
Statistical Detection of QoS Violations Based on CUSUM
Control Charts

Ayman Amin
Faculty of Information and

Communication Technologies
Swinburne University of

Technology
Hawthorn, VIC 3122, Australia
aabdellah@swin.edu.au

Alan Colman
Faculty of Information and

Communication Technologies
Swinburne University of

Technology
Hawthorn, VIC 3122, Australia
acolman@swin.edu.au

Lars Grunske
Software Engineering: AG

AQUA
University of Kaiserslautern

Kaiserslautern,67653,
Germany

grunske@cs.uni-kl.de

ABSTRACT
Currently software systems operate in highly dynamic con-
texts, and consequently they have to adapt their behavior
in response to changes in their contexts or/and require-
ments. Existing approaches trigger adaptations after de-
tecting violations in quality of service (QoS) requirements
by just comparing observed QoS values to predefined thresh-
olds without any statistical confidence or certainty. These
threshold-based adaptation approaches may perform unnec-
essary adaptations, which can lead to severe shortcomings
such as follow-up failures or increased costs. In this paper
we introduce a statistical approach based on CUSUM con-
trol charts called AuDeQAV - Automated Detection of QoS
Attributes Violations. This approach estimates at runtime
a current status of the running system, and monitors its
QoS attributes and provides early detection of violations in
its requirements with a defined level of confidence. This en-
ables timely intervention preventing undesired consequences
from the violation or from inappropriate remediation. We
validated our approach using a series of experiments and
response time datasets from real-world web services.

Categories and Subject Descriptors
D.2 [Software Engineering]: Subjects—Software configu-
ration management

General Terms
Algorithms, Performance

Keywords
Quality of Service (QoS), Runtime Monitoring, QoS Viola-
tion, Runtime Adaptation, CUSUM Control Charts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

1. INTRODUCTION
Software systems are being ever-increasingly used in our

daily life and have become a crucial part of various critical
and non-critical applications. Consequently, there is an in-
creasing need for software systems that are more reliable,
with higher performance, and support more users [4]. At
runtime, software systems may suffer from changes in their
operational environment or/and requirements specification,
so they need to be adapted to satisfy the changed environ-
ment or/and specifications [28, 6, 3]. The research com-
munity has developed a number of approaches to building
adaptive systems that respond to such changes, for example
Rainbow [10], MUSIC [26], and StarMX [2], QoSMOS [3],
just to name a few.

Currently, several approaches have been proposed either
to monitor QoS attributes at runtime with the goal of de-
tecting QoS violations in order to trigger adaptations (e.g.
[13, 19, 23, 32, 33, 35, 37]), or to verify whether QoS val-
ues meet the desired level to detect violations of Service
Level Agreements (SLAs) (e.g. [18, 27, 29, 14]). These ap-
proaches detect violations of QoS requirements by observing
the running system and determining QoS values. If these
values exceed a predefined threshold, they are considered to
be QoS violations. These approaches have two important
drawbacks.

• First, the approaches rely on detecting QoS violations
based on an observation or sample. If there is a back-
ground volatility in measured values, there is no indi-
cation of statistical confidence that the sample in fact
indicates a systemic problem. Consequently, unneces-
sary adaptations maybe performed leading to failures
or increased costs associated with adaptation.

• Second, a running software system’s typical perfor-
mance capability is not characterized, so any unusual
deviations from that behavior cannot be detected other
than gross violations of QoS requirements. As a result
we use a capability estimation technique that charac-
terizes the current status of the software system behav-
ior, which may help to improve detecting violations.

In our previous work [1] addressing these limitations we
have proposed CREQA approach based on Shewhart and
CUSUM control charts for the runtime evaluation of the
software system’s behavior to detect out-of-control situa-
tions, where the system’s behavior has significantly changed.

97

However, the CREQA approach evaluates the software sys-
tem’s behavior without assuming any predefined QoS re-
quirements. This approach may be useful in some cases but
in most of the real cases there are predefined QoS require-
ments that need to be monitored and evaluated at runtime.

To address the drawbacks of the existing approaches and
the limitation of our previous work, we propose a statistical
approach called AuDeQAV (Automated Detection of QoS
Attributes Violations) based on CUSUM control charts for
the runtime detection of QoS attributes violations. This ap-
proach consists of four phases: (1) Estimating the running
software system capability in terms of descriptive statistics,
i.e. mean, standard deviation, and confidence interval of
QoS attributes, in order to describe the current normal be-
havior; (2) Building a CUSUM control chart using the given
QoS requirements; (3) After getting each new QoS observa-
tion, updating the CUSUM chart statistic and checking for
statistically significant violations; (4) In case of detecting vi-
olations, providing warning signals to the management layer
to take the required adaptation actions.

The main contributions of this paper include:

1. We propose an approach based on CUSUM control
charts that characterizes a software system’s capabil-
ity and then monitors QoS attributes to detect QoS
requirement violations before they lead to undesired
consequences.

2. We use a case study and perform experiments to evalu-
ate the accuracy and performance of the approach. In
addition, we compare the approach with the threshold
based method to highlight the former’s advantages.

3. We apply the proposed approach to QoS response time
data sets of real web services [5] to evaluate the appli-
cability of the proposed approach.

The rest of the paper is organized as follows. Section 2 de-
scribes the research problem through a presentation of a mo-
tivating scenario and a discussion of related work. Section
3 provides some background on statistical control charts.
The proposed approach AuDeQAV is discussed in Section
4. Evaluation of the proposed approach is reported in Sec-
tion 5. Section 6 concludes the paper and outlines directions
for future work.

2. RESEARCH PROBLEM
In this section we first present a scenario that illustrates

QoS requirements of a real application. We then investigate
the extent to which solutions presented in the literature can
meet these requirements. The identified shortcomings are
used to motivate our work.

2.1 Motivating Scenario
Scenario: A hospital has elderly patients who return

home after a treatment but still need a daily follow up to
complete the treatment course. The patients live in remote
areas, and it is inconvenient for both the doctors and the
patients to interact directly. To address this problem, the
hospital will develop a Patient Assistance (PA) system [36,
12], which is a software- and telecommunication-based ser-
vice, to enable the patients and the doctors to communicate
in a timely manner. The patients’ situations have different
criticality levels. As such, there is a need to define a limit

on the PA system’s response time as QoS attribute based
on the urgency of a patient’s need. For example, when the
patient’s criticality level is high, the PA system should re-
spond within two seconds to each request with a probability
of 95% or higher.

Scenario Analysis: To assure the QoS requirements of
the PA system, the hospital needs a management framework
that monitors the PA system’s QoS metrics. Then, based
on the monitored QoS data, the management framework
determines violations of the above requirements and gives
warning signals to trigger the required adaptation actions,
e.g. allocating more resources. This needs to be achieved
before the violations lead to undesired consequences, e.g.
putting a patient life in danger.

