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ABSTRACT
Queueing Petri nets are a powerful formalism that can be
exploited for modeling distributed systems and evaluating
their performance and scalability. By combining the mod-
eling power and expressiveness of queueing networks and
stochastic Petri nets, queueing Petri nets provide a num-
ber of advantages. This tutorial presents an introduction to
queueing Petri nets first introducing the modeling formal-
ism itself and then summarizing the results of several mod-
eling case studies which demonstrate how queueing Petri
nets can be used for performance modeling and analysis. As
part of the tutorial, we present QPME (Queueing Petri net
Modeling Environment), an open-source tool for stochastic
modeling and analysis of systems using queueing Petri nets.
Finally, we briefly present a model-to-model transformation
automatically generating a queueing Petri net model from
a higher-level software architecture model annotated with
performance relevant information.

Categories and Subject Descriptors
C.4 [Performance Of Systems]: Modeling Techniques;
I.6.5 [Simulation and Modeling]: Model Development—
meta-modeling, modeling methodologies; D.4.8 [Operating
Systems]: Performance—Modeling and prediction

General Terms
Performance, design

Keywords
Performance, stochastic models, system simulation, model-
ing tools

1. INTRODUCTION
Introduced in 1993 by Falko Bause [1], queueing Petri

nets (QPNs) have a number of advantages over conventional
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modeling formalisms such as queueing networks and stochas-
tic Petri nets. By combining the modeling power and ex-
pressiveness of queueing networks and stochastic Petri nets,
QPNs enable the integration of hardware and software as-
pects of system behavior into the same model. In addition to
hardware contention and scheduling strategies, QPNs make
it easy to model simultaneous resource possession, synchro-
nization, asynchronous processing and software contention.
These aspects have significant impact on the performance of
modern enterprise software systems.

Another advantage of QPNs is that they can be used to
combine qualitative and quantitative system analysis. A
number of efficient techniques from Petri net theory can be
exploited to verify some important qualitative properties of
QPNs. The latter not only help to gain insight into the
behavior of the system, but are also essential preconditions
for a successful quantitative analysis [4]. Last but not least,
QPN models have an intuitive graphical representation that
facilitates model development. In [9], we showed how QPNs
can be used for modeling distributed e-business applications.
Building on this work, we have developed a methodology for
performance modeling of distributed component-based sys-
tems using QPNs [7]. The methodology has been applied
to model a number of systems ranging from simple systems
to systems of realistic size and complexity. It can be used
as a powerful tool for performance and scalability analysis.
Some examples of modeling studies based on QPNs can be
found in [7,8,11,12,15,18,19]. These studies consider differ-
ent types of systems including distributed component-based
systems, service-oriented applications, event-based systems
and Grid computing environments.

In this tutorial, we present an introduction to queueing
Petri nets (QPNs) first introducing the formalism itself. Then
we present QPME (Queueing Petri net Modeling Environ-
ment) [17], an open-source tool for stochastic modeling and
analysis of systems using QPNs. The tool is developed and
maintained by the Descartes Research Group [6] at Karl-
sruhe Institute of Technology (KIT). The first version of
the tool was released in January 2007 and since then it has
been distributed to more than 130 organizations worldwide
(universities, companies and research institutes). Since May
2011, QPME is distributed under the Eclipse Public License.

Afterwards, we summarize the results of several model-
ing case studies to demonstrate how QPNs can be used
for performance modeling and analysis. Finally, as part
of the tutorial, we briefly discuss our latest work on de-
veloping an automated model-to-model transformation from
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component-based software architecture models (with perfor-
mance annotations) to QPN models analyzed using QPME.
The transformation allows to specify models of software sys-
tems at a higher level of abstraction eliminating the need to
build QPN models manually [14].

2. QUEUEING PETRI NETS
The main idea behind the QPN formalism was to add

queueing and timing aspects to the places of Colored Gen-
eralized Stochastic Petri Nets (CGSPNs) [1]. This is done
by allowing queues (service stations) to be integrated into
places of CGSPNs. A place of a CGSPN that has an inte-
grated queue is called a queueing place and consists of two
components, the queue and a depository for tokens which
have completed their service at the queue. This is depicted
in Figure 1.
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Figure 1: A queueing place and its shorthand nota-
tion.

