
Busy Bee: How to Use Traffic Information for Better
Scheduling of Background Tasks

Feng Yan
College of William and Mary

Williamsburg, VA, USA

fyan@cs.wm.edu

Alma Riska
EMC Corporation

Cambridge, MA, USA

alma.riska@emc.com

Evgenia Smirni
College of William and Mary

Williamsburg, VA, USA

esmirni@cs.wm.edu

ABSTRACT

Computer systems, in general, and storage systems, in par-
ticular, rely on meeting their performance, reliability, and
availability targets via scheduling of management and main-
tenance activities as background tasks. Such tasks may
cause significant delays to user workload if scheduled extem-
poraneously. Here, we propose a scheduling policy for back-
ground tasks that is based on the statistical characteristics
of the system’s busy periods and that aims at completing
background work expediently. Extensive trace-driven simu-
lations show that the scheduling policy is robust and that
it succeeds in completing background work faster than com-
mon practices while impacting user performance minimally.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems

General Terms

Performance, Algorithms

Keywords

performance, workload characterization, busy periods, back-
ground tasks, asynchronous tasks, user traffic, storage sys-
tems

1. INTRODUCTION
Systems that support emerging computing paradigms such

as cloud computing are growing distinctively larger and more
complex. In order to meet the ever increasing user needs
for high availability, reliability, performance, and cost-effect-
iveness [13, 20, 12, 3], systems are built by integrating off-
the-shelf components that are managed and maintained asyn-
chronously, i.e., outside the critical path of user requests.
While the amount and criticality of asynchronous manage-
ment is commensurate with system complexity, the expecta-
tion for such work is to remain transparent from the system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

users. Examples of tasks that complete asynchronously in
the system, i.e., in the background, include logging of mon-
itored resources, garbage collection, data synchronization,
and data verification. Within the storage component, a sig-
nificant amount of work is completed asynchronously in the
background, especially because storage tasks are not instan-
taneously preemptable [14, 19].

While background work in storage systems may be as-
sociated with performance improvement, e.g., moving data
from the low performing tier of SATA drives to the high
performing tier of SSD drives [8], it mostly targets enhance-
ment of data availability and reliability, e.g., verification of
data consistency for protection against bit-rots and repli-
cation of data in multiple storage devices or systems for
added redundancy. The goal is to strike a balance between
meeting user service level objectives while completing the
background work as fast as possible. This goal is particu-
larly important for background tasks that are time sensitive.
Examples of time sensitive background tasks include geo-
graphically distributed data centers where data consistency
is achieved only eventually by distributing the redundant
new data asynchronously, in the background [22].

Judicious selection of scheduling asynchronous work vs.
user traffic is not an easy task. The challenge lies in the fact
that future user workload characteristics are seldom known
a priori. If the background tasks are scheduled without con-
sideration for user traffic, the impact on user performance
may be severe.

Common practices use simplistic measures, such as aver-
age utilization, to guide background task scheduling. Such
metrics cannot describe accurately current system condi-
tions and often yield unstable solutions because the work-
load, particularly in storage systems, can be fairly dynamic
over short time scales. To limit the impact of background
work on user performance, there exist elaborate techniques
that focus on idle waiting before starting background work [5,
7]. There are techniques that even provide guarantees on the
performance impact caused to user performance [15]. While
some techniques that are used to schedule background work
operate on fixed parameters that restrict their adaptivity to
a changing workload [5, 7], others rely on monitoring a va-
riety of complex processes, such as system idleness, delays
caused by the background tasks, and user performance [15].

In this paper, we present a simple yet adaptive solution
to the problem of scheduling tasks in the background by
proposing a quantitative framework that aims at monitor-
ing, learning, and making scheduling decisions based on a
few, easy to monitor metrics. The monitored metrics cap-

145

ture sufficient details on the current foreground workload
and the resulting available idle capacity that allow the pro-
posed scheduling policy to complete the background work
as fast as possible but with minimal impact on user per-
formance. All scheduling decisions are based only on the
stochastic characteristics of the length of user busy periods
in the system. The goal is to schedule as much as possible
background work when the impact on performance of user
traffic is anticipated to be small (because upcoming busy pe-
riods are short) and limit delays on foreground traffic when
busy periods are anticipated to be long.
Results from extensive experimentation via trace-driven

simulations show that the proposed scheduling policy can
maintain the same foreground performance while complet-
ing the asynchronous work up to 50% faster. The benefits
of the proposed scheduling policy are particularly high when
it matters most, i.e., when foreground performance imposes
stringent limitations on the tolerance toward additional de-
lays due to background work. The proposed scheduling pol-
icy enables the system to sustain its performance in the pres-
ence of background tasks, even where there are changes in
the user traffic characteristics, by adapting the background
scheduling parameters to current foreground characteristics.
The robustness and resilience of the scheduling policy is ev-
ident especially under swift changes in user workload.
This paper is organized as follows. In Section 2, we give

an overview of related work. In Section 3, we provide a de-
tailed characterization of a set of enterprise traces and show
how this characterization can be used to develop the new
scheduling strategy. In Section 4, we propose a dynamic
scheduling framework aiming at improving the performance
of background work while maintaining foreground perfor-
mance. Section 5 presents an extensive set of trace-driven
experiments that demonstrates the effectiveness and robust-
ness of the proposed scheduling technique. We conclude and
discuss future directions in Section 6.

2. STATE OF THE ART AND MOTIVATION
Today’s systems complete most of their resource manage-

ment and maintenance tasks in the background. In storage
systems there is a plethora of activities that are executed
asynchronously as background tasks [1, 21] aiming at im-
proving performance, reliability, and availability [11, 2, 24,
12]. In addition, a large body of literature points out the
existence of idle periods that are interleaved with periods
of high utilization [7, 18, 5]. These idle periods offer an
opportunity to serve tasks of low priority, such as data syn-
chronization, but may lead to performance degradation if a
foreground task arrives while a background task is in ser-
vice. This is the case especially in storage systems, because
tasks are not instantaneously preemptable. As a result, the
foreground requests could be unavoidably delayed when the
system executes background tasks.
Conventionally, scheduling of background tasks is done

using a non-work-conserving approach by delaying the exe-
cution of an outstanding background job with a fixed time
when the system becomes idle of foreground workload [5].
This technique avoids using short idle intervals to serve long
background jobs and averts severe degradation in foreground
performance. Approaches for adaptively determining the
amount of time that the system should stay idle, while there
is background work to be completed, are proposed for power
saving in mobile devices by spinning-down their disks [4,

10]. pClock is a framework that allows multiple workloads
to share storage while achieves performance isolation via
scheduling [9]. This approach may be also used to allocate
spare system capacity to background jobs. Storage perfor-
mance insulation has been achieved by co-scheduling time
slices for each workload type [23].