Consequently, to get a software system that is able to
adapt itself in order to avoid QoS requirement violations its
management framework must be able to monitor QoS at-
tributes and detect in a timely manner QoS violations before
they lead to undesired consequences. This can be achieved
by continuously monitoring and collecting QoS values of the
running system, and then using the collected data to infer
unwanted systemic behavior.

2.2 Related Work
The above scenario shows that in order to fulfil the ap-

plication requirements, the management framework needs
the ability to monitor QoS attributes. In this subsection
we investigate the literature and discuss how existing tech-
niques/frameworks address the problem.

The Rainbow framework [10, 8], which has been devel-
oped to dynamically monitor and adapt a running software
system, uses monitoring techniques to detect QoS violations
after they have occurred by simply comparing the collected
QoS values with the predefined threshold. It then uses
condition-action scenarios (tactics) to fix these QoS viola-
tions. Other approaches [7, 9] that build on the Rainbow
framework use the same mechanism to detect and address
QoS violations.

The work in [31] proposes DySOA (Dynamic Service Ori-
ented Architecture) that uses monitoring to track and collect
information regarding a set of predefined QoS parameters
(e.g. response time and failure rates), infrastructure charac-
teristics (e.g. processor load and network bandwidth), and
even context information (e.g. user GPS coordinates). The
collected QoS information is directly compared to the QoS
requirements; and in case of a deviation, the reconfiguration
of the application is triggered.

In [16], a middleware architecture is proposed to enable
SLA-driven clustering of QoS-aware application servers. This
middleware consists of three components: The Configura-
tion Service is responsible for managing the QoS-aware clus-
ter, the Monitoring Service observes at runtime the appli-
cation and verifies whether the QoS values meet the desired
level to detect violations of SLAs, and the Load Balancing
Service intercepts client requests to balance them among
different cluster nodes. If the QoS values delivered by the
cluster deviate from the desired level (e.g., the response time
breaches the predefined threshold), the middleware reconfig-
ures that cluster by adding clustered nodes.

Michlmayr et al. [18] have presented a framework that
observes the QoS values and checks whether they meet the
required levels to detect possible violations of SLAs. Once
an SLA violation is detected, adaptive behavior can be trig-

98

gered such as the hosting of new service instances. Also, in
[27] a QoS requirements satisfaction is analyzed in terms of
the SLA fulfillment, which is considered as the main quality
criterion of a service.

Recent studies [19, 35] propose autonomic frameworks
to monitor QoS attributes and dynamically adapt service-
based systems in an automated manner in response to re-
quirements violations. In [19], Mirandola and Potena pro-
pose a framework that dynamically adapts a service based
system while minimizing the adaptation costs and guar-
anteeing a required level of QoS. This framework triggers
adaptation actions automatically in response to runtime vi-
olation of system QoS constraints, or the availability/non-
availability of services in the environment. Thongtra and
Aagesen [35] present a framework for service configuration
that has goals, which express required performance and in-
come measures, and policies, which define actions in states
with unwanted performance and income measures. This
framework monitors quality attributes constraints and in the
case of violations it triggers pre-defined policies.

All these approaches detect QoS violations by just com-
paring observed QoS values to predefined thresholds. Using
such an approach has critical limitations:

- First, the current approaches collect QoS attribute val-
ues of a running system at specific times or periodi-
cally, i.e. second, minute, or hour; and if one (or more)
of these collected values exceeds a predefined threshold
they are considered to be QoS violations of the run-
ning system. However, in that sense these collected
QoS values are considered to be samples, rather than
a collection of all the experienced QoS values. This
implies that false classifications are likely, and to cor-
rectly and significantly generalize to the running sys-
tem over time one needs to either: (1) Collect all the
experienced QoS values, which is inapplicable in most
real-world cases, or (2) Use a statistical method that
can generalize the behavior with a specified confidence
level, e.g. 95%.

- Second, a software system capability, in terms of its
different QoS attributes, can not be estimated. Where,
it just verifies whether the QoS values exceed the given
threshold and does not provide any information about
the software system current status (e.g. the average
and variance of the system response time). This up-
dated capability estimation can help software system
engineers to continuously obtain the current status of
software system behavior, which enables them to de-
tect a change or deviation in that behavior before un-
desired events occur.

The proposed AuDeQAV approach addresses these draw-
backs. It uses collected QoS values to estimate the capability
of the software system, and uses the predefined QoS require-
ments to build CUSUM chart to detect significant violations
in these requirements with a specified confidence level.

3. CONTROL CHARTS BACKGROUND
Statistical control charts are an efficient quality control

technique for online monitoring and detecting of changes
and violations in a given statistical process [20, 11, 34, 15].
Control charts are constructed by taking sample readings of
the variable to be controlled from the process, then plotting

values of the quality characteristic of interest in time order
on a chart. This chart contains a center line (CL), which
represents the average value of the quality characteristic,
and two other horizontal lines called the upper control limit
(UCL) and the lower control limit (LCL). These control lim-
its are chosen such that if the process is in-control, which
means there is no change or shift in the process, nearly all of
the sample points will fall between them. In general, if the
values plot within the control limits, the process is assumed
to be in-control, and no action is necessary. However, a
value that falls outside of the control limits is taken as a sig-
nal that a change has occurred, the process is out-of-control,
and investigation and corrective action are required.

The general model for a control chart proposed first by
Shewhart [30] can be given as follows. Let X be a sample
statistic that measures some quality characteristic of inter-
est, and suppose that μX and σX are the mean and the
standard deviation of X, respectively. Then chart parame-
ters become:

UCL = μX +D · σX , CL = μX , LCL = μX −D · σX (1)

where D is the distance expressed in standard deviation
units of the control limits from the center line. Usually D is
chosen in practice to be 3 standard deviations to give a sta-
tistical confidence level of about 99.7%. Thus, this control
chart is called three sigma (3-σ) chart.

In the cases that the quality characteristic of interest is
in the form of required probability, i.e. proportion, the She-
whart chart is called P-chart and its parameters become:

UCL = P0 +D · σP0 , CL = P0, LCL = P0 −D · σP0 (2)

where P0 is the required proportion to be monitored and
its standard deviation σP0 is computed as σP0 =

√
(P0(1−

P0)/n).
Example � For the sake of illustrating how a P-chart can

be used to monitor QoS requirement and detect violations,
suppose that there is a running software system and the
requirement is ”No more than 2 seconds response time for
95% of the requests”. In other words, the requirement is
that the proportion of response time that is greater than 2
seconds is 0.05. To use a P-chart to monitor this software
system performance the following steps are required: First,
samples of size n (e.g. n= 30) from the system response time
are taken. Second, a variable called rt is created, and it takes
the value 1 if the response time is greater than 2 seconds
and 0 otherwise. Third, the proportion of the response time
(Prt) that is greater than 2 seconds is computed, and the
3-σ control limits of P-chart are constructed using equation
(2) and response time requirement as follows: UCL = 0.05

+ 3(
√

(0.05 ∗ 0.95/30)) = 0.17, CL = 0.05, and LCL =

445 - 3((
√

(0.05 ∗ 0.95/30)) = -0.17. Fourth, the values of
computed proportions Prt are checked and compared to the
control limits; and if there is any value that falls outside of
these control limits, it is taken as a warning signal that a
violation in the response time requirement has occurred. �

P-charts have a critical limitation when used at runtime
because they wait until all the n sample observations are
collected before computing the proportion. This process im-
plies late detection of violations. Therefore, our proposed
approach adopts advanced control charts that continuously
monitor response time observations, and once the value is

99

obtained it is checked and compared to the built chart lim-
its. These control charts and their performance measures
are discussed in detail in the following subsections.