The behavior of the net is as follows: tokens, when fired
into a queueing place by any of its input transitions, are
inserted into the queue according to the queue’s scheduling
strategy. Tokens in the queue are not available for output
transitions of the place. After completion of its service, a
token is immediately moved to the depository, where it be-
comes available for output transitions of the place. This type
of queueing place is called timed queueing place. In addi-
tion to timed queueing places, QPNs also introduce imme-
diate queueing places, which allow pure scheduling aspects
to be described. Tokens in immediate queueing places can
be viewed as being served immediately. Scheduling in such
places has priority over scheduling/service in timed queue-
ing places and firing of timed transitions. The rest of the
net behaves like a normal CGSPN. A formal definition of a
QPN follows [1]:

Definition 1.
A QPN is an 8-tuple QPN = (P, T, C, I−, I+, M0, Q, W )
where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of
places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of tran-
sitions, P ∩ T = ∅,

3. C is a color function that assigns a finite and non-
empty set of colors to each place and a finite and non-
empty set of modes to each transition.

4. I− and I+ are the backward and forward incidence
functions defined on P × T , such that
I−(p, t), I+(p, t) ∈ [C(t)→ C(p)MS ], ∀(p, t) ∈ P × T 1

5. M0 is a function defined on P describing the initial
marking such that M0(p) ∈ C(p)MS.

6. Q = (Q̃1, Q̃2, (q1, ..., q|P |)) where

• Q̃1 ⊆ P is the set of timed queueing places,

• Q̃2 ⊆ P is the set of immediate queueing places,
Q̃1 ∩ Q̃2 = ∅ and

• qi denotes the description of a queue2 taking all
colors of C(pi) into consideration, if pi is a queue-
ing place or equals the keyword ‘null’, if pi is an
ordinary place.

7. W = (W̃1, W̃2, (w1, ..., w|T |)) where

• W̃1 ⊆ T is the set of timed transitions,

• W̃2 ⊆ T is the set of immediate transitions,
W̃1 ∩ W̃2 = ∅, W̃1 ∪ W̃2 = T and

• wi ∈ [C(ti) 7−→ R+] such that ∀c ∈ C(ti) :
wi(c) ∈ R+ is interpreted as a rate of a negative
exponential distribution specifying the firing delay
due to color c, if ti ∈ W̃1 or a firing weight spec-
ifying the relative firing frequency due to color c,
if ti ∈ W̃2.

For a more detailed introduction to the QPN modeling
formalism, the reader is referred to [1, 4, 7].

2.1 Hierarchical Queueing Petri Nets
A major hurdle to the practical application of QPNs is the

so-called largeness problem or state-space explosion problem:
as one increases the number of queues and tokens in a QPN,
the size of the model’s state space grows exponentially and
quickly exceeds the capacity of today’s computers. This im-
poses a limit on the size and complexity of the models that
are analytically tractable. An attempt to alleviate this prob-
lem was the introduction of Hierarchically-Combined QPNs
(HQPNs) [2]. The main idea is to allow hierarchical model
specification and then exploit the hierarchical structure for
efficient numerical analysis. This type of analysis is termed
structured analysis and it allows models to be solved that
are about an order of magnitude larger than those analyz-
able with conventional techniques. HQPNs are a natural
generalization of the original QPN formalism. In HQPNs, a
queueing place may contain a whole QPN instead of a single
queue. Such a place is called a subnet place and is depicted in
Figure 2. A subnet place might contain an ordinary QPN or
again a HQPN allowing multiple levels of nesting. For sim-
plicity, we restrict ourselves to two-level hierarchies. We use
the term High-Level QPN (HLQPN) to refer to the upper
level of the HQPN and the term Low-Level QPN (LLQPN)

1The subscript MS denotes multisets. C(p)MS denotes the
set of all finite multisets of C(p).
2In the most general definition of QPNs, queues are defined
in a very generic way allowing the specification of arbitrar-
ily complex scheduling strategies taking into account the
state of both the queue and the depository of the queueing
place [1]. In QPME, we use conventional queues as defined
in queueing network theory.
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to refer to a subnet of the HLQPN. Every subnet of a HQPN
has a dedicated input and output place, which are ordinary
places of a CPN. Tokens being inserted into a subnet place
after a transition firing are added to the input place of the
corresponding HQPN subnet. The semantics of the output
place of a subnet place is similar to the semantics of the de-
pository of a queueing place: tokens in the output place are
available for output transitions of the subnet place. Tokens
contained in all other places of the HQPN subnet are not
available for output transitions of the subnet place. Every
HQPN subnet also contains a actual-population place used
to keep track of the total number of tokens fired into the
subnet place.
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Figure 2: A subnet place and its shorthand notation.

