
How A Consumer Can Measure Elasticity for Cloud
Platforms

Sadeka Islam
National ICT Australia,

University of New South Wales
sadeka.islam@nicta.com.au

Kevin Lee
National ICT Australia,

University of New South Wales
kevin.lee@nicta.com.au

Alan Fekete
University of Sydney,
National ICT Australia

alan.fekete@sydney.edu.au

Anna Liu
National ICT Australia,

University of New South Wales
anna.liu@nicta.com.au

ABSTRACT

One major benefit claimed for cloud computing is elastic-
ity: the cost to a consumer of computation can grow or
shrink with the workload. This paper offers improved ways
to quantify the elasticity concept, using data available to the
consumer. We define a measure that reflects the financial
penalty to a particular consumer, from under-provisioning
(leading to unacceptable latency or unmet demand) or over-
provisioning (paying more than necessary for the resources
needed to support a workload). We have applied several
workloads to a public cloud; from our experiments we ex-
tract insights into the characteristics of a platform that in-
fluence its elasticity. We explore the impact of the rules used
to increase or decrease capacity.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: PERFORMANCE
OF SYSTEMS—Measurement techniques, Modeling techniques;
D.2.8 [SOFTWARE ENGINEERING]: Metrics—Com-
plexity measures, Performance measures

Keywords

Cloud Computing, Elasticity, Performance Measures

1. INTRODUCTION
Cloud computing platforms are already used extensively

by some companies with huge and rapidly growing computa-
tional needs, and traditional enterprises are looking closely
at the cloud as an addition or even an alternative to running
their own IT infrastructure. Many features of cloud plat-
forms are attractive; e.g., cloud platforms may be low-cost
and they may achieve high availability. One feature that is
commonly a powerful selling point for cloud platforms is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

claim that they are elastic; the user can pay only for what
they need at a given time. The (US) National Institute of
Standards and Technology (NIST)1 defines elasticity:

Capabilities can be rapidly and elastically pro-
visioned, in some cases automatically, to quickly
scale out, and rapidly released to quickly scale
in. To the consumer, the capabilities available
for provisioning often appear to be unlimited and
can be purchased in any quantity at any time.

We note here two fundamental elements of elasticity: (1)
Time (e.g., a platform is more elastic if resources are avail-
able sooner after a request is made), and (2) Cost (e.g., a
platform charging on a per-hour basis is less elastic than one
charging on a per-second basis).

Elasticity is a desirable property for many businesses. A
startup facing rapid growth wishes that its costs start small,
and grow as and when the income arrives to match. In con-
trast, traditional data processing requires a large up-front
capital expenditure to buy and install IT systems. Tradi-
tionally, the cost must cover enough processing for the an-
ticipated and the hoped-for growth; this leaves the company
bearing much risk from uncertainty in the rate of growth. If
growth is slower than expected, the revenue won’t be avail-
able to pay for the infrastructure, while if growth is too fast,
the systems may reach capacity and then a very expensive
upgrade or expansion is needed. Also, it is common in web-
based companies for demand to be periodic or bursty (e.g.,
the Slashdot effect). The workload may grow very rapidly
when the idea is “hot”, but fads are fickle and demand can
then shrink back to a previous level. Traditional infrastruc-
ture must try to provision for the peak, and so it risks wast-
ing resources after the peak has passed. In summary, elas-
ticity can remove risk from a startup or an enterprise, by
allowing “pay-as-you-grow” computing infrastructure where
the costs adjust smoothly to rising (and perhaps falling)
workload.

While all cloud offerings claim elasticity as a virtue that
they possess, we can be sure that none are perfect in let-
ting a customer pay for exactly what they need, and no
more. There may be a minimum charge (e.g., 1 instance),
there may be delays in adapting the platform to sudden in-
crease in workload, and so on. Thus we would want to know
1See http://csrc.nist.gov/publications/drafts/800-
145/Draft-SP-800-145_cloud-definition.pdf

1

85

how elastic is each system. As yet, the literature does not
contain any explicit measurement to quantify the amount
of elasticity in a platform. This is the gap that our paper
addresses. We are not proposing a mechanism for minimis-
ing resource usage. Rather, we are proposing elasticity as a
property of a platform with time and cost as its essential el-
ements, and we demonstrate how elasticity can be measured
with respect to applications with certain Quality of Service
(QoS) requirements. We envisage that different mechanisms
for minimising resource usage can be evaluated using our
elasticity measure.
Just as with traditional IT infrastructure, the company

seeking to use a cloud platform needs a basis for comparing
different offerings, and choosing the one that will be best
for its needs. The usual approach is to follow a benchmark,
which includes a standardised workload, and defines exactly
how to measure the behavior of any system when subjected
to this workload. The benchmark gives one (or a few) sum-
mary numbers that represent the value to the chooser of
the system; it is then reasonable to select the system with
best benchmark results. Organisations like TPC and SPEC
have a range of benchmarks for hardware and/or software
systems. This paper is part of an effort in the research com-
munity to define appropriate measures that will allow com-
paring the desirableness of competing cloud platforms.
We draw attention to the difference between elasticity and

scalability, since the two notions are often mixed up. Scal-
ability is defined as the ability of a system to meet a larger
workload requirement by adding a proportional amount of
resources. It means that the system must be able to han-
dle a high workload in a graceful manner (i.e., maintaining
its performance). However, scalability is a time-free notion
and it does not capture how long it takes for the system to
achieve the desired performance level. In contrast, time is
a central aspect in elasticity, which depends on the speed of
response to changed workload.
One important feature of our work is that we regard bench-

marking as a process done by the consumer of cloud services.
We limit ourselves to running a benchmark as a consumer -
this includes considering her application and workload pro-
file, incorporating the business objectives, and taking ob-
servations that are available to the consumer through the
platform’s API or inside the user’s application code. This
makes our task harder, since we do not have access to ar-
bitrary measurements of the infrastructure itself, but this
viewpoint is necessary for our work to give the consumer
a reasonable basis for choosing between competing plat-
forms. In contrast, the provider’s viewpoint of elasticity
can be completely different because they have access to the
measurements from the underlying physical infrastructure
(hardware configuration and specification) and virtualisa-
tion environment. This enables them to do performance
modelling and looking at interactions between components
to deduce the performance outcome for a class of applica-
tions. For the consumer’s viewpoint, we try to understand
the elasticity behavior of the platform from its response to
a suite of workload patterns.
A key idea in our proposal is to come up with a num-

ber that measures elasticity as a property of a cloud plat-
form (though the actual figure-of-merit will vary depending
on the application’s business model, workloads, etc). To
achieve this, we use workloads that vary over time in dif-
ferent ways. Some workloads will rise and fall repeatedly,

others will rise rapidly and then fall back slowly, etc. For
each workload, we examine the way a platform responds to
this, and we quantify the effect on the consumer’s finances.
That is, we use a cost measure in cents per hour, with a
component that captures how much is wasted by paying for
resources that are not needed at the time for the workload
(overprovisioning), and a component to see how much the
consumer suffers (opportunity cost) when the system is un-
derprovisioned, that is, the platform is not providing enough
resource for a recent surge in workload.