In [15, 16], the authors propose a framework to estimate
when and for how long to utilize idle periods in a system
for processing low priority background tasks without vio-
lating pre-defined foreground performance targets. This is
achieved by extending the non-work-conserving nature of
background scheduling as first suggested in [7, 5]. The his-
togram of past idle intervals can be used to determine: (1)
the amount of idle wait till a background task can start
and (2) the amount of the expected idle time to be used for
scheduling background tasks. The consequence is that the
system may remain idle while background tasks are still out-
standing after the estimated time to utilize an idle interval
for background scheduling elapses. Key to the methodol-
ogy developed in [15, 16] are the statistical characteristics
of idle times which are used for effective background task
scheduling.

Systems today have to support a wide range of background
tasks. These tasks should be served transparently from fore-
ground tasks but should not starve. Avoiding starvation is
the primary target to be met. In addition, if the background
tasks are time-sensitive, as it is often the case in storage sys-
tems, then they should complete as soon as possible. There
is an ever increasing number of time-sensitive asynchronous
tasks in storage systems that are served in the background.
Examples of such tasks include the asynchronous data up-
dates in geographically distributed data centers. The data
in such systems resides in multiple devices, nodes, and loca-
tions for purposes of availability and performance. New data
is committed asynchronously to all designated nodes in order
to avoid network and other delays that may severely impact
user perceived performance. As a result the consistency of
data across the distributed system is achieved eventually as
data is committed to its destinations as a background pro-
cess [22]. Note that for as long as the data is not consistent
across all of its assigned nodes, data integrity is compro-
mised. This is a clear case where completion of background
tasks is time sensitive.

In this paper, we strive to achieve two goals: first to com-
plete the background work while avoiding starvation at all
costs and second to reduce its response time as much as pos-
sible to better serve time sensitive tasks. Our aim is to main-
tain the performance of foreground tasks at the same level
as common practices, e.g., the approach in [5], while serving
background tasks faster. Background tasks in storage sys-
tems have similar service demands as foreground requests.
This means that if a foreground request arrives to find the
system serving a background task, then the delay expecta-
tion is approximately two times the average service demand
of a foreground request (i.e., accounting for the background
work to complete and the storage system to get ready - po-
sitioning - to serve the next request). We consider such a
delay to be “tolerable”. This means that controlling fore-
ground delay due to background work is effectively done by
delaying only the start of a background busy period.

Deploying any“wait period”before background tasks start
execution [5, 15] would result in non-work-conserving schedul-
ing of the background tasks with low degradation on fore-

146

0 20 40 60 80 100
10

1

10
2

10
3

10
4

Idle Wait (ms)
R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace1 − BG is 100% FG

FG Response Time
BG Response Time

0 20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

10
6

Idle Wait (ms)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace1 − BG is 1000% FG

FG Response Time
BG Response Time

Figure 1: Performance comparison in terms of mean response time between the foreground and background
tasks for a disk-level trace under conservative scheduling with fixed waiting ranging from 1ms to 100ms. The
results of aggressive scheduling are also shown in the graph, i.e., the point corresponding to idle wait = 0.
The response times are in log scale.

ground performance. Such non-work-conserving scheduling
we denote as “conservative”. A zero “wait period” would re-
sult in work-conserving scheduling of the background tasks
and better utilization of the available idleness. We denote
this policy as “aggressive”. To gain intuition on the simul-
taneous effect on the performance of both foreground and
background jobs, we evaluate the aggressive and the conser-
vative scheduling policies via a set of trace-driven simula-
tions. We consider constant idle wait times as in [5] ranging
from 0 to 100 ms. Details on the disk drive traces that are
used are provided in Section 3. Here we simply want to high-
light the advantages and disadvantages of aggressive versus
conservative scheduling.
As already discussed, background tasks in a system are

commonly a function of the current workload (e.g., data
synchronization). Therefore, it is reasonable to assume that
multiple asynchronous features generate background work
out of the incoming user workload. We explore here two sce-
narios where the background work (BG) is 100% and 1000%
of the foreground work (FG). Results are shown in Figure 1.
From the graphs, we can see that aggressive scheduling gives
the worst foreground performance while achieving the best
background performance. With conservative scheduling, the
foreground performance improves as the fixed idle wait (see
x-axis) increases, which confirms the need to protect fore-
ground performance via idle waiting. However, we also ob-
serve that background performance decreases much faster
when compared with the degradation caused to foreground
performance. For large periods of idle waiting, foreground
response time improves slightly while the performance of the
background tasks degrades by orders of magnitude when
compared to shorter or zero idle waiting. Since these two
scheduling policies are complementary to each other, we are
motivated to design a new scheduling algorithm to improve
the response time of background work while preserving fore-
ground performance.
Recall that performance degradation of foreground work

comes from the fact that the system needs some time to
switch from serving background work before it can serve
foreground requests. The entire set of foreground requests
in the following busy period is delayed. Our key observation
here is that the impact of background tasks on foreground
performance is larger if the delayed foreground busy periods
are long (i.e., measured in number of requests) than if they
are short.
We stress that in prior work, all efforts focused on incor-

porating characteristics of the arrival process, service pro-
cess, or idleness of the system into the scheduling of back-
ground tasks. In this paper, we design an intelligent schedul-
ing mechanism by exploring and taking advantage of the
stochastic characteristics of busy periods only.

3. WORKLOAD CHARACTERIZATION
In this section, we analyze the enterprise disk-level traces

used in the evaluation of the scheduling policy that is devised
in this paper. We give general information about the traces
but also focus on the stochastic characteristics of their busy
periods.