2.2 Departure Disciplines
Departure disciplines are an extension of the QPN model-

ing formalism introduced in [7] to address a common limita-
tion of QPN models (and of Petri nets in general), i.e., tokens
inside ordinary places and depositories are not distinguished
in terms of their order of arrival. Departure disciplines are
defined for ordinary places or depositories and determine the
order in which arriving tokens become available for output
transitions. We define two departure disciplines, Normal
(used by default) and First-In-First-Out (FIFO). The for-
mer implies that tokens become available for output tran-
sitions immediately upon arrival just like in conventional
QPN models. The latter implies that tokens become avail-
able for output transitions in the order of their arrival, i.e.,
a token can leave the place/depository only after all tokens
that have arrived before it have left, hence the term FIFO.
For an example of how this feature can be exploited and the
benefits it provides we refer the reader to [7]. An alternative
approach to introduce token ordering in an ordinary place
is to replace the place with an immediate queueing place
containing a FCFS queue. The generalized queue definition
from [1] can be exploited to define the scheduling strategy of
the queue in such a way that tokens are served immediately
according to FCFS, but only if the depository is empty [4].
If there is a token in the depository, all tokens are blocked
in their current position until the depository becomes free.
However, the generalized queue definition from [1], while
theoretically powerful, is impractical to implement, so, in
practice, it is rarely used and queues in QPNs are usually

treated as conventional queues from queueing network the-
ory.

2.3 Example QPN Model
We now present an example QPN model of a simple Java EE

system. The model was taken from [9] and is shown in Fig-
ure 3.
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Figure 3: QPN Model of a Java EE System [9].

The system modeled is an e-business application running
in a Java EE environment consisting of a WebLogic Server
(Java EE application server) hosting the application com-
ponents and a backend database server used for persisting
business data. In the following, we describe the places of the
model:

Client Queueing place with IS scheduling strategy repre-
senting clients sending requests to the system. Time
spent at the queue of this place corresponds to the
client think time, i.e., the service time of the queue is
equal to the average client think time.

WLS-CPU Queueing place with PS scheduling strategy repre-
senting the CPU of the WebLogic Server (WLS).

DBS-CPU Queueing place with PS scheduling strategy repre-
senting the CPU of the database server (DBS).

DBS-I/O Queueing place with FCFS scheduling strategy rep-
resenting the disk subsystem of the DBS.

WLS-Thread-Pool Ordinary place representing the thread
pool of the WLS. Each token in this place represents
a WLS thread.

DB-Conn-Pool Ordinary place representing the database con-
nection pool of the WLS. Tokens in this place represent
database connections to the DBS.

DBS-Process-Pool Ordinary place representing the process
pool of the DBS. Tokens in this place represent database
processes.

DBS-PQ Ordinary place used to hold incoming requests at
the DBS while they wait for a server process to be
allocated to them.

11



The following types of tokens (token colors) are used in
the model:

Token ’ri’ represents a request sent by a client for execu-
tion of a transaction of class i. For each request class
a separate token color is used (e.g., ’r1’, ’r2’, ’r3’,...).
Tokens of these colors can be contained only in places
Client, WLS-CPU, DBS-PQ, DBS-CPU and DBS-I/O.

Token ’t’ represents a WLS thread. Tokens of this color
can be contained only in place WLS-Thread-Pool.

Token ’p’ represents a DBS process. Tokens of this color
can be contained only in place DBS-Process-Pool.

Token ’c’ represents a database connection to the DBS.
Tokens of this color can be contained only in place
DB-Conn-Pool.

We now take a look at the life-cycle of a client request
in our system model. Every request (modeled by a token
of color ’ri’ for some i) is initially at the queue of place
Client where it waits for a user-specified think time. Af-
ter the think time elapses, the request moves to the Client

depository where it waits for a WLS thread to be allocated
to it before its processing can begin. Once a thread is al-
located (modeled by taking a token of color ’t’ from place
WLS-Thread-Pool), the request moves to the queue of place
WLS-CPU, where it receives service from the CPU of the WLS.
It then moves to the depository of the place and waits for
a database connection to be allocated to it. The database
connection (modeled by token ’c’) is used to connect to the
database and make any updates required by the respective
transaction. A request sent to the database server arrives
at place DBS-PQ (DBS Process Queue) where it waits for a
server process (modeled by token ’p’) to be allocated to it.
Once this is done, the request receives service first at the
CPU and then at the disk subsystem of the database server.
This completes the processing of the request, which is then
sent back to place Client releasing the held DBS process,
database connection and WLS thread.

