 has a Ther-
mal Design Point (TDP) of 95 Watts and we assume other
components (motherboard, disk, memory, etc.) to consume
100 Watts in total. The reduce in wattage is low compared
to the performance decrease, resulting in a net decrease in
performance per Watt for the two suggestions compared to
the hardware vendor’s suggestion. However, this metric only
considers power consumption and does not take electricity
costs into account.

• Performance per TCO: As mentioned before, data center
facilities and online services are cost-sensitive, and hence, a
metric for the data center should include some notion of to-
tal cost of ownership (TCO). TCO includes server purchas-
ing cost plus electricity cost for powering and cooling the
servers. We assume electricity cost to be $0.07/kWh and we
assume a three-year depreciation cycle. For the cooling cost,
we assume there is need for 1 Watt of cooling power for each
Watt of consumed power. The three-year total cost of own-
ership (TCO) for 6 Web servers, 1 memcached server and 2
databaser servers consists of hardware cost, power cost and
cooling cost; this makes $24,887 for the hardware vendor’s
suggestion, $21,201 for suggestion #1 and $17,428 for sug-
gestion #2. This means a reduction in TCO of 14.8% and
30.0% for suggestions #1 and #2, respectively. The perfor-
mance per TCO metric leads to a gain of 6.7% for suggestion
#1 and a loss of 10.0% for suggestion #2.

• Performance per TCO2 : If total cost of ownership is more
important than performance, performance per TCO-squared
might be an appropriate metric. Using this metric, it is clear
that there is a big benefit in using our two suggestions com-
pared to the hardware vendor’s suggestion, with a respective
gain of 25.2% and 28.5%.

Note that total (both static and dynamic) power consumption
is likely to be reduced even more because of reduced operating
temperature which reduces leakage power consumption. In other
words, the reduced cost factors mentioned above are pessimistic
cost savings; actual savings in power consumption and total cost of
ownership will be higher.
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In summary, this case study illustrated evaluating hardware de-
sign choices in the data center, enabling service providers, data cen-
ter owners, as well as system architects to make trade-offs taking
into account end-user performance of a Web 2.0 workload.

7.2 Software optimizations
Whereas the first use case considered a hardware design trade-

off, our second use case illustrates the potential for driving soft-
ware trade-offs and analyses. The reason why this is valuable is
that setting up such experiments in a live data center is considered
to be too risky because it might interrupt normal operation. Our
approach on the other hand allows for setting up such experiments
in a controlled environment while being able to apply real-life user
requests.

In this case study, we analyze the performance for an alternative
Web server software package. As mentioned before, Netlog uses
the Apache Web server software to process all user requests on the
Web servers. Another well-known web server software package is
called NGINX18. In Figure 17, we show the percentage increase in
the number of requests that were handled under 300 ms, the chosen
metric for this case study. We compare different NGINX configu-
rations to the standard Netlog Apache configuration. On the hori-
zontal axis we distinguish several NGINX configurations, starting
with the default configuration on the left side.

We observe that replacing Apache by a default NGINX setup
increases the number of requests handled under 300 ms by 7.5%.
This number gets up to 13.5% when tuning the number of con-
nections per worker thread. We also disabled the HTTP keepalive
feature19, but conclude that there is no performance difference in
disabling this feature.

NGINX reduces response times as perceived by the end user,
thereby increasing customer satisfaction. This will lead to more
users visiting the social network site, leading to an increase in com-
pany profit. System engineers and software developers can easily
study other software tweaks or parameter tuning for maximizing
performance in the data center by using the proposed method.

8. RELATED WORK

8.1 Data center workloads
A number of studies have been conducted recently to under-

stand what hardware platform is best suited for a given data center
workload. In all of these setups, a single server is considered —
the study focuses on leaf-node performance — and/or microbench-
marks with specific behavior are employed. In contrast, this paper
considers a setup involving multiple physical servers running real
workloads, and we focus on end-user performance.

Kozyrakis et al. [6] consider three Microsoft online services,
Hotmail, Cosmos (framework for distributed storage and analyt-
ics) and the Bing search engine, and their goal is to understand
how online services and technology trends affect design decisions
in the data center. They collect performance data from produc-
tion servers subject to real user input, and in addition, they set up

18http://www.nginx.net/ – High performance Web server with low
memory footprint.

19The ‘keepalive’ feature is used for actively maintaining a connec-
tion between a client and a server.
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Figure 17: Increase in number of requests handled under
300 ms for different NGINX configurations, compared to the
Apache Web server.

a slightly modified version of the software in a lab setup in order
to perform stress tests for evaluating individual server performance
under peak load. Our work differs from the Kozyrakis et al. work in
two important ways: (i) we consider a different workload (Web 2.0
social networking), and (ii) our methodology is very different: our
lab setup includes multiple servers, running unmodified production
software supplied with real-life user input; in addition, we focus on
end-user perceived performance.