From our measurements, we have discovered several char-
acteristics of a cloud platform that are important influences
on the extent of elasticity. Some of these (such as the speed
of responding to a request for increased provisioning) have
already been discussed by practitioners, but others seem to
have escaped attention. For example, we find in Amazon
EC2 that there is a large improvement of elasticity from rel-
atively simple changes in the set of rules that the system
uses to control provisioning and deprovisioning. There is a
set of rules (based on recent utilisation rates) that is widely
followed, perhaps because it is done that way in tutorial ex-
amples. We find that this leads to rapid deprovisioning when
load decreases, which leaves the system underprovisioned if
a future upswing occurs. Because the financial impact from
poor QoS (when demand can’t be handled) is generally much
more severe than the cost of running some extra resources
for a while, this is a poor strategy. What is worse, on typical
platforms one pays for an instance in quanta that represent
a significant period of time (say 1 hour), so eagerness to
deprovision can leave the consumer paying for a resource
without the ability to use it.

The key contributions that this paper makes are (i) a novel
framework for measuring elasticity, that can be run by a con-
sumer and which takes account of the consumer’s particular
business situation (ii) a specific set of case studies, using
one set of workload patterns and financial assumptions, to
show that this approach can be carried out in practice, (iii)
insights that we gained from the case studies, especially con-
cerning the main internal characteristics of a platform that
impact on the elasticity experience of a consumer.

This paper is structured as follows: Section 2 identifies
relevant work on elasticity and cloud performance measure-
ments. Section 3 presents our proposed benchmark for mea-
suring elasticity, first as a general framework based on penal-
ties that are expressed in monetary units, and then with
specific choices for penalty functions, workload curves etc.
Section 4 describes the details of the experimental setup,
including the tools and specific cloud technologies used in
our case studies. Section 5 presents empirical case studies
that show the elasticity of particular platforms, given by dif-
ferent choices of rulesets that control provisioning decisions
in a widely-used public cloud. We close the paper with a
discussion of the lessons learnt and a conclusion.

2. RELATED WORK
The main objective of this paper is to provide a way for

a consumer to measure how well (or not) each cloud plat-
form delivers the elasticity property. The most relevant prior
research is concerned with understanding the elasticity con-
cept, and with measuring cloud platform performance. This
work has appeared in formal academic forums, and/or in
trade press or practitioner blogs.

2

86

2.1 Elasticity : Definition and Characteristics
It is important to get common usage of marketable terms

such as “elastic”. Several efforts explain the meaning of
terms that are used about cloud platforms, and along with
explanation, they point to aspects of the platform’s perfor-
mance that can be important for elasticity. Unlike our work,
these studies do not give explicit measurement proposals.
Armbrust et al. [1] discuss relevant use cases and potential

benefits for cloud platforms. Among their points, they draw
attention to the value of cloud elasticity as compared to the
conventional client-server model in the context of perceived
risks due to over- and under- provisioning.
The prestigious National Institute of Standards and Tech-

nology (NIST) has pointed out rapidity in resource provi-
sioning and de-provisioning as an important aspect of elas-
ticity. Two other discussions from David Chiu2 and Ricky
Ho3 have pointed to an additional important factor of elas-
tic behavior, that of the granularity of usage accounting.
That means that elasticity when load declines is not only a
function of the speed to decommission a resource, but also
it depends on whether charging for that resource is stopped
immediately on decommissioning, or instead is delayed for
a while (say till the end of a charging quantum of time).

2.2 Cloud Performance and Benchmarks
Recent research efforts have conducted in-depth perfor-

mance analysis on the virtual machine instances offered by
public cloud providers. For example, Stantchev et al. [14] in-
troduce a generic benchmark to evaluate the nonfunctional
properties (e.g., response time) of individual cloud offerings
for web services from cost-benefit perspective. Dejun et
al. [5] and Schad et al. [11] examine the performance sta-
bility and homogeneity aspects of VM instances over time.
These studies are useful to understand the underlying per-
formance characteristics of the cloud infrastructure, however
they do not consider the responsiveness of the platform dur-
ing scaling with the variation in workload demand. A group
at HP Labs [2] has defined provider-done measurements for
a range of quality features of cloud platforms, focusing on
environmental factors such as energy use.
Cloud service providers adopt dynamic VM migration

strategies to balance application workloads among differ-
ent physical machines. Several groups [13, 6] have pre-
sented benchmarking solutions to quantify the comparison
of live VM migration techniques for data center scenarios.
We evaluate cloud platform’s elasticity from the consumers’
viewpoint, whereas their work takes the service providers’
perspective. They define a set of performance measures for
assessing the overheads associated with dynamic VM mi-
gration techniques. In contrast, we consider the impact of
imperfect elasticity based on consumers’ business situation.
Several performance benchmarks have been proposed to

quantify many important cloud performance metrics, among
them the resource spin-up (spin-down) delay. Yigitbasi et
al. [16] present a framework to determine the performance
overheads associated with the scaling latency of the virtual
machine (VM) instances in the cloud. Li et al. [9] developed
CloudCmp to analyse customer perceived performance and
cost effectiveness (e.g., scaling latency, cost per operation) of

2See Crossroads, Vol. 16, No. 3. (2010), pp. 3-4.
3See http://horicky.blogspot.com/2009/07/between-
elasticity-and-scalability.html

public cloud offerings. However, they do not combine their
discrete performance metrics into a macroscopic overview
of the platform’s adaptability behavior. We propose a sin-
gle summary measure for elasticity, which is influenced by
several factors that were used in these earlier studies.