3.1 Overview of Traces
We use three enterprise traces measured at the disk level

from servers running enterprise-grade applications [18]. Al-
though the storage subsystem of the servers consists of mul-
tiple RAID groups, we use here the user traffic seen by
three individual disks located in different RAID groups. The
traces are twelve hours long. Each trace contains the fol-
lowing information for each request: the arrival time, the
departure time, the type of request (i.e., read or write), the
request length in bytes, and its location on the disk.

In Table 1 we show a set of metrics that provide some gen-
eral information on the availability of idle time at the disk
level and the characteristics of foreground busy periods. The
data in Table 1 shows that the disks are clearly underutilized
and they have good potential to serve background work. The
large coefficient of variation (C.V.), which is a normalized
measure of the dispersion defined as the ratio of the stan-
dard deviation to the mean, and the large maximum length
of idle intervals imply significant variability in the length of
idle periods. This concurs with the discussion in the pre-
vious section: if the purpose is to serve background work
timely, then limiting the time where background work can
be served is not a good strategy. For busy period lengths,
the moderate C.V. values coupled with the large value of
the maximum length, suggest that there is also variability
in the length of busy periods, albeit at a less degree than in
idle periods. The impact on foreground performance due to
interleaving foreground with background work may be quite
different from one busy period to the next.

3.2 Characteristics of Busy Periods
Because the impact of the background tasks is strongly re-

lated to the length of the upcoming foreground busy period,

147

Trace Util Idle Periods in ms Busy Periods in IOs

(%) Mean Maximum C.V. Mean Maximum C.V.

Trace1 5.6 192.6 325589 8.4 2.16 240 2.1
Trace2 1.7 767.5 186817 2.3 2.84 110 1.3
Trace3 0.7 2000.2 364876 3.8 2.39 190 2.4

Table 1: General busy period and idle period characteristics of our traces.

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Number of IOs in Busy Period

P
ro

b
a

b
ili

ty

Distribution − Busy Period − Trace1
Bin Size = 1 IO

Histogram
CDH

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Number of IOs in Busy Period

P
ro

b
a

b
ili

ty

Distribution − Busy Period − Trace2
Bin Size = 1 IO

Histogram
CDH

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Number of IOs in Busy Period

P
ro

b
a

b
ili

ty

Distribution − Busy Period − Trace3
Bin Size = 1 IO

Histogram
CDH

Figure 2: The distribution of the busy periods measured by number of requests.

0 1 2 3 4

x 10
7

10
0

10
1

10
2

10
3

Time (ms)

B
u

s
y
 P

e
ri
o

d
 L

e
n

g
th

 (
IO

)

Busy Period Length over Time − Trace1

0 1 2 3 4

x 10
7

10
0

10
1

10
2

10
3

Time (ms)

B
u

s
y
 P

e
ri
o

d
 L

e
n

g
th

 (
IO

)

Busy Period Length over Time − Trace2

0 1 2 3 4

x 10
7

10
0

10
1

10
2

10
3

Time (ms)

B
u

s
y
 P

e
ri
o

d
 L

e
n

g
th

 (
IO

)

Busy Period Length over Time − Trace3

Figure 3: The across time plots of busy periods length measured by number of requests.

we now focus on the statistical features of foreground busy
periods. In Figure 2 we plot the CDH (Cumulative Distribu-
tion Histogram) and relative frequencies using a bin size of
one request. Note the log scale for the x-axis. The shape of
the plots implies long tails for busy periods across all work-
loads, i.e., most of the busy periods are short while a few
of them are quite long. One can see that across all work-
loads, 90% of busy periods are less or equal to 4 requests
per busy period. This implies that if the background work
delays a busy period, then it is with high probability that
there are up to four requests to be delayed. Yet, there is also
a sizable percentage of the workload with long busy periods
(i.e., more than 4 requests) where the performance degra-
dation of foreground work is going to be noticeable. The
argument here is that if we can anticipate when these long
busy periods arrive, then the performance can be improved
significantly by avoiding to serve background jobs during
those time intervals.
Next, we plot the length of every busy period across time,

measured in number of requests, see Figure 3. The plots
show a clear repetitive cluster behavior in the sequence of
long busy periods (i.e., greater than 4 requests) for Trace1
and Trace2. The graphs show that the majority of busy
periods are 4 to 6 requests. We conclude that this number
can be used as a threshold that distinguishes busy periods
as short or long.
In addition, the “clustering”of long busy periods shown in

Figure 3 suggests that there is a consistent behavior across
time. If we understand better how such clustering occurs,
then we can use it to detect the upcoming clusters of busy
periods. Once such a cluster is detected, then it would be
beneficial to foreground performance if the background work
is scheduled “conservatively” (i.e., the system idle waits be-
fore starting the background tasks). Once the system pre-
dicts that the upcoming busy periods are not expected to
be long, then it resumes a more “aggressive” scheduling of
background tasks (i.e., schedule them immediately after the
system becomes idle of foreground requests). These obser-
vations are the basic premises for the design of a scheduling
policy that dynamically adapts to a changing workload.

4. DYNAMIC SCHEDULING POLICY
In this section, we propose a dynamic scheduling policy

that interleaves background tasks with foreground tasks effi-
ciently. The goal here is to improve the performance of back-
ground work, measured via its response time, while preserv-
ing foreground performance, also measured via its response
time. The dynamic policy that we propose alternates be-
tween scheduling background tasks aggressively or conserva-
tively, based on the statistical characteristics of foreground
busy periods and their recent history. As future busy pe-
riods are not known a priori, the algorithm cannot always
make the best decision, but it can reach to a well-informed
decision based on statistics of recent workload history. The

148

policy parameters are extracted from the most recent history
of foreground busy periods.

1.if in characterization state do
a.update busy period length trace
b.calculate the Threshold of long busy period based on

90th percentile
c. calculate the Cluster Window Size (CWS) based on

Eqs. 1
2.if system in decision making state do

a. initialize:
i. system state (sys state) = idle
ii. busy period state (BP state) = short
iii. cluster count (cluster count) = 0
iv. busy period length (BP length) = 0
v. queue length (QL) = 0

b.if sys state = idle
i. if BP state = long and cluster count > 0

for no FG IO arrive do
use aggressive scheduling to schedule BG work
cluster count−−

ii.else

for no FG IO arrive do
use conservative scheduling to schedule BG work

c. upon FG IO arrive
i. sys state = busy;
ii. QL ++
iii. BP length++
iv. if BP length >= Threshold and (BP state) = short

BP state = long
cluster count = CWS

v. go to Step 2.b

d.upon FG IO depart
i. QL ++
ii. if QL == 0

sys state = idle
BP length = 0

iii. go to Step 2.b

Figure 4: Algorithm of dynamic scheduling.