3.1 CUSUM Control Charts
Page [22] has proposed CUSUM control charts as an ef-

fective alternative to the Shewhart control charts. These
charts compute and plot the cumulative deviations sum of
the sample values from a target (required) value. For exam-
ple, suppose that samples of size n = 1 are collected, and Xj

is the value of the jth sample. Then, the CUSUM control
chart is formed by plotting the quantity Ci =

∑i
j=1(Xj−μ0)

against the sample number, where μ0 is the target value for
the quality characteristic of interest. Because the CUSUM
charts combine information from several samples, they are
more effective than Shewhart charts for detecting small pro-
cess shifts. Furthermore, they are a good candidate for situa-
tions where an automatic measurement of the quality char-
acteristic is economically feasible as they are particularly
effective with samples of size n = 1 [15].

If the cumulative sum statistic Ci fluctuates around zero,
it indicates that the process remains in-control at the tar-
get value. However, if it has a positive (or negative) drift,
it signals that the quality characteristic values have shifted
upward (or downward). Therefore, if the CUSUM has either
positive or negative trend in the plotted points, this should
be considered as a signal that the quality characteristic val-
ues have deviated from the target and required value.

Particularly, if the quality characteristic of interest is pro-
portion (P) and samples observations (Xt) are binary data
(0 and 1 values), the CUSUM statistic is called Bernoulli
CUSUM. This statistic, to be used to detect an increase in
P , is computed using a tabular procedure as follows:

Bt = max[0, Bt−1 +Xt −K], t = 1, 2, . . . , (3)

where the starting value is B0 = 0. The parameter K is
called the reference value for the CUSUM chart. For the
value of K to be determined, it is necessary to specify the
values P0 and P1, where P0 represents the target or required
value (in our work, it is a QoS requirement) and P1 > P0 is
an out-of-control (violation) value of P that is required to
be quickly detected. In other words, (P1−P0) represents the
violation size in P that is required to be quickly detected.
After specifying P0 and P1, K can be computed as follows:

K = r1/r2, (4)

where, r1 and r2 are constants computed based on likelihood
ratio test [15] as follows:

r1 = − ln[
1− P1

1− P0
] and r2 = ln[

P1(1− P0)

P0(1− P1)
] (5)

The lower and upper control limits of CUSUM are computed
as follows [25]:

LCL = −
ln (1−α)

β

2 ln P1(1−P0)
P0(1−P1)

and UCL =
ln (1−β)

α

2 ln P1(1−P0)
P0(1−P1)

(6)

where α is an upper bound for an acceptable type I error
(or a false positive) which means that the CUSUM chart
decides that there is a violation in the QoS requirements of

the running system even when the system is at the required
level and does not have any violation, and β is an upper
bound for an acceptable type II error (or a false negative)
which means that the chart decides that there is no violation
when the system has indeed violated its requirements. To
improve the performance of CUSUM control charts, some
researchers [17] have proposed the fast initial response (FIR)
feature which permits a more rapid response to an initial
out-of-control, especially at start-up or after the CUSUM
chart has given an out-of-control signal.

In practice when the monitored proportion is small the
LCL will be negative, and that means the lower limit is in-
effective [24]. Consequently, our approach concentrates only
on the upper limit (UCL), which in literature is normally
called the decision interval H . It is clear from equation 6
that the value of this decision interval is determined by P0,
P1, and the required α and β values. It is worth mention-
ing that statistically in practice (1 − α) and (1 − β) refer
to the statistical confidence and power levels of the chart,
respectively.

3.2 Control Charts performance
The control chart performance is measured by the ability

of the chart to detect changes in the process. The average
run length (ARL), which is defined as the average number of
samples that must be plotted on the chart before a sample
indicates an out-of-control condition, is a commonly used
measure for the performance of a control chart.

In the case of Shewhart chats, the ARL can be calculated
from the mean of a geometric random variable [20]. For
illustration, suppose that p is the probability that any point
falls outside of the control limits, then, the ARL is computed
as the inverse of that probability, ARL = 1/p. In the case
of three sigma limits and an in-control process, we have p =
0.0027 based on the normal distribution and the in-control
ARL (ARL0) = 370. That means on the average a false
alarm will be generated every 370 data points. In the case of
out-of-control, to compute the out-of-control ARL (ARL1);
the probability p of a point falls outside of the control limits
is needed and it depends on the shift size. Suppose the
actual mean of process shifts by three standard deviations,
then it is straightforward to show that p = 0.5 and ARL1 =
1/0.5 = 2.

The ARL for the CUSUM chart depends on the decision
intervalH , which determines the width of control limits, and
on the selected reference value K. Several authors investi-
gated the optimal values of K and H , and they concluded
that a CUSUM chart with smaller K is more sensitive to
small shifts and violations [15]. Practically, it is advisable
to choose the decision interval H that corresponds to an
in-control ARL of roughly 740, which is equivalent to a 3σ
Shewhart chart [15].

4. THE AUDEQAV APPROACH
The AuDeQAV is a statistical approach we introduce for

the automated detection of QoS attributes violations. This
approach uses CUSUM control charts. It has mainly two
tasks. First, it uses collected QoS data to estimate at run-
time the capability of a running system. This capability
estimation is to obtain the current status of the software
system’s behavior. The capability is represented in terms
of mean, standard deviation, and confidence interval of QoS
attributes. Second, the AuDeQAV uses predefined QoS re-

100

quirements and the software system capability estimates to
construct a CUSUM model for monitoring the QoS values
and detecting violations in their requirements.

To achieve these tasks, the AuDeQAV approach has four
steps as depicted in Figure 1. In the following, we explain in
detail these steps and illustrate the procedure based on the
response time data of the Patient Assistance (PA) system.

Phase 1 (P1): Estimating Capability
In the first phase, the software system’s capability is esti-
mated in terms of descriptive statistics of specific QoS at-
tributes. This estimation is performed after the software
system has started, and it can be updated in different sched-
ules:

1. After an adaptation has been triggered.

2. Every specific predefined period of time (including af-
ter an adaptation has been triggered), e.g. after every
one day and also after any adaptation action has been
triggered.