Yahoo! Cloud Serving Benchmark (YCSB) [4] evaluates
performance of cloud databases (e.g., Cassandra, HBase)
under load for a variety of workload scenarios as well as
scale-up and elastic speed-up measures (that is, they con-
sider workloads that grow and grow). Their work is valu-
able when seeking to analyse the performance implications
of large database-intensive applications in the cloud; how-
ever, we also consider de-provisioning and resource granular-
ity aspects. Furthermore, our elasticity model captures the
financial implications as well as traditional performance.

Donald Kossmann’s group at ETHZ has a research project
on benchmarking cloud platforms. An initial workshop dis-
cussion [3] proposed that it would be useful to take the ratio
of the throughput achieved by operations with acceptable
response time, to the rate of requests, in workloads with
successive peaks and troughs. The later conference paper [7]
presents an extensive evaluation of the end-to-end scalabil-
ity aspect of existing cloud database architectures for OLTP
workloads. Here they define a set of performance and cost
metrics to compare the throughput, performance/cost ratio
and cost predictability of existing cloud database systems for
larger and larger loads. They look at a much wider variety
of measures than we do, but they omit to look at the speed
of responding to change in workloads, nor do they consider
workloads that can shrink as well as grow.

2.3 Elasticity Measurement Model
Weinman has proposed a numeric measurement of elastic-

ity [15] using a conceptual model: consider a resource (e.g.,
computational capacity), then there is a demand curve D(t)
that indicates, as a function of time, how much resource is
needed for the application to work properly. A function R(t)
shows how much resource is allocated to the application at
each time. Perfect elasticity would be shown if R(t) = D(t)
for all t. Weinman identifies the situation where R(t) > D(t)
as “excess resource” (we say “overprovisioning”), and assigns
it a cost which (in the simplest case) is linear in the quan-
tity of resource that is allocated above that needed. Sim-
ilarly, he considers “unserved demand” (which we call “un-
derprovisioning”) when D(t) < R(t), and measures this by
opportunity cost, linear in the difference. The constant of
proportionality is much higher for unserved demand than
for excess resource. Figure 1 illustrates this for a resource
of CPU capacity; the curves show a hypothetical situation
with a sine wave variation in demand (solid blue line), and
linearly increasing supply (dotted black line). A value of
150% for demand indicates that the application could use
one-and-a-half times the capability of the standard instance,
and 150% as the supply indicates that the application has
been allocated instruction execution from cycles that were
one-and-a-half as frequent as those on a standard instance.
Weinman’s measure is a weighted combination of the ar-
eas between the curves (with higher weight for the areas of
under-provisioning).

We propose improvements over Weinman’s model in sev-
eral respects. First, we design our workload suite to resemble
complex real-world scenarios, while his workload types (e.g.,
constant one) are limited to theoretical analysis only. Sec-

3

87

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14

C
P

U
 (

%
)

Time (mins)

CPU vs Time

Under-provisioning

Over-provisioning

Resource demand
Resource supply

Figure 1: Elasticity Explained

ond, Weinman’s area-based under-provisioning model can
only accommodate unmet demand and is not able to include
penalties resulting from unsatisfactory performance (e.g.,
high latency). We propose shifting our focus to a QoS-based
under-provisioning model. Our under-provisioning model
allows industry-typical SLAs, where, for example, the op-
portunity cost from high latency is not linear in the delay,
but rather depends on whether the latency has breached a
threshold, and furthermore we allow a small number of re-
quests to see excessive latency. Also, we distinguish between
the resources that are allocated, and those that are charged
to the consumer (as we will see, the difference between these
can be significant). In addition, we define a unified metric
to summarize the financial penalties of a set of workload de-
mands for a particular platform. Finally, we consider prag-
matic issues needed to produce a figure-of-merit for a plat-
form, by choosing explicit workloads and carrying out mea-
surements, while Weinman’s paper is entirely theoretical.
Unlike Weinman, we explore the impact of the scaling rules
used in the platform, to provision or deprovision resources.

3. ELASTICITY MEASUREMENT
This section defines our proposal, to determine a figure

that expresses “how elastic is a given cloud platform”. We
explain a general framework to measure the cost of imper-
fect elasticity when running a given workload, with penalties
for overprovisioning and underprovisioning; the sum of these
is the penalty measurement for the workload. By consider-
ing a suite of workloads, and combining penalties calculated
for each, we can define a figure-of-merit for a cloud plat-
form. Next we discuss choices that we have made for an
explicit measurement - that is, taking concrete decisions on
the Service-Level Agreement (SLA) aspects that are evalu-
ated, charging rates, and the particular suite of workloads.

3.1 Penalty model
We present our approach to measuring imperfections in

elasticity for a given workload in monetary units. We assume
that the system involves a variety of resource types. For
example, the capacity of an EC2 instance can be measured
by looking at its CPU, memory, network bandwidth, etc.
We assume that each resource type can be allocated in units.
We assume that the user can learn what level of resourcing
is allocated and the relevant QoS metrics for their requests

(such as distribution of latency). Amazon CloudWatch4 is
an example of the monitoring functionality we expect.

Our elasticity model combines penalties for over-
provisioning and for under-provisioning. The former cap-
tures the cost of provisioned but unutilised resources, while
the latter measures opportunity cost from the performance
degradation that arises with under-provisioning.

3.1.1 Penalty for Over-Provisioning

In existing cloud platforms, it is usual that resources are
temporarily allocated to a consumer from a start time (when
the consumer requests the resource based on observed or pre-
dicted needs, or when the system proactively allocates the
resource) until a finish time. This is represented by a func-
tion we call available supply and denote by Ri(t) for each
resource i. In current platforms it can also happen that a
resource may be charged to a consumer even without be-
ing available. For example, in Amazon EC2, an instance is
charged from the time that provisioning is requested (even
though there is a delay of several minutes before the in-
stance is actually running for the consumer to utilise). Sim-
ilarly, charging for an instance is done in one-hour blocks, so
even after an instance is deprovisioned, the consumer may
continue to be charged for it for a while. Thus we need
another function Mi(t) that represents the chargeable sup-
ply curve; this is what the consumer is actually paying for.
These curves can be compared to the demand curve Di(t).