Aggressive scheduling may result in foreground perfor-
mance degradation, because if short idle periods are utilized
for background work, then with high probability, it delays
all requests in the upcoming foreground busy period. The
idle wait ensures that only long idle periods are used for
background work. For a thorough discussion on the im-
pact of idle wait on the performance of both foreground and
background work, we direct the reader to [5, 15]. If there
is a large amount of background work that is time critical,
then the background tasks would have to continue to run
as long as the system is idle, endangering the performance
of upcoming foreground tasks. We argue that rather than
limiting the amount of background work during idle periods
as in [15], we limit the potential degradation on foreground
performance:

• by selecting a fixed large idle wait for the periods when
the system is experiencing a sequence of long fore-
ground busy periods, with the expectation that such
idle waiting would forbear the system from serving
background work, and

• by canceling idle waiting if it is detected that the sys-
tem is experiencing short foreground busy periods. This
action would give the system the opportunity to serve
a large amount of background work while delaying only
a small portion of the foreground requests.

The algorithm first categorizes busy periods as long or
short. Within a predefined time window, we log the infor-
mation of busy period lengths and update their histogram,
a process that is inexpensive, both computationally and
space-wise. At the end of the time window, the count of
requests that corresponds to the 90th percentile of the busy
period histogram defines a Threshold whose value distin-
guishes busy periods as long or short. A new histogram
is build for the next time window, which allows the algo-
rithm to adapt well the Threshold parameter to changing
workloads.

After categorizing the busy periods, the next step is to
predict the incoming busy period length. To this end and
according to the analysis in Section 3, we explore the clus-
tered pattern of busy periods within each time window. This
suggests that after an elapsed long busy period and based
on recent history, we may be able to predict with accuracy
whether the upcoming busy periods are long or short. To
achieve this, we observe the conditional probability that two
subsequent busy periods are long, i.e., if they are separated
by one idle period with lag equal to one, as well as the
conditional probabilities of busy periods that are separated
by two or more idle periods, i.e., with lags equal to two
or more. We define the Cluster Window Size (CWS) as
the average number of consecutive long busy periods occur-
ring with a given high probability value. Let Plag be the
conditional probability that the lagth busy period is long
given that the current busy period is long (we could use any
sufficiently large number here instead of twenty so that we
capture enough probability mass). We define CWS as the
smallest lag such that the sum of Plag is equal or over 0.8:

CWS = min{lag|

20∑

lag=1

Plag >= 0.8} (1)

After a long busy period is detected, then CWS gives the
number of upcoming busy periods that are expected to be
long. During the intermittent idle intervals within those
periods (which may be long or short), background work is
served conservatively, i.e., deploying an idle wait period. Af-
ter this number expires, background tasks are served aggres-
sively, i.e., without any idle waiting, till the next long busy
period is detected and conservative scheduling gets activated
again. Note that the calculation of CWS is done once for
every time window, in order to reflect well changes in the
process of the foreground busy periods.

Note that, according to Equation (1), the stronger the
clustering in the foreground busy period lengths, the shorter
the CWS, and the longer the system serves background
tasks aggressively. If the long foreground busy periods in
the system are distributed randomly, i.e., there is no cluster-
ing, then CWS is long and the system schedules background
tasks conservatively. Hence, the dynamic scheduling policy
we propose here extracts the stochastic characteristics of
foreground busy period lengths and reduces to the common
practice of conservatively scheduling depending on the pre-
dicted foreground arrivals. Figure 4 gives the pseudo-code
of the dynamic background scheduling policy.

In Figure 5 we give an example of how the aggressive, con-
servative, and dynamic algorithms work. We assume that
there are several background tasks outstanding and the sys-
tem currently operates under short foreground busy periods
(the first three user busy periods marked with “S” in the fig-

149

Figure 5: Example on the behavior of the three dif-
ferent background scheduling algorithm, aggressive,
conservative, and dynamic.

ure) that are then followed by long user busy periods. After
detecting the first long busy period (the fourth busy period),
the next busy period (the fifth busy period) is marked as
part of the next cluster of long busy periods. We assume
that the estimations from previous observations have con-
verged on a cluster size of 2 (i.e., the value of CWS) and
that the threshold to differentiate busy period lengths is 4
requests. We assume in the example that the short busy
periods are 2 requests long and that the long busy periods
are 6 requests long. We assume that each user request is
3 time units, with one time unit being 2 ms. The six idle
intervals in the depicted scenario are 5, 8, 4, 7, 8 and 3 time
units long, respectively.
Based on the discussion in this section:

• Idle waiting for the dynamic scheduling is larger than
the value selected by common practices for the con-
servative scheduling (i.e., two times of user service de-
mands). In the example we assume that idle wait for
dynamic scheduling is 1.5 times longer than the idle
time for conservative scheduling.

• Aggressive scheduling does not idle wait and serves the
background tasks the fastest (i.e., uses 9 time units on
the average) with the largest extra delay (e.g., 1.7 time
units) per user request.

• Conservative scheduling serves the background work
the slowest (i.e., 57 time units on the average) with an
average extra delay per user request of 1 time unit.

• Dynamic scheduling works best because it strikes a
good balance between the performance of background
tasks (i.e., 16 time units on the average) and an average
added delay per user request of 1 time unit only.

This high-level example shows that dynamic scheduling is
expected to behave like conservative scheduling with regard
to foreground performance, and like aggressive scheduling
with regard to background work performance. In the follow-
ing section we evaluate these scheduling polices in detail.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the dynamic algorithm illus-

trated in Figure 4. The goal is to demonstrate that our al-
gorithm can (1) effectively use the learned foreground busy
period characteristics to schedule background tasks and (2)
swiftly adapt its background scheduling to changing fore-
ground traffic patterns such that both foreground and back-
ground tasks sustain the best possible performance. We
evaluate two scenarios. In the first scenario, the system
operates under a “stable”workload, while in the second one,
the system operates under a workload that changes swiftly
half-way through the experiment.