3. After getting each new QoS attribute value.

Basically, the main task of the approach in that phase is
to use collected QoS values to estimate mean and standard
deviation of the given QoS attributes, and then it uses these
estimates to build QoS confidence interval, i.e. 95% confi-
dence interval. In cases where the software system engineers
do not have precise QoS requirements, they can use these
QoS estimates and confidence intervals to update and refine
these requirements. On the other hand, if there are pre-
cise requirements, the approach can initially estimate how
these requirements are fulfilled from the collected QoS data.
This initial estimation of requirements fulfilment can help
the software system engineers later, when they have require-
ment violations, in triggering adaptation actions, e.g. by
how much they need to increase the resources, or in refining
the QoS requirements.

There is an important issue related to this phase: how
many samples are needed to be used to accurately estimate
the system capability? To address this issue, we use a se-
quential estimation method based on sampling theory. Ac-
cording to parametric estimation methods [21], the absolute
relative error of estimating a population mean is less than a
specified amount which can be evaluated as follows:

E =
Zα/2σ

x̄
√
n

(7)

where n, x̄ and σ are the sample size, mean and standard
deviation respectively. Zα/2 is a coefficient of the confidence
level 100(1-α)%, and it is computed from the standard nor-
mal distribution. This equation can be used only when x̄ is
normally distributed. To address this normality issue we use
the central limit theorem [21], which simply reports that a
mean of sample of size at least 30 observations driven from
any distributed population can be approximated to be nor-
mally distributed.

Therefore, our sequential estimation method works as fol-
lows:

1. Specify the maximum absolute relative error (Ereq)
that is required to estimate the software system’s ca-
pability. The required confidence level is also specified,
e.g. 95%, to compute the coefficient Zα/2.

2. Once 30 QoS observations are obtained, the approach
computes QoS mean and standard deviation, x̄ and σ,
and then computes E as in equation 7.

3. The inequality Ereq ≤ E is evaluated. If it is sat-
isfied, use these estimates; otherwise wait until new
QoS observation are received and repeat 2 and 3 un-
til capability estimates with a required accuracy are
obtained.

Example � Suppose that the proposed approach is being
used to monitor the PA system’s response time values (re-
ferred as PA(RT)) and to detect a violation in its require-
ment which is: ”No response time is more than 2 seconds
for 95% of the requests”. We specify the confidence level
= 95% (accordingly, Zα/2 = 1.96) and Ereq = 0.01 to esti-
mate the capability of PA system. Once the approach gets
30 response time observations, it computes mean (= 1621.6)
and standard deviation (= 172.1), and then computes E (=
0.038). The approach concludes that Ereq < E and then es-
timates the capability in terms of mean, standard deviation,
and 95% confidence interval of PA(RT). In addition, as we
have assumed that we have a precise response time require-
ment (i.e. PA(RT) ≤ 2 seconds with 95%), the approach can
initially estimate the fulfilment of this requirement (ReqFul
(%)) by computing the proportion of response time values
that are equal to or less than 2 seconds. These results are
depicted in Table 1. These estimates in practice can be up-
dated after getting each new response time observation. �

Metric Std. Lower Upper ReqFul
(in ms) Mean Dev. 95% limit 95% limit (%)
Value 1621.6 172.1 1468.9 1782.5 96.7

Table 1: Response time capability estimates of PA
system

Phase 2 (P2): Building CUSUM Control Charts
After estimating software capability and getting the prede-
fined QoS requirements, the approach builds the CUSUM
control chart model to monitor QoS values and directly de-
tect violations. This building of control chart is achieved by
using the methodology of CUSUM control charts that are
explained and discussed in Section 3. However, some addi-
tional issues need to be addressed in order to build CUSUM
charts at runtime.

These issues are as follows. Initially, there are some pa-
rameters that need to be specified as discussed in Section
3. These parameters are P0, P1 and H . P0 can be easily
computed from the QoS requirement or from the capabil-
ity estimates. However, software system engineers need to
specify the other two parameters P1 andH . AsH and P1 de-
termine the violation size that needs to be quickly detected
and the control chart limits, the performance of CUSUM
charts is dominated by the specified values of these parame-
ters. Therefore, software system engineers need to carefully
specify these parameters values to design and build a control
chart with much better performance to detect the preferred
violation size with smaller false alarms. In the evaluation
section we investigate in detail how to specify the param-
eters of CUSUM charts to help engineers to design control
charts with better performance and fewer false alarms.

101

 (P1)
 Estimate SoSy Capability

Collected

QoS Data

 (P2)
 Build CUSUM Charts of QoS

No

Yes
 (P3)
Check for QoS Violations

QoS

Requirements

New

QoS Data

Get QoS
Violation?

Is Adaptation
Triggered?

No

Yes (P4)
Give Warning Signals

Figure 1: AuDeQAV approach process

Example � To build a CUSUM chart for PA(RT), we first
create a dummy variable Xt that takes the value 1 if the
response time is greater than 2 seconds and 0 otherwise.
Based on the response time requirement, it can be verified
that P0 = 0.05. In addition, we specify P1 = 0.10, which
means the violation size that we need to quickly detect is
0.05. Using P0 and P1 values and equations (4) and (5),
K parameter value is computed (= 0.0724) and CUSUM
statistic is rewritten as:

Bt = max[0, Bt−1 +Xt − 0.0724], t = 1, 2, . . . , (8)

where B0 = 0. In addition, we set the statistical confidence
and power of the chart to be 99%, which means that α =
0.01 and β = 0.01. H value is computed using equation (6)
as follows:

H =
ln (1−β)

α

2 ln P1(1−P0)
P0(1−P1)

=
ln (1−0.01)

0.01

2 ln 0.10(1−0.05)
0.05(1−0.10)

≈ 3.0 (9)

�

Phases 3 and 4 (P3&P4): Detecting QoS Violations
and Giving Warning Signals
After building the CUSUM chart model (in P2) and getting
each new QoS observation, the CUSUM statistic is recom-
puted; and once its value exceeds the decision interval H it
is considered to be a requirement violation. Consequently
a warning signal is sent to the management layer to trigger
the necessary corrective adaptation.

Example � For each new value of PA(RT), the approach
continuously updates CUSUM statistic and checks for vio-
lations. Once it gets one value that exceeds H = 3, it gives
a warning signal. To illustrate, we compute the sequential
proportions of the response time values that are greater than

two seconds and the corresponding CUSUM statics and vi-
sualize this process in Figure 2. From this Figure, we can
see that the approach detects violation of the response time
requirement at sample 291, and this result is consistent with
the sequentially computed proportion. �

Figure 2: Applying AuDeQAV to monitor response
time of PA system

102

5. EVALUATION
This section investigates various accuracy, performance,

and applicability aspects of the proposed approach. First,
the accuracy and performance of the approach are evaluated
based on a series of experiments. Then, this approach is
applied to datasets of response times from real-world web
services in order to evaluate its applicability to analyzing
and evaluating real situations. Finally, we discuss threats to
the validity of our work.