The basis of our penalty model is that the consumer’s
detriment in overprovisioning (when R(t) > D(t)) is essen-
tially given by the difference between chargeable supply and
demand; as well, we charge a penalty even in underprovi-
sioned periods whenever a resource is charged for but not
available (and hence not used). These penalties are com-
puted with a constant of proportionality ci that indicates
what the consumer must pay for each resource unit. In real
systems, resources of different types are often bundled, and
only available in collections (e.g., an EC2 instance has CPU,
bandwidth, storage etc.). We assume that some weighting is
used to partition the actual monetary charge for the bundle
between its contained resources.

Formally, we define the overprovision penalty Po(ts, te) for
a period starting at ts and ending at te. We assume a set
of resources indexed by i, and we use functions Di(t), Ri(t),
and Mi(t) for the demand, available supply, and charged
supply, respectively, of resource i at time t. Our definition
aggregates the penalties from each resource, and for each
resource we integrate over time.

Definition 1.

Po(ts, te) =
∑

i

Po,i(ts, te)

Po,i(ts, te) =

∫ te

ts

ci × di(t)dt

di(t) =



















Mi(t)−Di(t) if Ri(t) > Di(t),

Mi(t)−Ri(t) if Mi(t) > Ri(t)

and Di(t) ≥ Ri(t),

0 otherwise.

4See http://aws.amazon.com/cloudwatch/

4

88

3.1.2 Penalty for Under-Provisioning

Next, we turn to the penalty model for under-provisioning,
when resources are insufficient and performance is poor. We
measure the opportunity cost to the consumer, using SLAs
that capture how service matters to them.
We assume that the consumer has used their business en-

vironment to determine a set of performance or Quality of
Service (QoS) objectives, and that each is the foundation
for an SLA-style quantification of unsatisfactory behavior.
For example, the platform’s failure to meet the objective
of availability can be quantified by counting the percent-
age of requests that are rejected by the system. In many
cases, such SLA quantification might reflect a wide variety
of causes, not only those that arise from underprovisioning,
but also some from e.g., network outage. We assume that
the customer also knows how to convert each measurement
into an expected financial impact. For example, there might
be a dollar value of lost income for each percent of rejected
requests. In many cases, the financial impact may be pro-
portional to the measurement, but sometimes there are step
functions or other nonlinear effects (for example, word-of-
mouth may give a quadratic growth of the damage from
inaccurate responses). To provide a proper baseline for the
penalties, we also consider the ideal value that occurs when
resources are unlimited (in practice, we measure with such a
large amount of overprovision that any additional allocation
would not change the SLA measurement).
Formally, we let Q be a non-empty set of QoS measures,

and for each q ∈ Q, we consider a function pq(t) that reflects
the amount of unsatisfactory behavior observed on the plat-
form at time t. The consumer provides also, for each QoS
aspect q, a function fq that takes the observed measurement
of unsatisfactory behavior and maps this to the financial
impact on the consumer. Let poptq (t) denote the limit (as
K ←∞) of the amount of unsatisfactory behavior observed
in a system that is statically allocated with K resources.
Thus we define the underprovision penalty Pu(ts, te) for a

period starting at ts and ending at te

Definition 2.

Pu(ts, te) =
∑

q∈Q

Pu,q(ts, te)

Pu,q(ts, te) =

∫ te

ts

(fq(pq(t))− fq(p
opt
q (t)))dt

3.1.3 Total Penalty Rate for an Execution

We calculate the overall penalty score P (ts, te) accrued
during an execution from ts till te, by taking the sum of the
penalties from both over- and under-provisioning; note that
both are expressed in units of cents. We then calculate the
total penalty rate P in cents per hour. A lower score for P
indicates a more elastic response to the given workload.

Definition 3. The penalty score over a time interval [ts, te]
is defined as follows:

P (ts, te) = Po(ts, te) + Pu(ts, te)

P =
P (ts, te)

te − ts

3.2 Single Figure of Merit for Elasticity
The definitions above measure the elasticity of the sys-

tem’s response to a single demand workload. Different fea-

tures of the workload may make elastic response easier or
harder to achieve; for example, if the workload grows steadily
and slowly, a system may adjust the allocation to match the
demand, but a workload with unexpected bursts of activity
may lead to more extensive under-provisioning. Thus, we
consider a suite of different workloads, and determine the
penalty rate for each of these.

In order to draw simple conclusion about the worthiness
of one platform’s elasticity over another, we wish to sum-
marize the penalty rates for the entire workload collection
into a single score, as usual in benchmarks. To combine
measured penalty rates from several workloads into a sin-
gle summary number, we follow the approach used by the
SPEC family of benchmarks. That is, we choose a reference
platform, and measure each workload on that platform as
well as on the platform of interest. We take the ratio of
the penalty rate on the platform we are measuring, to the
rate of the same workload on the reference platform, and
then we combine the ratios for the different workloads by
the geometric mean. That is, if Px,w is the penalty rate for
workload w on platform x, and we have n workloads in our
suite, then we measure the elasticity of platform x relative
to reference platform x0 by

E = n

√

√

√

√

n
∏

i=1

(Px,wi
/Px0,wi

)

3.3 Choices for an Elasticity Benchmark
The approach to elasticity described above is flexible, and

could be adapted to the needs of each consumer, through
the choices available. We can set particular SLA objectives
and metrics that reflect the business situation, workloads
that are representative of that consumer’s patterns of load
variation, etc. To actually determine an elasticity score, we
need to make one set of choices for all these parameters. For
the purpose of this paper, we use the following. Our work-
load consists of requests that follow the TPC-W application
design.

To calculate the overprovisioning penalty, we deal with a
single resource (CPU capacity, relative to a standard small
EC2 instance) and measure the financial charge as $0.085
per hour per instance. This reflects the current charging
policy of AWS. To calculate the underprovisioning penalty,
we set the QoS constraints based on the existing user be-
havior studies in usability engineering literature [10]. In
particular, each user in our workload pattern lands on the
homepage first and then searches for newly released books.
We expect at least 95% of these requests generated by the
users will see a response within 2 seconds. So we have used
the following two QoS aspects with associated penalties over
an hourly evaluation period. The cost penalty for latency vi-
olation is a simplified version of the cost function mentioned
in [8]. As e-commerce websites lose more revenue when la-
tency is slow than for application down-time5, we associate
a lower cost penalty for unserved requests.