3. QUEUEING PETRI NET MODELING
ENVIRONMENT (QPME)

QPME (Queueing Petri net Modeling Environment) [17]
is an open-source tool for stochastic modeling and analy-
sis of systems using QPNs, distributed under the Eclipse
Public License. The tool is developed and maintained by
the Descartes Research Group [6] at Karlsruhe Institute of
Technology (KIT). QPME consists of two main components:
a QPN Editor (QPE) and a Simulator for QPNs (SimQPN).
In the following, we briefly describe these components.

3.1 Queueing Petri net Editor (QPE)
QPE is a graphical editor for QPNs. The user can create

QPN models with a simple drag-and-drop approach. Fig-
ure 4 shows the QPE main window which is comprised of
four views. The Main Editor View displays the graphical
representation of the currently edited QPN. The palette con-
tains the set of QPN elements that can be inserted in a QPN
model by drag-and-drop, such as places, transitions, and
connections. Furthermore, it provides editors for the cen-
tral definition of colors and queues used in a QPN model.
In the Properties View the user can edit the properties of

the element currently selected in the QPN model. For in-
stance, scheduling strategies and service time distributions
of queueing places can be specified in this view. The Outline
View shows a list of all elements in the QPN model. The
Console View displays the output when simulating a QPN
model.

In a QPN, a transition defines a set of firing modes. An
incidence function specifies the behavior of the transition
for each of its firing modes in terms of tokens destroyed
and/or created in the places of the QPN. Figure 5 shows
the Incidence Function Editor, which is used to edit the
incidence function of a transition. Once opened this editor
displays the transition input places on the left, the transition
firing modes in the middle and the transition output places
on the right. Each place (input or output) is displayed as
a rectangle containing a separate circle for each token color
allowed in the place. The user can create connections from
token colors of input places to modes or from modes to token
colors of output places. If a connection is created between
a token color of a place and a mode, this means that when
the transition fires in this mode, tokens of the respective
color are removed from the place. Similarly, if a connection
is created between a mode and a token color of an output
place, this means that when the transition fires in this mode,
tokens of the respective color are deposited in the place.

In addition to the basic features described above, QPE
has several characterizing features that improve the model
expressiveness of QPNs and simplify the creation of complex
QPN models. Special mention must be made of the following
features:

• Central color management. The user can define token
colors globally for the whole QPN instead of on a per
place basis. This feature was motivated by the fact
that in QPNs typically the same token color (type)
is used in multiple places. Instead of having to define
the color multiple times, the user can define it one time
and then reference it in all places where it is used. This
saves time, makes the model definition more compact,
and last but not least, it makes the modeling process
less error-prone since references to the same token color
are specified explicitly.

• Shared queues. The user can specify that multiple
queueing places share the same underlying physical
queue3. In QPE, queues are defined centrally (simi-
lar to token colors) and once defined they can be ref-
erenced from inside multiple queueing places. This
allows to use queueing places to represent software en-
tities, e.g., software components, which can then be
mapped to different hardware resources modeled as
queues [18]. Shared queues are not supported in
standard QPN models [18].

• Hierarchical QPNs. Subnet places can contain com-
plete child QPN models. Hierarchical QPNs enable to
model layered systems and improve the understand-
ability of huge QPNs. QPE fully supports hierarchical
QPNs.

3While the same effect can be achieved by using multiple
subnet places mapped to a nested QPN containing a single
queueing place, this would require expanding tokens that
enter the nested QPN with a tag to keep track of their origin
as explained in [3].
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Figure 4: QPE main window.

Figure 5: QPE incidence function editor.
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• Departure Disciplines. Departure disciplines are de-
fined for ordinary places or depositories and deter-
mine the order in which arriving tokens become avail-
able for output transitions. QPE supports two disci-
plines: Normal (used by default) and First-In-First-
Out (FIFO). The latter implies that tokens become
available for output transitions in the order of their
arrival whereas the former does not consider the order
of arrival of tokens. For an example of how this exten-
sion of the QPN formalism can be exploited and the
benefits it provides we refer the reader to [7].