5.1 Evaluating Accuracy and Performance
To investigate the performance and accuracy aspects of

the proposed approach, it has been applied to the PA system
case study. Based on this case study, a series of experiments
have been performed in order to answer two basic research
questions.
RQ1: How many samples are required for the approach to
detect a violation in the QoS requirements, with respect to
different violation sizes? And how many false alarms does
the approach give?
RQ2: What is the real advantage of using the proposed
approach over a simple threshold-based method to detect
QoS violations?

RQ1: The number of samples required to detect a vi-
olation in the QoS requirements and the false alarm
rate:
As discussed in the previous section, in order to apply the
approach to monitor QoS attributes and detect violations
in their requirements, the values of P0, P1, and H parame-
ters need to be specified, and their specified values determine
the values of ARL0 and ARL1. These ARL0 and ARL1 val-
ues refer to the expected false alarm rate and the expected
number of samples to detect real occurred violations, respec-
tively. Consequently, in our experiments we have a range of
values for these parameters to analyze their effect on the
performance of the proposed approach. These parameters
and their specified values are discussed as follows:

• Response time requirement: To evaluate the perfor-
mance of the approach in monitoring different require-
ments, we have five settings, i.e. that no response
time is more than 2 seconds for 99%, 95%, 90%, 85%,
and 80% of the requests. These requirements are ex-
pressed into required proportions of response times
that are greater than 2 seconds (P0 values) as inputs
for CUSUM charts, i.e. 0.01, .05, 0.10, 0.15, and 0.20
respectively.

• Required violation size to be quickly detected ([P0−P1]
values): In our experiments we specify four violation
sizes; 0.050, 0.075, 0.100, and 0.150.

• Decision interval (H): Its value is determined by the
required statistical confidence (1−α) and power (1−β).
Therefore, we specify different values for H that vary
from one to ten with an increment of one to represent
different levels of α and β. It is worth noting that
an increasing value of H provides increasing values of
statistical confidence and power levels.

To explain in detail one scenario of these experiments,
suppose we specify P0 = 0.05, P1 = 0.10, and H = 4. Af-
ter that, a violation has been systematically injected with a

predefined violation size into the case study’s response time.
Then the case study has been invoked, the AuDeQAV was
run until it signaled a violation condition, and the number
of samples (i.e. run lengths) was computed. Simply, the
ARL was computed as the average of the run lengths of all
the experiments with specific injected violation.

The results of this scenario are depicted (in italic) in the
fourth column of data in Table 3(1). These results tell us
that if our requirement is that ”the proportion of response
times that are greater than 2 seconds is 0.05” and the re-
quired violation size to be quickly detected is 0.05, then
the approach (with statistical confidence and power level of
about 99.75%) requires about 109 samples to detect a vio-
lation of size 0.05, about 70 samples to detect a violation of
size 0.08, and about 10 samples to detect a violation of size
0.45. However, it gives a false alarm at about every 1188
samples (i.e. where the violation size = 0).

For more investigation, all the results for the requirement
”the proportion of response times that are greater than 2 sec-
onds is 0.05” with respect to different violation sizes and
decision interval (H) values are depicted in Table 3. From
this Table we can conclude the following:

1. Given the other parameters are fixed, an increasing
value of the decision interval decreases the false alarm
rate; however, at the same time it increases the re-
quired number of samples to detect a violation in the
requirements. A similar result is concluded for the re-
quired violation size to be detected.

2. The larger the size of occurred violation, the smaller
the number of samples required to detect this violation
with the other parameters are fixed.

3. These results imply that there is a trade-off between
decreasing the false alarm rate and decreasing the num-
ber of samples required to detect violations in the QoS
requirements. In other words, increasing the statistical
confidence and power levels will increase the number of
samples and make the detection late. As a result, it is
very important to choose reasonable values (not very
high) for the chart confidence and power to enable the
approach to provide better performance. Additionally,
this confirms the common understanding based on [20,
34, 15].

We have obtained similar results by applying this ap-
proach to the other response time requirements, and con-
sequently we can generalize that these parameters make the
approach extensible for various preferences and requirements
of software system engineers. They need only to decide a
priori the maximum required false alarm rate and violation
size required to be detected. Deciding the maximum re-
quired false alarm rate is very important as high false alarm
rate may lead to perform unnecessary adaptations which
cause severe shortcomings such as follow-up failures or in-
creased costs. Currently, our approach uses default values
for these two parameters as initial values and they can be
changed according to software engineers’ preferences. The
default false alarm rate is a value that corresponds to statis-
tical confidence and power levels of 99%, and the violation
size equals to the required proportion to be monitored, i.e.
P1 −P0 = P0. However, it is worth mentioning that the op-
timal design of the proposed approach is the subject of our

103

(1) Required violation size (P1 − P0) to be detected = 0.05

δP ∗
0

. . . H 1 2 3 4 5 6 7 8 9 10
0.00∗∗ 60.87 181.99 473.22 1187.67 2736.28 5889.48 12767.20 30567.20 38211.75 47037.67
0.05 23.60 45.86 76.38 109.20 142.57 179.11 214.39 246.88 279.47 320.33
0.08 18.22 33.19 51.19 70.31 89.97 109.33 129.89 147.43 168.02 187.88
0.10 14.34 24.68 36.85 49.76 61.98 75.06 87.74 100.38 113.32 126.06
0.15 10.33 16.73 23.95 31.72 39.52 47.23 55.07 62.84 70.58 78.30
0.25 6.72 10.34 14.30 18.65 23.18 27.58 32.01 36.40 40.80 45.18
0.35 4.99 7.54 10.20 13.08 16.13 19.22 22.39 25.38 28.42 31.40
0.45 3.99 5.99 8.00 10.10 12.34 14.69 17.15 19.57 21.92 24.18
0.70 2.66 3.99 5.33 6.66 7.99 9.34 10.73 12.18 13.78 15.46
0.95 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

(2) Required violation size (P1 − P0) to be detected = 0.075

δP0

. . . H 1 2 3 4 5 6 7 8 9 10
0.00 64.94 221.07 786.57 2672.81 9855.55 60011.67 180063.00 180064.00 185324.15 189271.31
0.05 24.63 51.97 91.92 139.79 191.78 243.06 300.44 362.53 411.80 469.63
0.08 18.48 35.16 56.75 80.18 103.33 127.40 150.39 174.55 198.06 222.64
0.10 14.56 25.81 39.91 54.80 69.08 83.95 98.61 113.24 127.67 142.45
0.15 10.47 17.28 25.32 33.83 42.55 51.20 59.57 68.23 76.61 85.01
0.25 6.70 10.40 14.46 18.99 23.59 28.24 32.84 37.51 41.99 46.57
0.35 4.99 7.58 10.31 13.29 16.45 19.72 22.90 26.04 29.18 32.40
0.45 4.01 6.04 8.08 10.24 12.59 15.05 17.57 20.08 22.41 24.76
0.70 2.67 4.01 5.34 6.67 8.02 9.39 10.83 12.38 14.06 15.75
0.95 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