• (Latency) In each hour of measuring, there is no penalty
as long as 95% of requests have response time up to
2 seconds; otherwise, a cost penalty, 12.5¢ will apply
for each 1% of additional requests (beyond the allowed
5%) that exceed the 2 seconds latency.

5See http://blog.alertsite.com/2011/02/online-
performance-is-business-performance/

5

89

• (Availability) Cost penalty of 10¢ per hour will apply
for each 1% of requests that fail completely (they are
rejected or timed out).

Note that the penalty for unmet demand is very high com-
pared to the cost of provisioning; this is accurate for real con-
sumers. As Weinman [15] points out, the cost of resources
should be much less than the expected gain from using them
(and the latter is what determines the opportunity cost of
unmet demand).
The appropriate SLAs and their penalties may vary largely

based on the business situation of the consumer of cloud
services. In this paper we use a penalty corresponding to a
rather small business (the penalty is only $10 in case the ser-
vice is completely unavailable for an hour, when all requests
are rejected). For a large e-commerce business application
(e.g., e-bay), the appropriate penalty for down-time might
be much higher6, say $2000/second, and similarly the appro-
priate workloads would be much greater. The SLA penalty
specified here should be considered as an illustration, to be
adjusted based on the application’s business context.
We have developed a workload suite to explore the plat-

form’s elasticity behavior for a range of patterns of demand
change. We consider various workload characteristics (e.g.,
periodicity, growth and decay rate, randomness) to under-
stand how the platform’s elastic response varies across the
workload space. In our measurements, we use a set of 10
different workloads, which grow and shrink in a variety of
shapes, though (to make benchmarking manageable) all are
fairly small, peaking with less than 10 instances, and lasting
across 3 hours. Across time, some workloads show recurring
cycles of growth and decrease, such as an hourly news cycle.
Others have a single burst, such as when news breaks or dur-
ing a marketing campaign7. We explore some trends as the
length of cycles changes, etc., however work is still needed
to consider the behavior with longer cycles such as daily
ones, or longer-lasting one-off events. Further research is
also needed on whether conclusions from small loads will be
valid for much larger ones, as expected by large customers.

• Sinusoidal Workloads: These loads can be expressed
as D(t) = A(sin(2πt/T + φ) + 1) +B, where A is the
amplitude, B is the base level, T is the period and φ is
the phase shift. For the benchmark suite, we use three
different examples, whose periods are 30 minutes, 60
minutes and 90 minutes, respectively. All have peak
demand of 450 req/sec, and trough at 50 req/sec. A
load of 150 req/sec is about what one VM instance can
support.

• Sinusoidal Workload with Plateau: This workload type
modifies the sinusoidal waveform, by introducing a level
(unchanging) demand for a certain time, at each peak
and trough. Thus the graph has the upswings and
downswings, with flat plateau sections spacing them
out. In the suite we have three workloads like this, each
starting from the sinewave with period of 30 minutes;
in one case the plateau at each peak lasts 10 minutes,
in another it lasts 40 minutes, and in the last of this

6See http://www.raritan.com/resources/case-
studies/ebay.pdf
7See ecn.channel9.msdn.com/o9/pdc09/ppt/SVC54.pptx,
http://www.mediabistro.com/alltwitter/osama-bin-
laden-twitter-record_b8019

type, the peak plateaus last 70 minutes each. In all
cases, the plateaus at troughs last 45 minutes (and
there is always a 10 minutes plateau at the start of the
experiment and also at the end).

• Exponentially Bursting Workload: This workload type
exhibits extremely rapid buildup in demand (rising U -
fold each hour), followed by a decay (declining D-fold
each hour). We provide two workloads of this type,
one with U = 18 and D = 2.25; the other has U = 24
and D = 3 (so this rises and falls more quickly).

• Linearly Growing Workload: This workload represents
a website whose popularity rises consistently. It can be
stated as D(t) = mt + c, where m is the slope of the
straight line and c is the y-axis intercept. We have
one example of this type, with workload that starts
at 50 requests/second (and stays here for 10 minutes
to warm the system up), then the load rises steadily
for 3 hours, each hour increasing the rate by an ex-
tra 240 requests/second. Thus we end up with 770
requests/second.

• Random Workload: The generation of requests is on-
going and independent. We have one example of this
type, with requests produced by a Poisson process.

We note that the demand curves described above are ex-
pressed in terms of the rate requests are generated; in prac-
tice, performance variation in identical instances means that
this does not cause the utilisation of CPU resources to track
the desired demand pattern exactly.

4. IMPLEMENTATION
In this section, we illustrate the implementation details of

our elasticity measurement environment. We first describe
the architectural components of our experimental testbed
and then outline the key steps to configure the testbed to fit
the consumer-specific scenarios.

4.1 Experimental Setup
In the high level view, the architecture of our experimental

setup can be seen as a client-server model. The client side is
a workload generator implemented using JMeter8, which is a
Java workload generator used for load testing and measuring
performance. The sole purpose of JMeter in this experiment
is to generate workload based on our predefined workload
patterns.

We chose TPC-W [12] as the application in all our suite of
workloads, because it has easy-to-obtain code examples and
it is most often used in the literature. It can be substituted
with other applications if desired. TPC-W emulates user
interactions of a complex e-commerce application (such as
an online retail store). In our experiment, we adopt the
online bookshop implementation of TPC-W application and
deploy it into EC2 small instances. Instead of having the
TPC-W workload generator at the client side, we use JMeter
to specify our pre-defined workload patterns.