3.2 Simulation of QPN Model (SimQPN)
SimQPN is a discrete-event simulation engine specialized

for QPNs. It simulates QPN models directly and has been
designed to exploit the knowledge of the structure and be-
havior of QPNs to improve the efficiency of the simulation.
Therefore, SimQPN provides much better performance than
a general purpose simulator would provide, both in terms of
the speed of simulation and the quality of output data pro-
vided.

3.2.1 Model Support
SimQPN implements most, but not all of the QPN ele-

ments that can be modeled in QPE. It currently supports
three different scheduling strategies for queues: First-Come-
First-Served (FCFS), Processor-Sharing (PS), and Infinite
Server (IS). A wide range of service time distributions are
supported including Beta, BreitWigner, ChiSquare, Gamma,
Hyperbolic, Exponential, ExponentialPower, Logarithmic,
Normal, StudentT, Uniform and VonMises as well as deter-
ministic and empirical distributions. All of the characteriz-
ing features of QPE described in Sect. 3.1 are fully supported
by the SimQPN simulator. A current limitation of SimQPN
is the missing support for timed transitions4 and immedi-
ate queueing places. The spectrum of scheduling strategies
and service time distributions supported by SimQPN will
be extended. Support for timed transitions and immediate
queueing places is also planned for future releases.

3.2.2 Output Data
SimQPN offers the ability to configure what data exactly

to collect during the simulation and what statistics to pro-
vide at the end of the run. This can be specified on a per
location basis where location is defined to have one of the
following five types: i) ordinary place, ii) queue of a queue-
ing place (considered from the perspective of the place), iii)
depository of a queueing place, iv) queue (considered from
the perspective of all places it is part of), and v) probe.

A probe enables the user to specify a region of interest
for which data should be collected during simulation. The
region of a probe includes one or more places and is defined
by one start and one end place. The goal is to evaluate the
time tokens spend in the region when moving between its
begin and end place. The probe starts its measurements for
each token entering its region at the start place and updates
the statistics when the token leaves at the end place. Probes
are realized by attaching timestamps to individual tokens.
With probes it is possible to determine statistics for the
residence time of tokens in a region of interest.

4In most cases a timed transition can be approximated by
a serial network consisting of an immediate transition, a
queueing place and a second immediate transition.

For each location the user can choose between six modes
of data collection . The higher the mode, the more informa-
tion is collected and the more statistics are provided. Since
collecting data costs CPU time, the more data is collected,
the slower the simulation would progress. Therefore, with
data collection modes the user can speed up the simulation
by avoiding the collection of data that is not required. The
six data collection modes are defined as follows:

• Mode 0. No data is collected.

• Mode 1. Only token throughput data is collected.

• Mode 2. Additionally, data to compute token popu-
lation, token occupancy, and queue utilization is col-
lected

• Mode 3. Token residence time data is collected (max-
imum, minimum, mean, standard deviation, steady
state mean, and confidence interval of steady state
mean).

• Mode 4. This mode adds a histogram of observed token
residence times.

• Mode 5. Additionally token residence times are dumped
to a file for further analysis with external tools.

3.2.3 Steady State Analysis
SimQPN supports two methods for the estimation of steady

state mean residence times of tokens inside the various lo-
cations of the QPN. These are the well-known Method of
Independent Replications (in its variant referred to as repli-
cation/deletion approach) and the classical Method of Non-
overlapping Batch Means (NOMB). We refer the reader to
[13,16] for an introduction to these methods. Both of them
can be used to provide point and interval estimates of the
steady state mean token residence time.

We have validated the analysis algorithms implemented
in SimQPN by subjecting them to a rigorous experimental
analysis and evaluating the quality of point and interval es-
timates [10]. Our analysis showed that data reported by
SimQPN is very accurate and stable. Even for residence
time, the metric with highest variation, the standard devi-
ation of point estimates did not exceed 2.5% of the mean
value. In all cases, the estimated coverage of confidence in-
tervals was less than 2% below the nominal value (higher
than 88% for 90% confidence intervals and higher than 93%
for 95% confidence intervals).

Furthermore, SimQPN includes an implementation of the
Method of Welch for determining the length of the initial
transient (warm-up period). We have followed the rules in
[13] for choosing the number of replications, their length and
the window size.