(3) Required violation size (P1 − P0) to be detected = 0.10

δP0

. . . H 1 2 3 4 5 6 7 8 9 10
0.00 74.19 296.51 1234.18 4905.31 17396.91 26686.80 27528.20 28421.58 29751.91 30785.23
0.05 26.53 59.49 112.48 179.42 252.63 341.57 440.14 541.17 628.56 735.62
0.08 19.43 39.13 65.23 93.61 121.63 153.00 182.08 213.92 244.88 274.64
0.10 15.29 28.38 44.23 61.59 78.09 95.34 112.80 130.03 146.76 164.85
0.15 10.75 18.37 27.30 36.48 45.60 54.88 64.03 73.36 82.00 91.72
0.25 6.83 10.74 15.26 20.13 24.90 29.77 34.51 39.32 44.09 48.87
0.35 5.04 7.69 10.63 13.87 17.21 20.52 23.78 26.96 30.25 33.45
0.45 4.01 6.05 8.19 10.53 13.05 15.61 18.09 20.52 22.91 25.39
0.70 2.67 4.00 5.34 6.68 8.07 9.58 11.21 12.95 14.59 16.03
0.95 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00

(4) Required violation size (P1 − P0) to be detected = 0.15

δP0

. . . H 1 2 3 4 5 6 7 8 9 10
0.00 75.48 353.64 1568.22 6698.72 27758.43 145364.00 151218.12 159851.52 165578.56 171582.45
0.05 27.78 70.37 154.52 281.10 465.03 710.50 1037.37 1444.22 1935.81 2585.88
0.08 20.33 44.71 83.49 131.01 184.50 245.46 309.68 365.37 438.64 511.03
0.10 15.92 32.22 53.96 78.27 103.81 129.02 156.26 180.92 207.17 233.84
0.15 10.96 19.45 29.94 41.33 52.44 63.72 74.86 85.98 96.82 107.88
0.25 6.88 11.08 16.03 21.36 26.65 31.96 37.17 42.57 47.87 53.25
0.35 5.04 7.80 10.93 14.34 17.91 21.45 24.90 28.30 31.80 35.24
0.45 3.99 6.05 8.26 10.74 13.38 16.01 18.58 21.12 23.68 26.25
0.70 2.67 4.00 5.34 6.70 8.15 9.76 11.53 13.23 14.72 16.14
0.95 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 11.00 12.00

* refers to occurred violation size
** refers to ARL0 values

Table 2: ARL performance of AuDeQav approach

on-going research, as we need to develop an optimization-
based method that helps in providing the optimal values of
the approach parameters.

RQ2: Real advantages of using the proposed approach
over a threshold-based method:
To emphasize the real advantages of using our proposed ap-
proach to detect QoS violations over a simple threshold-

104

based method, we have applied the same experimental setup
(in RQ1), and then we used our approach and the threshold-
based method to detect violations.

In particular, the results of applying the threshold based
method and our approach (with P1 = 0.10 and H = 3, 4, 5,
and 6) for the requirement that ”the proportion of response
times that are greater than 2 seconds is 0.05” are depicted
in Table 4. Initially, it is clear that the threshold based
method does not require any parameters other than the QoS
requirement (P0 value); in contrast, our approach requires
two other parameters P1 andH to be specified. Thus the ap-
proach can cater for different preferences and requirements.
To compare the performance in terms of the false alarm rate
and the required samples to detect a violation, we compute
a metric δARL that measures the change in ARL values of
our approach comparing to threshold based method. This
metric can be computed as:

δARL =
(ARLAuDeQAV −ARLThreshold)

ARLThreshold
(10)

where ARLAuDeQAV and ARLThreshold are ARL values of
our proposed approach and threshold based method, respec-
tively. This metric indicates that how many times the pro-
posed approach duplicates the ARL values of the threshold
based method. Based on this metric, if our approach du-
plicates ARL0 more than its duplication for ARL1 values,
it implies its performance is better and gives smaller false
alarm rate; and otherwise the threshold based method is
better.

From Table 4, we can see that the performance of thresh-
old based method is slightly better than our approach’s with
H = 3; however, our approach’s performance is better with
all other values of H . This result confirms that specifying
the value of decision interval is very important in determin-
ing the proposed approach performance. Additionally, we
can notice that the larger H value, the larger duplication of
ARL0 than ARL1.

Generally, based on our experiments we can conclude the
real advantages of our approach over the threshold based
methods as follows:

1. First, our approach can estimate the current status of
the running system through the capability estimation
phase, and in some cases this can help the software
system engineers to refine and update the QoS require-
ments. In contrast, the threshold based method only
monitors the requirements by only comparing observed
QoS values to predefined thresholds.

2. Second, in our approach statistical confidence and power
levels can be specified a priori to represent the level of
certainty in the taken decisions. On the other hand,
threshold based method does not provide any confi-
dence or certainty to generalize to the running system
over time.

3. Third, as a way to enable a trade-off between the criti-
cality of the QoS requirements and the cost-effectiveness
of triggering adaptations, our approach provides the
ability for the software system engineers to a priori
specify the size of the required violation that is to
be monitored and detected. Using a threshold based
method does not provide this ability and gives all the
violation sizes the same importance to be detected.

5.2 Evaluating Applicability
To further demonstrate the applicability of the proposed

approach, we have selected five real-world web services’ re-
sponse time datasets. These response time datasets are col-
lected by Cavallo et al. [5] by invoking the web services every
hour for about four months. The description and response
time requirements of these web services is reported in Table
5.

AuDeQAV approach can be applied at runtime to estimate
these five web services’ performance capability and detect
violations in their requirements as follows:

1. The AuDeQAV uses the first 30 observations of the
datasets to estimate the web services capability. The
results are presented in the five left-most side columns
of data of Table 6, and we can say initially that the
response time requirements are fulfilled.