The server side is considered to be the System Under
Test (SUT), which consists of a single load-balancer facing
the client side, and a number of EC2 instances behind the
load-balancer. We hosted the web server, application server

8See http://jakarta.apache.org/jmeter/

6

90

and database on the same EC2 m1.small instance at US-
East Virginia region (the cost of each instance is 8.5¢ per
hour, matching the penalty we apply for overprovisioning);
as some of the database queries consumed more CPU, we
had to restrict the processing rate for TPC-W server to 150
requests/second to achieve satisfactory performance. The
number of instances is not fixed, but rather it is controlled
by an autoscaling engine which dynamically increases and
decreases the number of instances based on the amount of
workload. The behavior of an autoscaling engine follows a
set of rules that must be defined. Each ruleset produces a
different “platform” for experimental evaluation, with differ-
ent elasticity behavior.
An autoscaling rule has the form of pair consisting of an

antecedent and a consequence. The antecedent is the condi-
tion to trigger the rule (e.g., CPU utilisation is greater than
80%) and a consequence is the action to trigger when the
antecedent is satisfied (e.g., create one extra instance). In
our experiments we consider three platforms, because we run
with three different rulesets. The detailed configurations of
the autoscaling engine (configured via AutoScaling9 library)
is shown in Table 1.
We have here explored rulesets that scale-out and -in by

changing the number of instances, all of the same power.
Some cloud platforms, including EC2, also allow one to pro-
vision instances of different capacity, vary bandwidth, etc.;
how such rules alter the elasticity measures is an issue for
further research, although our definitions will still apply.
We measure available supply R(t) by using the reports

from CloudWatch showing the number of instances that
are allocated to our experiment; we treat k instances as
R(t) = 100 × k% of supply, so this function moves in dis-
crete jumps. Chargeable supply M(t) is determined from
the launch time and termination time of the allocated EC2
instances, given by AWS EC2 API tools. For demand, our
generator is defined to produce a given number of requests,
rather than in the measure of CPU capacity, that is needed
for our measurements. Thus we use an approximation: we
graph D(t) from what CloudWatch reports as the sum of the
utilisation rates for all the allocated instances. As will be
seen in the graphs in Section 5, this is quite distorted from
the intended shape of the demand function. One distortion
is that measured D(t) is capped at the available supply, so
under-provisioning does not show up as D(t) > R(t). This
inaccuracy is not serious for our measurement of elasticity,
since the use of D(t) in measurement is only for cases of
over-provisioning; during under-provisioning, the penalty is
based on QoS measures of latency and lost requests, and
these do reveal the growth of true demand. Another inaccu-
racy is from the system architecture, where requests that ar-
rive in a peak period may be delayed long enough that they
lead to work being done at a later period (and thus mea-
sured D(t) may be shifted rightwards from the true peak).
As well, there is considerable variation in the performance
of the supplied instances [5], so a given rate of request gen-
eration with 450 req/s can vary from 350% to 450% when
we see the measured demand. Future work will find ways to
more accurately measure demand in units of CPU capacity.

4.2 Configuration and Measurement Procedure
Here is the procedure for setting up the elasticity mea-

surement environment. First, a VM image is prepared by

9See http://aws.amazon.com/autoscaling/

installing necessary components for the target application
(e.g., TPC-W). Then the load-balancer is launched and au-
toscaling configuration for the dynamically scalable server
farm is set up. A monitoring agent (e.g., CloudWatch) is
also configured to measure utilisation and performance data
for each workload run.

Next, the scripts for all workload demands are distributed
to the client-side load generator (e.g., JMeter). Each work-
load demand is applied to a fresh set-up of the server farm.
At the end of each workload run, utilisation and perfor-
mance data are collected from the monitoring agent and load
generator respectively. The penalty rate for each workload
demand is computed with the help of the penalty model, de-
scribed in Section 3.1. Same procedure is repeated to mea-
sure the penalty rate for other workload demands. Finally
a single elasticity score is derived by taking the geometric
mean of the penalty rates of all workload demands in the
collection.

5. CASE STUDIES
We describe in some detail the observations made when we

run our workloads against Amazon EC2. These case stud-
ies serve two purposes. (1) As a means of sanity checking
the elasticity model in Section 3. That is, we can see that
the numerical scores, based on our elasticity model, do in
fact align with what is observed in over- or underprovision-
ing. For example, in reducing the steepness of a workload
increase we shall observe that supply tracks more closely to
demand, and the penalty calculated is lower. (2) We demon-
strate the usefulness of our elasticity benchmark in exposing
situations where elasticity fails to occur as expected, and
other interesting phenomena can be observed.

5.1 Explore Workload Patterns
To begin, we applied each of the 10 workload patterns

from our elasticity benchmark, in EC2 with a fixed scaling
ruleset 1 as defined in Table 1. This ruleset is common in
tutorial examples, and it seems widespread in practice10.
With this ruleset, the number of instances increases by one
when average CPU utilisation exceeds 70%, and one instance
is deprovisioned when CPU utilisation drops below 30%.

We illustrate first how to derive the penalty rate from
the raw measurement data. For each workload demand, we
compute over-provisioning amount by taking the difference
between the charged resource supply and used-up resource
demand for the entire workload duration (e.g., 110 minutes
interval for sine workload with 30 minutes period). For these
case studies, we consider only CPU resource and assume
that its pricing is equal to that of an EC2 instance (i.e.,
8.5¢/hour). Thus we calculate the unit price for CPU re-
source, assuming that each hour consists of 60 time units
(i.e., 60 minutes) and supplied CPU at each time unit is
k × 100%, where k is the number of charged VM instances.
We work out the over-provisioning penalty by multiplying
the unit CPU price with the over-provisioned quantity. For
the under-provisioning penalty, we measure the percentage
of latency violations and dropped requests and evaluate the
opportunity cost of the degraded performance based on the
SLA definition, described in Section 3.3. Finally, we aggre-
gate the penalty values for over- and under-provisioning and

10See http://mtehrani30.blogspot.com/2011/05/amazon-
auto-scaling.html

7

91

Table 1: AutoScaling Engine Configuration
Ruleset Monitoring

Interval
Upper
Breach
Dura-
tion

Lower
Breach
Dura-
tion

Upper
Threshold

Lower
Threshold

VM Incre-
ment

VM
Decre-
ment

Scale-out
Cool down
Period

Scale-in
Cool down
Period

1 1 min 2 mins 2 mins 70% CPU
Average

30% CPU
Average

1 1 2 mins 2 mins

2 1 min 2 mins 15
mins

70% CPU
Average

20% CPU
Average

2 2 2 mins 10 mins

3 1 min 4 mins 10
mins

1.5 sec
Maximum
Latency

20% CPU
Average

1 1 2 mins 5 mins

normalise it to compute the penalty rate per hour, giving the
penalty rate for a particular workload demand.