5.1 Experimental Setting
Our experimental evaluation is trace driven. The traces

described in Section 3, are used as our foreground traffic.
We use Trace1, Trace2, and Trace3 as representative of a
stable operating environment. The scenario with the“swiftly
changing”workload is achieved by concatenating Trace2 and
Trace1, in this order.

As discussed in previous sections, our framework can be
applied for scheduling of asynchronous tasks that when new
data arrives into a geographically distributed storage system
and need to be replicated across nodes for redundancy. In
such systems, the redundancy is in the form of replication
(e.g., the Google File System [6] replicates data 3 times)
or erasure coding (e.g., the data is split into N fragments,
encoded into N+M fragments, and distributed into N+M
different disks/nodes) [17]. The asynchronous tasks in such
scenarios consist of reading the recently updated data, com-
puting the codes for the case of erasure coding, and sending
them to their destination via the network. Consistent with
this behavior, in our evaluation the background tasks have
similar demands as the foreground ones and their intensity is
a function of the WRITE foreground traffic, which varies by
system. The results hold across a wide range of amount of
background work but here we show only two representative
cases: (1) the background work is equal to the amount of
foreground work (i.e., common scenario, 100% of foreground
work) and (2) the background work is 10 times the amount
of foreground work (i.e., an extreme scenario, 1000% of fore-
ground work).

Switching from serving background tasks to serving user
requests is not instantaneous. Upon arrival of a new user
IO which finds the system serving a background task, the
system must first complete the background work before re-
positioning the disk head back to the location of the new
request. In our evaluation, we assume that the penalty ex-
perienced by foreground requests due to background tasks is
about two times the average service time of foreground re-
quests. Note that because both foreground and background
tasks have service and response times at the millisecond (ms)
level, all our metrics of interest are measured in ms. Al-
though replicating a large file or set of files may take overall
more time, they are considered tasks that are generally split
into multiple smaller tasks. Serving the smaller tasks faster
is the goal of our framework.

Our dynamic algorithm uses short-term history (i.e., ob-
servations during a time window to calculate the Threshold
and CWS. During each time window, we build the his-
togram of busy periods and based on this histogram we cal-
culate the Threshold and CWS parameters, which are used
to schedule the background tasks during the next time win-

150

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace1-L1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace1-L2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace1-L3

Figure 6: Probability plots that a long busy period is followed by a similar long one for lag 1 to lag 20 for
different portions of Trace1. Three windows are considered: Start = 0.5 hour (left graph), Start = 1 hour

(center graph), and Start = 1.5hour (right graph).

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace2-L1

 0

 0.2

 0.4

 0.6

 0.8

 1

11 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace2-L2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace2-L3

Figure 7: Probability plots that a long busy period is followed by a similar long one for lag 1 to lag 20 for
different portions of Trace2. Three windows are considered: Start = 0.5 hour (left graph), Start = 1 hour

(center graph), and Start = 1.5 hour (right graph).

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace3-L1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace3-L2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace3-L3

Figure 8: Probability plots that a long busy period is followed by a similar long one for lag 1 to lag 20 for
different portions of Trace3. Three windows are considered: Start = 0.5 hour (left graph), Start = 1 hour

(center graph), and Start = 1.5 hour (right graph).

dow. The moment the Threshold and CWS parameters are
computed, the histogram is discarded. During the next win-
dow where background scheduling is enabled, we collect data
to construct a new histogram which is then used to calculate
the Threshold and CWS parameters for the next schedul-
ing window. Note that for Trace1, Trace2, and Trace3, we
specifically focus on a 5-hour window, i.e., we collect the his-
togram during a window defined by [Start, Start + 5) and
apply the policy during [Start+5, Start+10). To show the
robustness of the policy irrespective of the Start value, we
show results for three different sequences of 10-hour periods.
In our experiments, the amount of idle wait before start-

ing the asynchronous tasks determines the aggressiveness of
background scheduling. As idle wait increases, the impact

on the response time of foreground requests decreases and
the response time of background tasks increases. Here, we
evaluate the entire range of idle wait values from 0 to 100
ms. Zero idle wait corresponds to the most aggressive back-
ground scheduling.

5.2 Evaluation Scenario One: Stable Work-
load

We drive our simulation using the three traces described
in Table 1. Each trace has characteristics that change grad-
ually over the course of its 12 hours span. Since changes are
not dramatic, we consider such traces to represent stable op-
erating environments, where our framework is expected to
capture gradual changes effectively.

During the first time window, our scheduling framework

151

16 16.5 17 17.5
60

80

100

120

140

160

180

200

220

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace1−S1 − BG is 100% FG
Threshold = 4 IOs, CWS = 2 bps

Conservative Scheduling
Dynamic Scheduling

16.5 17 17.5 18
60

80

100

120

140

160

180

200

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace1−S2 − BG is 100% FG
Threshold = 4 IOs, CWS = 2 bps

Conservative Scheduling
Dynamic Scheduling

17 17.5 18 18.5
50

100

150

200

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace1−S3 − BG is 100% FG
Threshold = 4 IOs, CWS = 2 bps

Conservative Scheduling
Dynamic Scheduling

26 27 28 29 30 31 32

2

2.5

3

3.5

x 10
4

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace1−S1 − BG is 1000% FG
Threshold = 4 IOs, CWS = 2 bps

Conservative Scheduling
Dynamic Scheduling

27 28 29 30 31 32
3

3.5

4

4.5

5

5.5

6x 10
4

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace1−S2 − BG is 1000% FG
Threshold = 4 IOs, CWS = 2 bps

Conservative Scheduling
Dynamic Scheduling

28 29 30 31 32 33
0.4

0.6

0.8

1

1.2

1.4

1.6x 10
5

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace1−S3 − BG is 1000% FG
Threshold = 4 IOs, CWS = 2 bps

Conservative Scheduling
Dynamic Scheduling

Figure 10: Scheduling comparison between dynamic and conservative scheduling for Trace1, scheduling results
use the three respective periods given in Figure 6 (left, center, right columns) to schedule in the next 5 hours.