2. To continuously ensure that the performance of these
web services is at the required level, the AuDeQAV
uses the response time requirements and runs CUSUM
chart (with H = 3 to give statistical confidence and
power levels of about 99%) to monitor the web services
response times and detect violations in their require-
ments. The results are depicted in the two right-most
side columns of Table 6. To illustrate, the sequentially
computed proportions of the response time values that
are greater than 5.5 seconds for WS4 and 7.5 seconds
for WS5 and their corresponding CUSUM statistics
are depicted in Figures 3(1-4). Where the upper Fig-
ures 3(1) and 3(2) illustrate all the computed sequen-
tial proportions which provide the whole view of the
behavior of WS4 and WS5 during about four months.
The inner plots in Figures 3(3) and 3(4) visualize the
approach behavior until the violation is detected. On
the other hand, the outer plots in Figures 3(3) and
3(4) explain how the approach behaves over time to
monitor WS4 and WS5, and they verify that this be-
havior is consistent with the corresponding sequential
proportions.

3. After detecting changes in the response times of these
web services, AuDeQAV gives warning signals to the
management layer which in turn may trigger some
adaptations, e.g. increasing the allocated resources for
the web service application if the service provider is
doing the monitoring or selecting a new service if the
client is doing the monitoring.

4. If an adaptation is triggered, the web services’ capa-
bility would need to be recalculated as in Step 1 above
while the approach continues monitoring their experi-
enced response time values.

It is worth mentioning that in our above example external
web services are being invoked by a client, so little remedial
action available to the client other than selecting another
service. However, the AuDeQAV approach could also be
used by service providers as part of a feedback loop to con-
trol provisioning levels for services in response to detected
violations wrt their QoS requirements.

5.3 Threats to Validity
The threats to internal validity of the conducted experi-

ments include the way we collect and measure QoS values

105

Threshold AuDeQAV AuDeQAV AuDeQAV AuDeQAV
δP ∗

0 Method (H = 3) δARL (H = 4) δARL (H = 5) δARL (H = 6) δARL
0.00∗∗ 107.05 473.22 3.42 1187.67 10.09 2736.28 24.56 5889.48 54.02
0.05 10.89 76.38 6.01 109.20 9.03 142.57 12.09 179.11 15.44
0.08 7.56 51.19 5.77 70.31 8.30 89.97 10.90 109.33 13.46
0.10 5.98 36.85 5.16 49.76 7.32 61.98 9.36 75.06 11.54
0.15 4.24 23.95 4.65 31.72 6.49 39.52 8.33 47.23 10.15
0.25 2.59 14.30 4.51 18.65 6.19 23.18 7.94 27.58 9.63
0.35 1.93 10.20 4.28 13.08 5.78 16.13 7.36 19.22 8.96
0.45 1.51 8.00 4.31 10.10 5.71 12.34 7.20 14.69 8.76
0.70 1.08 5.33 3.94 6.66 5.17 7.99 6.41 9.34 7.65
0.95 1.08 4.00 2.71 5.00 3.63 6.00 4.56 7.00 5.49

* refers to occurred violation size
** refers to ARL0 values

Table 3: ARL performance of AuDeQav approach comparing to threshold based method

WSid WS Name Description URL rt.Req(s) [%]*

WS1 XML Daily
Fact

Returns a daily fact with
an emphasis on XML
Web Services and the use
of XML within the Mi-
crosoft .NET Framework

http://www.xmlme.com/

WSDailyXml.asmx

2.0 [95%]

WS2 GetJoke Outputs a random joke http://www.

interpressfact.net/

webservices/getJoke.asmx

3.5 [95%]

WS3 BLiquidity Provides information on
liquidity in a banking
system

http://webservices.

lb.lt/BLiquidity/

BLiquidity.asmx

5.0 [90%]

WS4 Fast Weather Reports weather info for
a given city

http://ws2.

serviceobjects.net/fw/

FastWeather.asmx

5.5 [90%]

WS5 Currency
Converter

Performs a currency con-
version using the current
quotation

http://www.webservicex.

com/CurrencyConvertor.

asmx

7.5 [90%]

* refers to response time requirement in seconds (s) with probability [%]

Table 4: Characteristics and response time requirements of the real web services

Capability Estimation (in ms) Violation Detection
Std. Lower Upper ReqFul Sample Value

WSid Mean Dev. 95% limit 95% limit (%) Number (in ms)
WS1 1512.5 169.4 1449.3 1575.8 96.67 305 3948
WS2 2326.0 616.0 2096.0 2557.0 96.67 50 3798
WS3 2495.0 2197.0 1674.0 3315.0 90.00 142 5743
WS4 3861.0 4291.0 2259.0 5464.0 90.00 172 6166
WS5 4676.0 1112.0 4253.0 5098.0 93.33 295 7715

Table 5: Real web services’ capability estimates and their requirements’ violation detection

and the range of scenarios that are simulated. To reduce
the impact of these threats we have simulated a significant
number of scenarios of the Patient Assistance (PA) system
with a large variety of violation sizes and measured response
time as a performance metric. This is to simulate various
scenarios in reality and evaluate the corresponding accuracy
and performance of the proposed approach.

On the other hand, external validity is threatened if ob-
tained results cannot be generalized. For more realistic sce-
narios, we have applied the approach for the response time
datasets of five real-world web services belonging to differ-
ent domains. However, further applications to other web

services are desirable. Additionally, we focus only on re-
sponse time as a performance metric, the generalizations to
other QoS attributes should be considered in future studies.

6. CONCLUSION AND FUTURE WORK
In this paper we have proposed a statistical approach Au-

DeQAV for runtime automated detection of violations in
the QoS attributes requirements. This approach basically
has two main tasks. First, it uses the collected QoS data
to estimate the capability of the running software system
in terms of descriptive statistics, i.e. mean, standard devia-

106

Figure 3: Applying AuDeQAV to monitor response time of WS4 and WS5

tion, and confidence interval of QoS attributes, in order to
provide the current status of the system. Second, it uses the
given QoS requirements to build the CUSUM chart model
to monitor QoS attributes and directly detect violations wrt
their requirements before undesired consequences occur.

The proposed approach was applied to experimental and
real-world QoS datasets, especially response times; and the
results demonstrate its accuracy in estimating the running
software system capability and in monitoring and detect-
ing QoS violations. Comparing the proposed approach with
the threshold based method, we established the main ad-
vantages of our approach are: (1) Estimating the running
system capability; (2) Providing statistical confidence and
power levels which represent the level of certainty in the
decisions taken; (3) Specifying the size of violation that is
required to be quickly detected. Also, the results illustrate
how the proposed approach might be applied to real-world
software systems. The AuDeQAV approach therefore can
be integrated into the existing software system management
frameworks to support and advance dynamic runtime adap-
tation procedures.

We are planning to generalize this approach to add more
QoS attributes, such as reliability and availability. The
overhead of the proposed approach also needs to be care-
fully evaluated, especially for time-critical software systems.
Similarly, to reduce the consumed memory a sliding window
approach for the observed QoS attributes values needs to be
investigated.

7. REFERENCES
[1] A. Amin, A. Colman, and L. Grunske. Using

Automated Control Charts for the Runtime

Evaluation of QoS Attributes. In Proceedings of the
13ht IEEE International High Assurance Systems
Engineering Symposium. IEEE Computer Society,
2011.