3.2.4 Processing and Visualization of Results
After a successful simulation run, SimQPN saves the re-

sults from the simulation in an XML file with a .simqpn

extension. QPE provides an advanced query engine for the
processing and visualization of simulation results. The query
engine allows to define queries on the simulation results in
order to filter, aggregate and visualize performance data for
multiple places, queues and colors of the QPN. The results
from the queries can be displayed in textual or graphical
form. QPE provides the following two query editors:
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Figure 6: Metrics context menu of the simple query editor.

• Simple Query Editor. The user can quickly filter and
visualize metrics of a single location or token color with
a few clicks. Currently, three visualization options are
available: ”Pie Chart”, ”Bar Chart” and ”Console Out-
put”.

• Advanced Query Editor. The user can create complex
queries including the aggregation of metrics over mul-
tiple locations and token colors with a powerful user
interface. The following two aggregation operators are
currently supported: ”Average” and ”Sum”.

Figure 6 shows an area of the user interface of the simple
query editor. The statistics for all QPN places are presented
in the table in the background. When opening the context
menu of one of the places, a context menu with a set of
possible metrics of interest is made available.

4. MODELING CASE STUDIES
In this section, we summarize the results of several case

studies in different application domains showing how QPN
models can be exploited for performance analysis of different
types of computer systems.

4.1 Distributed Component-Based Systems
In [7], we presented a novel case study of a realistic dis-

tributed component-based system, showing how QPN mod-
els can be exploited as a powerful performance prediction
tool in the software engineering process. A detailed system
model was built in a step-by-step fashion, validated, and
then used to evaluate the system performance and scalabil-
ity. The system studied in [7] is a deployment of the SPEC-
jAppServer2004 benchmark for J2EE application servers. It
models a complete end-to-end application that is designed to
be representative of today’s real-life distributed component-
based systems. Along with the case study, a practical per-
formance modeling methodology was presented in [7] which
helps to construct models that accurately reflect the system
performance and scalability characteristics. We showed that

by taking advantage of the modeling power and expressive-
ness of QPNs our approach makes it possible to model the
system at a higher degree of accuracy, providing a number
of important benefits.

The QPN model of the SPECjAppServer2004 benchmark
was validated by comparing the model predictions against
measurements from the real system for a number of different
transaction mixes. The QPN model we developed according
to the presented methodology was able to predict the perfor-
mance of the system accurately. We then used the validated
QPN model to analyze the system with different deployment
configurations and workload scenarios in order to analyze
its scalability. We were able to correctly identify the load
balancer as the bottleneck resource with our model. Fur-
thermore, we showed that the accuracy of the QPN model
can be improved further when introducing departure disci-
plines for places in QPNs. In summary, it was possible to
analyze QPN models of realistic size and complexity using
SimQPN, taking advantage of the modeling power and ex-
pressiveness of the QPN paradigm. Even for the largest and
most complex scenarios, the modeling error for transaction
response time did not exceed 20.6% and was much lower for
transaction throughput and resource utilization.

4.2 Distributed Event-Based Systems
In [12,19], we presented a comprehensive methodology for

workload characterization and performance modeling of Dis-
tributed Event-Based Systems (DEBS). The methodology
helps to identify and eliminate bottlenecks and ensure that
systems are designed and sized to meet their QoS require-
ments. The methodology is based on operational analysis
and QPNs. We first used analytical analysis techniques to
find the utilization of system components and derive an ap-
proximation for the mean event delivery latency. We then
showed how more detailed performance models based on
QPNs can be built to provide more accurate performance
prediction. Modeling DEBS is particularly challenging be-
cause of the complete decoupling of communicating parties,
on the one hand, and the dynamic changes in the system
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structure and behavior, on the other hand. When a request
is sent in a traditional request/reply-based distributed sys-
tem, it is sent directly to a given destination which makes
it easy to identify the system components and resources in-
volved in its processing. In contrast to this, when an event
is published in a DEBS, it is not addressed to a particular
destination, but rather routed along all paths that lead to
subscribers with matching subscriptions. In this case study,
the DEBS was modeled with QPNs because it simplifies the
modeling of forks of asynchronous tasks. In [12,19], we also
proposed the extension of the QPN formalism to support
queues shared by several queueing places as it eases the
modeling of a DEBS. This extension has been meanwhile
integrated into QPME.