 0

 20

 40

 60

 80

 100

Trace1 Trace2 Trace3

P
e

rc
e

n
ta

g
e

 (
%

)

Trace Name

Aggressive Conservative

Figure 9: The percentage of time in aggressive mode
and conservative mode under dynamic scheduling.

monitors the system busy periods, builds their histogram,
and once the time window elapses, computes the Threshold
and CWS values. Recall that Threshold corresponds to the
value of the 90th percentile of busy periods, while the CWS

is computed based on the values of the conditional probabil-
ity Plag that two busy periods separated by lag idle intervals
are both long. As different histograms are collected over dif-
ferent windows, the changes in the workload are captured by
Threshold and CWS. Figures 6, 7, and 8 show the values of
the conditional probabilities of long busy periods over three
different 5-hour windows.
The dynamic algorithm strives to exploit any relationship

that exists in the sequence of foreground busy periods. If the
clustering across time is weak, as in Trace3 (see Figure 8),
then the expectation is for the dynamic algorithm to operate
more often in the conservative mode (i.e., applying some idle
wait). If the clustering is non-existent, then the proposed
algorithm should always operate in the conservative mode.
Figures 6, 7, and 8 clearly show a stable behavior across

time within each trace. Across traces, we notice that Trace1
has long busy periods clustered together because its condi-
tional probability values are highest among the three traces.
Clustering reduces for Trace2, while Trace3 depicts the least
clustering. This means that the dependence structure weak-
ens from Trace1 to Trace3. Therefore the computed CWS

values increase as the dependence of long busy periods re-
duces from Trace1 to Trace3.

Figure 9 shows how long (in percentage of time) the dy-
namic algorithm operates in the conservative mode and how
long in the aggressive mode. As expected from the discus-
sion on the results in Figures 6, 7, and 8, Trace1 spends the
most time in the aggressive mode because the long busy pe-
riods in this trace are well clustered, allowing the algorithm
to predict well their occurrence.

Because of the overhead to switch from a background task
to a foreground task, the more background work served, the
higher the impact on foreground performance. The goal is to
serve faster the outstanding background work, while sustain-
ing foreground performance. Here we evaluate the effective-
ness and robustness of the proposed dynamic scheduling by
comparing the background mean response time for the same
foreground mean response time under both the dynamic and
conservative scheduling policies.

Figures 10, 11, and 12 show the average performance of
background work for Trace1, Trace2 and Trace3, respec-
tively, as a function of the achieved foreground response
time. The figures are organized in a 2 by 3 grid, where each
column corresponds to the performance achieved in a given
window (the same ones depicted in Figures 6 through 8),
and each row corresponds to the amount of background work
generated in the system (i.e., 100% and 1000% of foreground
work).

Recall that foreground response time is generally increased
by the execution of asynchronous tasks because they ar-
rive stochastically and the switch between asynchronous and

152

15.5 15.6 15.7 15.8 15.9 16
12

14

16

18

20

22

24

26

28

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace2−S1 − BG is 100% FG
Threshold = 6 IOs, CWS = 5 bps

Conservative Scheduling
Dynamic Scheduling

14.95 15 15.05 15.1 15.15 15.2 15.25 15.3
12

14

16

18

20

22

24

26

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace2−S2 − BG is 100% FG
Threshold = 5 IOs, CWS = 5 bps

Conservative Scheduling
Dynamic Scheduling

14.7 14.8 14.9 15 15.1 15.2
12

14

16

18

20

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace2−S3 − BG is 100% FG
Threshold = 5 IOs, CWS = 5 bps

Conservative Scheduling
Dynamic Scheduling

23.5 24 24.5 25 25.5

35

40

45

50

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace2−S1 − BG is 1000% FG
Threshold = 6 IOs, CWS = 5 bps

Conservative Scheduling
Dynamic Scheduling

23 23.5 24 24.5

30

35

40

45

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace2−S2 − BG is 1000% FG
Threshold = 5 IOs, CWS = 5 bps

Conservative Scheduling
Dynamic Scheduling

22.5 23 23.5 24
26

28

30

32

34

36

38

40

42

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace2−S3 − BG is 1000% FG
Threshold = 5 IOs, CWS = 5 bps

Conservative Scheduling
Dynamic Scheduling

Figure 11: Scheduling comparison between dynamic and conservative scheduling for Trace2, scheduling results
use the three respective periods given in Figure 7 (left, center, right columns) to schedule in the next 5 hours.

foreground tasks is not instantaneous. This means that as
long as the idle wait value is smaller than the maximum
idle interval length, there may be degradation in foreground
performance. Idle wait is a way to control and limit perfor-
mance degradation but not avoid it [16]. Our goal is to make
sure we do not violate any foreground performance targets
in the system. As expected, the foreground response time
increases as the value of the idle wait decreases. For an idle
wait of zero (i.e., corresponding to the aggressive schedul-
ing policy), there is almost no distinction between the fore-
ground and background work, because the background work
starts executing as soon as the system becomes idle. Our
scheduling always converges to this case in all plots (see
the rightmost points in Figures 10, 11, and 12). Across
all graphs, the more the background work (see the differ-
ences between the rows of plots), the higher the foreground
degradation and background response time. Results can be
summarized as follows:

• Trace1: Figure 10 clearly indicates that there are
consistent gains across all time periods and for all
amounts of background work. The dynamic schedul-
ing can often speed up background work by as much
as 50 percent.

• Trace2: Figure 11 shows that the gains of dynamic
scheduling reduce when compared with the results of
Trace1 because the probabilities of a long busy period
being followed by another long busy period within a
certain lag reduce (compare Figure 6 with Figure 7).
However, dynamic scheduling consistently outperforms
conservative scheduling, particularly for large idle waits
that are captured by the leftmost part of the plots.

• Trace3: Figure 12 shows that Trace3 behaves simi-
larly to Trace2. Note that the dynamic scheduling is
more robust than the conservative one, which causes

fluctuation on performance of background work. This
is a result of variability in both idle and busy periods.

One of the most important observations is that for longer
idle wait times (left portion of each plot) where foreground
performance is degraded less, the dynamic scheduling consis-
tently outperforms the conservative one. As a result, in cases
when there are stringent performance targets for foreground
requests, the performance advantage of dynamic scheduling
is clear. If the foreground work is less sensitive to delays,
then conservative scheduling with short idle waits results to
a simple and good solution. In general, aggressive schedul-
ing is not a good practical choice because it may cause severe
or unbounded delays to foreground performance.