[2] R. Asadollahi, M. Salehie, and L. Tahvildari. Starmx:
A framework for developing self-managing java-based
systems. In ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pages 58–67.
IEEE Computer Society, 2009.

[3] R. Calinescu, L. Grunske, M. Z. Kwiatkowska,
R. Mirandola, and G. Tamburrelli. Dynamic qos
management and optimization in service-based
systems. IEEE Trans. Software Eng., 37(3):387–409,
2011.

[4] R. Calinescu and M. Kwiatkowska. Using quantitative
analysis to implement autonomic IT systems. In
Proceedings of the 31st International Conference on
Software Engineering, pages 100–110. IEEE Computer
Society, 2009.

[5] B. Cavallo, M. D. Penta, and G. Canfora. An
empirical comparison of methods to support
QoS-aware service selection. In Proceedings of the 2nd
International Workshop on Principles of Engineering
Service-Oriented Systems, pages 64–70. ACM, 2010.

[6] B. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, et al. Software engineering for
self-adaptive systems: A research roadmap. Software
Engineering for Self-Adaptive Systems, pages 1–26,
2009.

[7] S.-W. Cheng, A.-C. Huang, D. Garlan, B. Schmerl,
and P. Steenkiste. An architecture for coordinating

107

multiple self-management systems. In Proceedings of
the 4th Working IEEE/IFIP Conference on Software
Architecture, pages 243–252. IEEE, 2004.

[8] S.-W. Cheng, A.-C. Huang, D. Garlan, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. In
Proceedings of the First International Conference on
Autonomic Computing, pages 276–277. IEEE
Computer Society, 2004.

[9] A. cheng Huang and P. Steenkiste. Building
self-adapting services using service-specific knowledge.
In Proceedings of IEEE High Performance Distributed
Computing, pages 34–43. IEEE, 2005.

[10] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, 2004.

[11] R. D. Gibbons. Use of combined shewhart-cusum
control charts for ground water monitoring
applications. Ground water, 37(5):682–691, 1999.

[12] L. Grunske. An effective sequential statistical test for
probabilistic monitoring. Information and Software
Technology, 53(3):190 – 199, 2011.

[13] L. Grunske and P. Zhang. Monitoring probabilistic
properties. In H. van Vliet and V. Issarny, editors,
Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the
International Symposium on Foundations of Software
Engineering, pages 183–192. ACM, 2009.

[14] B. Halima, M. Guennoun, K. Drira, and M. Jmaiel.
Providing Predictive Self-Healing for Web Services: A
QoS Monitoring and Analysis-based Approach.
Journal of Information Assurance and Security,
3(3):175–184, 2008.

[15] D. Hawkins and D. Olwell. Cumulative sum charts and
charting for quality improvement. Springer Verlag,
1998.

[16] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini.
SLA-driven clustering of QoS-aware application
servers. IEEE Transactions on Software Engineering,
pages 186–197, 2007.

[17] A. Luceno and A. Cofino. The random intrinsic fast
initial response of two-sided cusum charts. An Official
Journal of the Spanish Society of Statistics and
Operations Research, 15(2):505–524, 2006.

[18] A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. Comprehensive QoS monitoring of Web
services and event-based SLA violation detection. In
Proceedings of the 4th International Workshop on
Middleware for Service Oriented Computing, pages
1–6. ACM, 2009.

[19] R. Mirandola and P. Potena. A qos-based framework
for the adaptation of service-based systems. Scalable
Computing: Practice and Experience, 12(1), 2011.

[20] D. C. Montgomery. Introduction to statistical quality
control. Wiley-India, 2007.

[21] D. C. Montgomery and G. C. Runger. Applied
statistics and probability for engineers. New York;
John Wiley, 2003.

[22] E. Page. Continuous inspection schemes. Biometrika,
41(1-2):100–115, 1954.

[23] F. Raimondi, J. Skene, and W. Emmerich. Efficient
online monitoring of web-service SLAs. In Proceedings
of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, pages
170–180, New York, NY, USA, 2008. ACM Press.

[24] M. Reynolds and Z. Stoumbos. A general approach to
modeling cusum charts for a proportion. IIE
Transactions, 32(6):515–535, 2000.

[25] M. Reynolds Jr and Z. Stoumbos. A cusum chart for
monitoring a proportion when inspecting continuously.
Journal of Quality Technology, 31(1):87–108, 1999.

[26] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen,
S. Hallsteinsen, J. Lorenzo, A. Mamelli, and U. Scholz.
Music: Middleware support for self-adaptation in
ubiquitous and service-oriented environments.
Software Engineering for Self-Adaptive Systems, pages
164–182, 2009.

[27] D. Rud, A. Schmietendorf, and R. Dumke. Resource
metrics for service-oriented infrastructures. Proc.
SEMSOA 2007, pages 90–98, 2007.

[28] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Transactions
on Autonomous and Adaptive Systems (TAAS),
4(2):1–42, 2009.

[29] F. Schulz. Towards Measuring the Degree of
Fulfillment of Service Level Agreements. In Third
International Conference on Information and
Computing, pages 273–276. IEEE, 2010.

[30] W. A. Shewhart. Economic control of quality of
manufactured product. New York: Van Nostrand,
1931.

[31] J. Siljee, I. Bosloper, J. Nijhuis, and D. Hammer.
Dysoa: making service systems self-adaptive. In
ICSOC, pages 255–268. Springer, 2005.

[32] J. Simmonds, Y. Gan, M. Chechik, S. Nejati,
B. O’Farrell, E. Litani, and J. Waterhouse. Runtime
monitoring of web service conversations. IEEE T.
Services Computing, 2(3):223–244, 2009.

[33] J. Skene, A. Skene, J. Crampton, and W. Emmerich.
The monitorability of service-level agreements for
application-service provision. In V. Cortellessa,
S. Uchitel, and D. Yankelevich, editors, Proceedings of
the 6th International Workshop on Software and
Performance, pages 3–14. ACM, 2007.

[34] Z. G. Stoumbos, M. R. Reynolds, T. P. Ryan, and
W. H.Woodall. The state of statistical process control
as we proceed into the 21st century. Journal of the
American Statistical Association, 95(451):992–998,
2000.

[35] P. Thongtra and F. A. Aagesen. An autonomic
framework for service configuration. In Proceedings of
the Sixth International Multi-Conference on
Computing in the Global Information Technology,
pages 116–124, 2011.

[36] P. Zhang, B. Li, and L. Grunske. Timed property
sequence chart. Journal of Systems and Software,
83(3):371–390, 2010.

[37] P. Zhang, W. Li, D. Wan, and L. Grunske. Monitoring
of probabilistic timed property sequence charts. Softw,
Pract. Exper, 41(7):841–866, 2011.

108

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