The SPECjms2007 benchmark was used in this case study
to evaluate the performance of the proposed methodology.
The SPECjms2007 benchmark is based on an application
scenario modeling the supply chain of a supermarket com-
pany where RFID technology is used to track the flow of
goods. Given the size and complexity of the modeled sys-
tem, the resulting performance model was much larger and
more complex than existing queueing models of message-
oriented event-based systems. Overall, the presented model
contained a total of 59 queueing places, 76 token colors and
68 transitions with a total of 285 firing modes. The model
was analyzed using SimQPN which took less than 5 minutes
in all cases. We considered several different scenarios that
represent different types of messaging workloads stressing
different aspects of the MOM infrastructure including both
workloads focused on point-to-point messaging as well as
workloads focused on publish/subscribe. In summary, the
model proved to be very accurate in predicting the system
performance, especially considering the size and complexity
of the system that was modeled [19].

4.3 Enterprise Data Fabrics
Enterprise data fabrics are gaining increasing attention in

many industry domains including financial services, telecom-
munications, transportation and health care. Providing a
distributed, operational data platform sitting between ap-
plication infrastructures and back-end data sources, enter-
prise data fabrics are designed for high performance and
scalability. In [8], we presented a case study of a represen-
tative enterprise data fabric, the Gem-Fire EDF, presenting
a simulation-based tool that we have developed for auto-
mated performance prediction and capacity planning. We
implemented a tool that automates resource demand esti-
mation, model generation, model analysis and results pro-
cessing based on QPN models. Given a system configuration
and a workload scenario, the tool generates a report showing
the predicted system throughput, server utilization and op-
eration response times. The tool uses SimQPN for solving
the generated QPN models.

Both, the modeling approach and the model extraction
technique were evaluated to demonstrate their effectiveness
and practical applicability. We considered several workload
and configuration scenarios and compared performance pre-
dictions obtained with SimQPN against measurements on
the real system. Overall, our experiments showed that pre-
dictions of network and server utilization were quite accurate
independent of the load level, while predictions of response
times were reasonably accurate in the cases where the av-
erage server utilization was lower than 75% [8]. We also

considered the analysis overhead and showed that the anal-
ysis overhead is acceptable for capacity planning purposes
and the proposed approach can be applied for scenarios of
reasonable size [8].

4.4 Enterprise Grid Environments
In [15], we presented a methodology for designing auto-

nomic Quality of Service (QoS) aware resource managers
that have the capability to predict the performance of the
Grid components they manage and allocate resources in such
a way that service level agreements are honored. Support
for advanced features such as autonomic workload charac-
terization on-the-fly, dynamic deployment of Grid servers on
demand, as well as dynamic system reconfiguration after a
server failure is provided. We implemented a resource man-
ager framework that uses QPNs as online performance mod-
els for autonomic QoS control. The QPN models are solved
using SimQPN to obtain QoS predictions. The approach
was validated in two different experimental setups, the first
one with only two Grid servers, the second one with up to
nine servers running in a virtualized environment. As a basis
for the experiments, we used three sample services each with
different behavior and service demands. The results of the
predictions from SimQPN were compared to measurements
from a real system and to predictions obtained with OM-
NeT++ models. The results showed that both QPN and
OMNeT++ models provided very consistent and accurate
predictions of performance metrics. There was hardly any
difference between confidence intervals provided by SimQPN
and OMNeT++. At the same time, while OMNeT++ re-
sults were limited to request response times, SimQPN results
were more comprehensive and included estimates of request
throughputs, server utilization, queue lengths, etc. In all
cases, the modeling error was below 15%. For details about
the experiment setup and procedure see [15].

Five different scenarios each focusing on selected aspects
of the framework were studied. We compared the behavior
of the system in two different configurations - ”with QoS
Control” vs. ”without QoS Control”. In the first configura-
tion, the resource manager applied admission control using
our resource allocation framework to ensure that SLAs are
honored. In the second configuration, the resource man-
ager simply load-balanced the incoming requests over the
two servers without considering QoS requirements. In all
scenarios with QoS Control enabled, the measured response
times were stable and nearly 100% of the client SLAs were
fulfilled. The results confirmed the effectiveness of our re-
source manager architecture in ensuring that QoS require-
ments are continuously met.

5. MODEL-TO-MODEL
TRANSFORMATIONS

In [14], we showed how an automated model-to-model
transformation can be used to evaluate the performance of
component-based systems modeled at the software architec-
tural level by means of automatically generated QPN mod-
els. The source language, in this case, the Palladio Compo-
nent Model (PCM) [5], is automatically transformed into a
suitable QPN representation, which is then solved using the
tools introduced earlier. In this section, we briefly discuss
PCM and then illustrate the transformation by presenting
as an example the mapping of open and closed workloads.