Another characteristic of the dynamic scheduling policy
that sets it apart from the conservative one, is its resilience
with regard to changes in the workload and scheduling pa-
rameters. In all evaluated scenarios in Figures 10, 11, and 12
the results from the dynamic scheduling are gradually re-
flecting the change, i.e., there are no oscillations on perfor-
mance as it is often the case for the conservative schedul-
ing. This is a direct outcome of the fact that our dynamic
scheduling adapts its parameters to the changes in workload
characteristics while the conservative or aggressive policies
are oblivious to the workload characteristics. Such gradual
changing behavior as characteristics change is desirable in
systems because it allows applications to run smoothly.

Of particular importance is the sensitivity of the schedul-
ing policies toward the chosen idle wait value. Figures 10,
11, and 12 show that the performance of both foreground
and background work under the proposed dynamic schedul-
ing policy varies but in a significantly narrower range than
under the conservative scheduling policy. This implies that
for the dynamic scheduling policy, identifying the optimal
idle wait value is not critical. Applying the common prac-
tices that suggest to select an idle wait as a function of
foreground service demands would yield satisfactory results.

153

16.15 16.2 16.25 16.3 16.35

15

20

25

30

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace3−S1 − BG is 100% FG
Threshold = 4 IOs, CWS = 11 bps

Conservative Scheduling
Dynamic Scheduling

14.2 14.4 14.6 14.8 15
20

22

24

26

28

30

32

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace3−S2 − BG is 100% FG
Threshold = 4 IOs, CWS = 11 bps

Conservative Scheduling
Dynamic Scheduling

14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9

16

17

18

19

20

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace3−S3 − BG is 100% FG
Threshold = 5 IOs, CWS = 9 bps

Conservative Scheduling
Dynamic Scheduling

20 21 22 23
80

82

84

86

88

90

92

94

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace3−S1 − BG is 1000% FG
Threshold = 4 IOs, CWS = 11 bps

Conservative Scheduling
Dynamic Scheduling

17 17.5 18 18.5 19
50

51

52

53

54

55

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace3−S2 − BG is 1000% FG
Threshold = 4 IOs, CWS = 11 bps

Conservative Scheduling
Dynamic Scheduling

16.5 17 17.5 18

49

50

51

52

53

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace3−S3 − BG is 1000% FG
Threshold = 5 IOs, CWS = 9 bps

Conservative Scheduling
Dynamic Scheduling

Figure 12: Scheduling comparison between dynamic and conservative scheduling for Trace3, scheduling results
use the three respective periods given in Figure 8 (left, center, right columns) to schedule in the next 5 hours.

Overall, we conclude that the dynamic scheduling policy is
robust and consistently achieves fast service of asynchronous
tasks while sustaining foreground performance.

5.3 Evaluation Scenario Two: Swiftly Chang-
ing Workload

We concatenate Trace2 and Trace1 to obtain a new trace
which we name Trace4. Trace4 is used to evaluate the adap-
tivity of the proposed scheduling policy as the workload
changes swiftly. The new trace has a 24-hour span. Be-
cause Trace2 and Trace1 have different characteristics (e.g.,
Threshold and CWS), we expect a significant change around
the 12th hour in the characteristics of Trace4. In order to
capture the behavior of the dynamic scheduling policy, we
chose to show here the following three learning windows from
the 24-hour duration of Trace4.

• Period 1: learning window from the beginning up to
the 8th hour; scheduling decisions apply from the start
of the 9th hour through the 16th hour (i.e., learning
happens before the workload change and applies dur-
ing the workload change).

• Period 2: learning window from the 6th hour to the
14th hour; scheduling decisions apply from the start
of the 15th hour through the 22nd hour (i.e., learning
includes only a small portion of changed workload and
applies over the period after the workload change).

• Period 3: learning window from the 8th hour to the
16th hour; scheduling decisions apply from the start
of the 17th hour through the 24th hour (i.e., learning
has equal portion before and after the workload change
and applies over the period after the workload change).

Figure 13 shows the conditional probabilities for the three
time windows and reflects the workload changes. We note

also that Threshold changes gradually from 6 in the leftmost
plot to 4 in the rightmost plot as the observed amount of
Trace1 increases.

We present the scheduling results in Figure 14. We ob-
serve that the dynamic scheduling policy is robust and con-
sistently performs well, even during the workload transition
periods. Performance improves as the learning window in-
cludes more of Trace1 (e.g., note the differences in the fore-
ground and the background performance in the center and
rightmost columns). Overall, we conclude that the learning
process incorporated in the dynamic scheduling algorithm,
enables the scheduling policy to adapt well even to swift
changes in workload characteristics.

6. CONCLUSIONS
In this paper, we propose a dynamic framework for schedul-

ing background tasks, often associated with eventual consis-
tency in geographically distributed storage systems. The
framework ensures that the performance of foreground traf-
fic is sustained while data consistency is achieved as fast as
possible. We define a metric that measures the likelihood
that busy periods of similar length arrive in a clustered way.
This metric allows us to identify patterns in the length of
busy periods and their probabilistic arrival. The reasoning
behind the proposed scheduling framework is that if there
is a cluster of short busy periods, then the system schedules
aggressively the background work without much impact on
foreground performance. If the cluster of long busy peri-
ods is detected, then scheduling of background tasks is done
conservatively during the anticipated duration of long busy
periods, i.e., only long idle intervals are used for serving
background work. Extensive trace-driven experimentation
shows that the framework is effective and robust. It achieves
better response time for the background work without de-
grading performance of foreground traffic.

In the future, we plan to extend the work presented here

154

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace4-L1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace4-L2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 1011121314151617181920

P
ro

b
a

b
ili

ty
 o

f
L

o
n

g

Lag

Probability Long-Trace4-L3

Figure 13: Probability plots that a long busy period is followed by a similar long one for lag 1 to lag 20 for
different portions of Trace4. Three windows are considered: Start = 0, i.e., starting at the beginning of the
trace (left graph), Start = 6 hour (center graph), and Start = 8 hour (right graph).