5.1.1 Effect of Over- and Under-provisioning

Figure 2 shows behavior of the platform in response to
an input sinusoidal workload with a period of 30 minutes.
The CPU graph shows the available supply, chargeable sup-
ply and demand curves over a 110-minute interval. Initially,
there was only one instance available to serve the incoming
requests. As workload demand increases (after 15 minutes),
the rule triggers provisioning a new instance, but we ob-
served a delay of about 6 minutes until that is available
(however it is charged as soon as the launch begins). As
workload generation is rising fast during this delay, the sys-
tem experiences severe effects of under-provisioning: latency
spikes and penalties accrue at about 20¢/min. In our imple-
mentation, demand is measured on the instances and so the
curve shown is capped at the available supply, rather than
showing the full upswing of the sinewave. The lag between
charging for the instance and it being available, is reflected
in a penalty for over-provisioning of about 0.14¢/min during
this period.
Between timepoints 50 and 55, we see high penalties for

both over-provisioning and under-provisioning. This may
sound counter-intuitive as one might wonder how“excess re-
source” and “insufficient resource” co-exist at the same time.
Looking at the CPU graph, we find significant difference be-
tween charged and available supply during that interval; the
consumer continues paying for 3 extra unusable instances
(2 de-provisioned instances from the previous cycle and 1
yet-to-be-provisioned instance in the current cycle) which
contribute to over-provisioning penalty. Also, the available
instance supply (i.e., 2 instances) is not enough to meet the
increasing demand for that duration, thus resulting in high
under-provisioning penalty.

5.1.2 Deprovisioning of Resources

Our work’s inclusion of cases where workload declines
is different from most previous proposals for cloud bench-
marks. These situations show interesting phenomena. We
saw situations where a lag in releasing resources was actu-
ally helpful for the consumer. In Figure 2 we see, on the
downswing of the demand curve, that most of the resources
claimed on the upswing were kept; this means that the next
upswing could utilise these instances, and so the latency
problems (and underprovisioning penalty) were much less
severe than in the first cycle.
We also observe in downswings that the difference between

chargeable supply and available supply is significant, with a
deprovisioned instance continuing to attract charge till the
end of the hour-long quantum. We see in the CPU graph
of Figure 2 that the chargeable supply is simply not follow-
ing the demand curve at all, and indeed there are extensive
periods when the consumer is paying for 4 instances, even
though they never have more than 2 available for use.

Considering the evolution of the supply led us to discover
an unexpected inelasticity phenomenon, where the cloud-
hosted application is never able to cut back to its initial state
after a temporary workload burst. The average utilisation
may not drop below 30% which triggers deprovisioning, even
though several instances are not needed. To demonstrate
this fact, we ran a sinusoidal workload pattern with peak at
670 req/s and trough at 270 req/s, and 40 minutes plateau
at each peak and trough; the resultant graphs are shown
in Figure 3. The peak workload triggered the creation of 6
instances. The long-lasting trough workload (about 136%
CPU) could easily be served by 2 instances, however, the
number of VM instances remained at 4.

5.1.3 Trends In Elasticity Scores

Looking at the penalty scores in Table 2, we can see how
the calculated penalty varies with the type of workload. In
all workloads (except the linear one), the overall penalty is
dominated by the loss in revenue due to under-provisioning.
This is appropriate to business customers as the opportunity
cost, from unmet requests or unsatisfactory response that
may annoy users, is much more than the cost of resources.

For pure sinusoidal workload patterns, the overall penalty
declines with the increase in waveperiod. This demonstrates
that, with these rulesets, the EC2 platform is better at
adapting to changes that are less steep. Here underpro-
visioning penalties will be less severe as the demand will not
have increased too much in the delay from triggering a new
instance, until it is available to serve the load.

The sinusoidal workload with plateaus has higher overall
penalty compared to the basic sinusoidal workload where
the cycles are sharper. We attribute this to the insertion of
a 45 minutes plateau at the trough which wipes out the
resource-reuse phenomena in subsequent cycles. With a
trough plateau, the system has time to deprovision and re-
turn to its initial state before the next cycle; therefore, each
cycle could not take advantage of the resources created in
the previous cycle and it pays a similar underprovisioning
penalty. As the length of the plateau at the peak increases
(from 10 minutes to 70 minutes), overall penalty gradually

8

92

Table 2: Penalty for Benchmarking Workloads -
Ruleset 1

Workload Po(ts, te)/hr Pu(ts, te)/hr P (ts, te)/hr

sine 30 27.51¢ 374.88¢ 402.39¢
sine 60 28.84¢ 133.65¢ 162.49¢
sine 90 22.17¢ 52.82¢ 74.99¢

sine plateau 10 22.08¢ 554.44¢ 576.52¢
sine plateau 40 18.52¢ 292.96¢ 311.48¢
sine plateau 70 23.81¢ 174.19¢ 198.0¢

exp 18 2.25 24.83¢ 528.61¢ 553.44¢
exp 24 3.0 17.65¢ 1093.05¢ 1110.7¢

linear 240 35.01¢ 0.0¢ 35.01¢

random 29.31¢ 129.14¢ 158.45¢

moves down. The system has time to adapt to the peak
demand, and serve it effectively for longer.
For the exponential burst workloads, we observe large

penalty values in Table 2. In general, under-provisioning
penalty tends to rise as the growth rate increases; that
means, the underlying cloud platform is not elastic enough
to grow rapidly with these fast-paced workloads, thus re-
sulting in sluggish performance as they head towards the
peak. Figure 4 explains the performance implications of an
exponential workload with growth 24-fold per hour and de-
cay 3-fold per hour. The high under-provisioning cost in the
penalty graph also confirms EC2 platform’s inelasticity in
coping up with this fast-paced workload pattern. The under-
provisioning penalties incurred were much higher than in the
sinusoidal workloads, indicating that EC2 platform is not so
adaptive to traffic surges with high acceleration rate. Again,
looking at the over-provisioning penalty graph, we observe
large over-provisioning cost (around 0.43¢/min) right after
the peak is over; as some of the VM instances launched dur-
ing the peak load were available at the off-peak period, they
just accrued more penalty due to over-provisioning with no
significant reduction to under-provisioning penalty.
Unlike the above workloads, linear workload yields less

overall penalty. This suggests that EC2 platform can easily
cope up with workloads with lower and consistent growth.
This is not surprising as slowly growing workload pattern
is not affected by the provisioning delay of the underlying
platform and therefore incur less under-provisioning penalty.
However, we expect that as the slope becomes steeper, the
overall penalty will show a rising trend, as the resources are
not provisioned rapidly enough.