16



(a) OpenWorkload (b) ClosedWorkload

Figure 7: Workload QPN.

Finally, we summarize the results from an in-depth evalua-
tion of the transformation.

5.1 Palladio Component Model (PCM)
The Palladio Component Model (PCM) [5] is a meta-

model allowing the specification of performance-relevant in-
formation of a component-based architecture. It focuses on
the software performance engineering (SPE) and component-
based software engineering (CBSE) domains. Four factors
essentially determine the performance of a software com-
ponent: its implementation, the performance of external
services it requires, the performance of the execution en-
vironment it is deployed on, and the usage profile. Each
of these aspects is described using parametric dependencies.
The PCM provides a domain-specific language for describ-
ing component-based software architectures and the perfor-
mance characteristics of the employed components.

5.2 PCM2QPN Transformation
To illustrate how elements of PCM are mapped to QPN

elements, the mapping of closed and open workloads is pre-
sented in the following.

The workload in PCM is represented as a number of usage
scenarios, running in parallel. Each scenario has a workload
specification and contains a specification of the scenario be-
havior. Two kinds of workloads are supported. An open
workload is characterized by an inter-arrival time distribu-
tion, which describes the time that elapses between consec-
utive requests. Figure 7(a) shows how the OpenWorkload
usage model entity is represented in the generated QPN
to achieve the open workload semantics. The Client-Place
queueing place generates tokens of a color c which is differ-
ent for each UsageScenario. It references a client queue with
Infinite Server (IS) scheduling strategy. An empirical distri-
bution is used for the Client-Place resource demand repre-
senting inter-arrival time distribution of the OpenWorkload.
The initial number of tokens is set to 1. For each input to-
ken the Client-Entry transition creates a new token in the
subnet representing the ScenarioBehavior. Another token
is created in the Client-Place queue. The Client-Exit tran-
sition destroys tokens of color c from the ScenarioBehavior
subnet.

A closed workload is characterized both by an integral
population, as well as by a think time distribution. There
is a fixed number of requests, each of which has to wait ac-
cording to the think time after its processing is complete.
Figure 7(b) shows the mapping for a ClosedWorkload. The
difference is that the Client-Entry transition does not gen-
erate any tokens in the Client-Place. Instead, this is done
by the Client-Exit transition. At the Client-Place we use an
empirical distribution for the resource demand equal to the

think time distribution of the ClosedWorkload. The initial
number of tokens is set to the population of the closed work-
load. A new token will now be available after it has passed
through the whole ScenarioBehavior and after the residence
time in the queue, which equals the think time.

Other elements of the PCM meta-model are mapped in a
similar manner. Also, as part of the transformation, the in-
dividual QPN parts of the mapped PCM elements are con-
nected using ordinary places according to the connections
within the PCM model. The different possible token colors
for each QPN part are similarly derived from the different
usages of a component definition within the PCM system
model.

5.3 Evaluation
The approach of using an automated transformation for

the analysis of PCM models was evaluated in the context
of five representative case studies. The details are omitted
here for brevity and can be found in [14]. Compared to ex-
isting tools to analyze PCM models, our approach leads to
performance predictions of mean value metrics with high ac-
curacy at a significantly reduced analysis overhead in many
cases by an order of magnitude. Important limitations of
the approach are the inability to model the synchronization
of multiple requests at a barrier, as well as the inability to
represent stochastic dependencies between PCM expression
language variables.

6. CONCLUSIONS
In this tutorial, we presented an introduction to the QPN

modeling formalism and showed how it can be used for per-
formance modeling of distributed systems. QPNs have a
number of benefits compared to traditional queueing net-
works and stochastic Petri nets. Exploiting the modeling
power and expressiveness of QPNs, QPN models can be
used to accurately capture both hardware and software as-
pects of system behavior. We summarized the results from
several modeling case studies in different application do-
mains (including distributed component-based systems, dis-
tributed event-based systems, enterprise data fabrics, and
enterprise grid environments) showing how QPNs can be
used for performance modeling in these domains. Further-
more, we briefly introduced QPME, a tool for stochastic
modeling and analysis using QPNs. Finally, we showed how
software architecture models (with performance annotations
capturing performance relevant aspects) can be automati-
cally transformed to QPNs eliminating the need to build
QPN models manually.
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