Lim et al. [7] consider four Internet-sector benchmarks, namely
Web search (search a very large dataset within sub-seconds), web-
mail (interactive sessions of reading, composing and sending emails),
YouTube (media servers servicing requests for video files), and
mapreduce (series of map and reduce functions performed on key/value
pairs in a distributed file system). These benchmarks are network-
intensive (webmail), I/O-bound (YouTube) or exhibit mixed CPU
and I/O activity (Web search and mapreduce). Lim et al. reach the
conclusion that lower-end consumer platforms are more performance-
cost efficient — leading to a 2× improvement relative to high-end
servers. Low-end embedded servers have the potential to offer even
more cost savings at the same performance.

Andersen et al. [1] propose the Fast Array of Wimpy Nodes
(FAWN) data center architecture with low-power embedded servers
coupled with flash memory for random read I/O-intensive work-
loads. Vasudevan et al. [10] evaluate under what workloads the
FAWN architecture performs well while considering a broad set of
microbenchmarks ranging from I/O-bound workloads to CPU- and
memory-intensive benchmarks. They conclude that low-end nodes
are more energy-efficient than high-end CPUs, except for problems
that cannot be parallelized or whose working set cannot be split to
fit in the cache or memory available to the smaller nodes — wimpy
cores are too low-end for these workloads.

Reddi et al. [8] evaluate the Microsoft Bing Web search engine
on Intel Xeon and Atom processors. They conclude that this Web
search engine is more computationally demanding than traditional
enterprise workloads such as file servers, mail servers, Web servers,
etc. Hence, they conclude that embedded mobile-space processors
are beneficial in terms of their power efficiency, however, these
processors would benefit from better performance to achieve bet-
ter service-level agreements and quality-of-service.
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8.2 Sampling
Sampling is not a novel method in performance analysis. Some

of the prior work mentioned above focuses on leaf-node perfor-
mance, an example of sampling in space. Sampling in time is heav-
ily used in architectural simulation. Current benchmarks execute
hundreds of billions, if not trillions, of instructions, and detailed
cycle-accurate simulation is too slow to efficiently simulate these
workloads in a reasonable amount of time. This problem is further
exacerbated given the surge of multi-core processor architectures,
i.e., multiple cores and their interactions need to simulated, which
is challenging given that most cycle-accurate simulators are single-
threaded.

Sampled simulation takes a number of samples from the dynamic
instruction stream and only simulates these samples in great detail.
Conte et al. [4] were the first to use sampling for processor simu-
lation. They select samples randomly and use statistics theory to
build confidence bounds. Further, they quantify what fraction of
the sampling error comes from the sampling itself (sampling bias)
versus the fraction of the error due to imperfect state at the be-
ginning of each sample (non-sampling bias or cold-start problem).
Wunderlich et al. [11] employ periodic sampling and very small
samples while keeping the cache and predictor structures ‘warm’,
i.e., cache and predictor state is simulated, while fast-forwarding
between samples.

Whereas both the Conte et al. as well as the Wunderlich et al. ap-
proaches select a large number of samples and rely on statistics to
evaluate the representativeness of the samples, Sherwood et al. [9]
employ knowledge about program structure and its execution to
determine representative samples. They collect program statistics,
e.g., basic block vectors (BBVs), during a profiling run, and they
then rely on clustering to determine a set of representative samples.
The approach taken in this paper is similar to Sherwood et al. al-
though we take different workload statistics as input to the sample
selection algorithm, while considering server workloads rather than
CPU workloads.

9. CONCLUSION
In this paper, we presented a case study in which we charac-

terized a real-life Web 2.0 workload and evaluated hardware and
software design choices in the data center. Our methodology sam-
ples the Web 2.0 workload both in space and in time to obtain a
reduced workload that can be replayed, driven by input data cap-
tured from a real data center. The reduced workload captures the
important services (and their interactions) and allows for evaluat-
ing how hardware and software choices affect end-user experience
(response times).

The real-life Web 2.0 workload used in this work is Netlog, a
popular and commercially deployed social networking site with
a large user base in Europe. We explored hardware trade-offs in
terms of core count, clock frequency, HDD versus SSD, etc., for
the Web, memcached and database servers, and we obtain several
interesting insights, such as the Web servers scale well with core
count, and end-user response times are inversely proportional to
Web server CPU frequency; an SSD reduces the longest response
times by around 30% over an HDD in the database servers, which

may or may not be justifiable given the significantly higher cost for
SSD versus; memcached servers show low levels of CPU utiliza-
tion, and are both memory and network-bound, hence, hardware
choice should be driven by the cost of integrating more main mem-
ory in the server. Further, we presented two case studies illustrating
how the method can be used for guiding hardware purchasing de-
cisions as well as software optimizations.
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