14.6 14.8 15 15.2 15.4
25

30

35

40

45

50

55

60

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace4−S1 − BG is 100% FG
Threshold = 6 IOs, CWS = 4 bps

Conservative Scheduling
Dynamic Scheduling

15.5 16 16.5 17

60

80

100

120

140

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace4−S2 − BG is 100% FG
Threshold = 5 IOs, CWS = 3 bps

Conservative Scheduling
Dynamic Scheduling

15.5 16 16.5 17 17.5
20

40

60

80

100

120

140

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace4−S3 − BG is 100% FG
Threshold = 4 IOs, CWS = 3 bps

Conservative Scheduling
Dynamic Scheduling

25 26 27 28 29
600

700

800

900

1000

1100

1200

1300

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace4−S1 − BG is 1000% FG
Threshold = 6 IOs, CWS = 4 bps

Conservative Scheduling
Dynamic Scheduling

25 26 27 28 29 30
4000

4500

5000

5500

6000

6500

7000

7500

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace4−S2 − BG is 1000% FG
Threshold = 5 IOs, CWS = 3 bps

Conservative Scheduling
Dynamic Scheduling

26 27 28 29 30 31 32

1.5

2

2.5

3

x 10
4

FG Response Time (ms)

B
G

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Trace4−S3 − BG is 1000% FG
Threshold = 4 IOs, CWS = 3 bps

Conservative Scheduling
Dynamic Scheduling

Figure 14: Scheduling comparison between dynamic and conservative scheduling for Trace4, scheduling results
use the three respective windows given in Figure 13 (left, center, right columns) to schedule in the next 8
hours.

to learn and detect the length of the cluster of both busy
and idle periods, aiming for the best outcome on scheduling
time sensitive background work. We are also planning to
use this framework to schedule work with different but close
priorities, where foreground work can be delayed more than
background work, at least for some periods of time.

7. ACKNOWLEDGMENTS
This work is supported by NSF grants CCF-0811417 and

CCF-0937925. The authors thank Seagate Technology for
providing the enterprise traces used for this work. We thank
our shepherd J. Nelson Amaral for his assistance in improv-
ing the presentation of this paper.

8. REFERENCES

[1] E. Bachmat and J. Schindler. Analysis of methods for
scheduling low priority disk drive tasks. In
SIGMETRICS, pages 55–65, 2002.

[2] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy,
and J. Schindler. An analysis of latent sector errors in
disk drives. In SIGMETRICS, pages 289–300, 2007.

[3] J. L. Bruno, J. C. Brustoloni, E. Gabber, B. Özden,
and A. Silberschatz. Disk scheduling with quality of
service guarantees. In ICMCS, Vol. 2, pages 400–405,
1999.

[4] F. Douglis and P. Krishnan. Adaptive disk spin-down
policies for mobile computers. Computing Systems,
8(4):381–413, 1995.

[5] L. Eggert and J. D. Touch. Idletime scheduling with
preemption intervals. In SOSP, pages 249–262, 2005.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In SOSP, pages 29–43, 2003.

[7] R. A. Golding, P. B. II, C. Staelin, T. Sullivan, and
J. Wilkes. Idleness is not sloth. In USENIX Winter,
pages 201–212, 1995.

[8] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and

155

R. Rangaswami. Cost effective storage using extent
based dynamic tiering. In FAST, pages 273–286, 2011.

[9] A. Gulati, A. Merchant, and P. J. Varman. pclock: an
arrival curve based approach for qos guarantees in
shared storage systems. In SIGMETRICS, pages
13–24, 2007.

[10] D. P. Helmbold, D. D. E. Long, T. L. Sconyers, and
B. Sherrod. Adaptive disk spin-down for mobile
computers. MONET, 5(4):285–297, 2000.

[11] H. Huang, W. Hung, and K. G. Shin. Fs2: dynamic
data replication in free disk space for improving disk
performance and energy consumption. In SOSP, pages
263–276, 2005.

[12] I. Iliadis, R. Haas, X.-Y. Hu, and E. Eleftheriou. Disk
scrubbing versus intra-disk redundancy for
high-reliability raid storage systems. In
SIGMETRICS, pages 241–252, 2008.

[13] C. R. Lumb, A. Merchant, and G. A. Alvarez. Façade:
Virtual storage devices with performance guarantees.
In FAST, pages 131–144, 2003.

[14] M. K. McKusick and G. R. Ganger. Soft updates: A
technique for eliminating most synchronous writes in
the fast filesystem. In USENIX Annual Technical
Conference, FREENIX Track, pages 1–17, 1999.

[15] N. Mi, A. Riska, X. Li, E. Smirni, and E. Riedel.
Restrained utilization of idleness for transparent
scheduling of background tasks. In
SIGMETRICS/Performance, pages 205–216, 2009.

[16] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel.
Efficient management of idleness in storage systems.
TOS, 5(2), 2009.

[17] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and
Z. Wilcox-O’Hearn. A performance evaluation and
examination of open-source erasure coding libraries for
storage. In FAST, pages 253–265, 2009.

[18] A. Riska and E. Riedel. Disk drive level workload
characterization. In USENIX Annual Technical
Conference, General Track, pages 97–102, 2006.

[19] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A.
Smith, C. A. N. Soules, and C. A. Stein. Journaling
versus soft updates: Asynchronous meta-data
protection in file systems. In USENIX Annual
Technical Conference, General Track, pages 71–84,
2000.

[20] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Improving storage system
availability with d-graid. TOS, 1(2):133–170, 2005.

[21] E. Thereska, J. Schindler, J. S. Bucy, B. Salmon,
C. R. Lumb, and G. R. Ganger. A framework for
building unobtrusive disk maintenance applications. In
FAST, pages 213–226, 2004.

[22] W. Vogels. Eventually consistent. ACM Queue,
6(6):14–19, 2008.

[23] M. Wachs and G. R. Ganger. Co-scheduling of disk
head time in cluster-based storage. In SRDS, pages
278–287, 2009.

[24] F. Yan, X. Mountrouidou, A. Riska, and E. Smirni.
Copy rate synchronization with performance
guarantees for work consolidation in storage clusters.
In GreenMetrics 2011 Workshop, San Jose, CA, USA,
2011.

156

	Introduction
	State of the Art and Motivation
	Workload Characterization
	Overview of Traces
	Characteristics of Busy Periods

	Dynamic Scheduling Policy
	Experimental Evaluation
	Experimental Setting
	Evaluation Scenario One: Stable Workload
	Evaluation Scenario Two: Swiftly Changing Workload

	Conclusions
	Acknowledgments
	References