5.2 Explore Impact of Scaling Rules
In our experiments with the widely-used ruleset 1, under-

provisioning penalty dominates the overall score. Sometimes
the system took too long in adjusting to rapid growth in
demand. When demand drops, there is a tradeoff: slow re-
sponse increases the duration of overprovisioning charges,
but it can help if an upswing follows that might reuse the
retained resources. To improve the elasticity, one can try
changing the scaling rules so that they are aggressive in
provisioning extra resources and conservative enough in de-
provisioning those resources. The initial (Ruleset 1) and
adjusted (Rulesets 2 and 3) scaling rulesets are shown in
Table 1. Ruleset 3 is distinctive by making scale-out deci-
sions based on the monitored values of the application level

performance metric (response time) instead of considering
a resource utilisation metric. This performance-based ap-
proach has been adopted by some practitioners for autoscal-
ing cloud applications11. Ruleset 3 explores the tradeoffs in
these different approaches to scaling.

Ruleset 2 performed markedly better than ruleset 1. Two
major factors contribute to this improvement in ruleset 2:
adding multiple instances at each trigger in the upswing and
lazy deprovisioning in the downswing. The ruleset 1 is less
responsive to the rapidly increasing sinusoidal and exponen-
tial workloads because it only adds one instance at each rule
trigger and there is a cooling period which stops it from im-
mediately creating another instance (even if the condition
is again met). On the other hand, ruleset 2 increases two
instances at each trigger thus it responds quicker to sharp
workload increase.

On the downswing, ruleset 1 responds much quicker to the
drop of demand by deprovisioning its resources. Though the
trend of available supply follows closely with the demand,
the chargeable supply does not follow as well: resources are
being charged but not used. In contrast, as we intended,
ruleset 2 (with an increased lower breach duration of 15 min-
utes and scale-in cool-down period of 10 minutes) keeps the
resources from the previous upswing so that they are reused
in the subsequent cycles of the workload demand.

This benefit from resource reuse holds as long as workloads
come in periodic bursts and the inter-arrival time of bursts
are short enough to retain some resources from the previous
ones; otherwise, subsequent bursts will not be able to enjoy
the resource reuse phenomenon as the resources are likely
to be released by that time. For this reason, sine-plateau
workloads could not make use of the resources from the pre-
vious cycle because of their long plateau at the trough (45
minutes). Same holds for exponential workload with growth
rate 18 and decay rate 2.25 per hour; it could not improve
that much with ruleset 2 as the duration between the bursts
is long enough to set the number of instances back to the
initial state (1 EC2 instance).

Results for all workloads of our suite are shown in Table
3, which should be compared to Table 2. One clear disad-
vantage of ruleset 2 is that it is likely to overprovision too
much in the case where workload does not increase quickly.
This is reflected in the experiment with the linear workload
pattern. The modest pace of growth in demand here means
that ruleset 1 was sufficient to align the resource supply with
its resource demand. Ruleset 2 rather worsened the overall
penalty by increasing the over-provisioning cost.

We observe a lower penalty score for ruleset 3 than for
ruleset 1. Since the under-provisioning penalty is mostly
dominated by high latency, we designed this ruleset to add
an extra instance when the maximum latency goes beyond
75% of the allowed threshold. This ruleset triggers an in-
stance provisioning request as soon as the observed latency
starts rising due to request-buffering at the server. The re-
sults show that this ruleset ensures higher SLA conformance
and hence lower under-provisioning penalty for most of the
workloads. An increased lower-breach duration and scale-
in cool-down period in the deprovisioning rule also promote
resource reuse from previous cycles and thus contribute to
the improvement in the penalty score.

The only short-coming of ruleset 3 is that it sometimes

11See http://blog.tonns.org/2011/01/autoscaling-
revisited.html

9

93

Table 3: Penalty for Benchmarking Workloads - Ruleset 2
Workload Po(ts, te)/hr Pu(ts, te)/hr P (ts, te)/hr Ratio to Rule 1

sine 30 40.33¢ 127.50¢ 167.83¢ 0.41
sine 60 38.49¢ 1.98¢ 40.47¢ 0.24
sine 90 38.03¢ 1.24¢ 39.27¢ 0.52

sine plateau 10 33.94¢ 335.56¢ 369.5¢ 0.64
sine plateau 40 32.27¢ 138.86¢ 171.13¢ 0.54
sine plateau 70 33.24¢ 44.52¢ 77.76¢ 0.39

exp 18 2.25 33.27¢ 428.09¢ 461.36¢ 0.83
exp 24 3.0 60.62¢ 416.47¢ 477.09¢ 0.42

linear 240 39.83¢ 0.0¢ 39.83¢ 1.13

random 61.35¢ 35.13¢ 96.48¢ 0.60

Geometric Mean N/A N/A N/A 0.52

Table 4: Penalty for Benchmarking Workloads - Ruleset 3
Workload Po(ts, te)/hr Pu(ts, te)/hr P (ts, te)/hr Ratio to Rule 1

sine 30 25.22¢ 181.29¢ 206.51¢ 0.51
sine 60 33.78¢ 106.28¢ 140.06¢ 0.86
sine 90 60.23¢ 0.0¢ 60.23¢ 0.80

sine plateau 10 22.68¢ 408.92¢ 431.6¢ 0.74
sine plateau 40 20.93¢ 223.88¢ 244.81¢ 0.78
sine plateau 70 21.97¢ 173.92¢ 195.89¢ 0.98

exp 18 2.25 27.0¢ 538.42¢ 565.42¢ 1.02
exp 24 3.0 37.76¢ 577.52¢ 615.28¢ 0.55

linear 240 15.68¢ 11.19¢ 26.87¢ 0.76

random 36.63¢ 108.75¢ 145.38¢ 0.91

Geometric Mean N/A N/A N/A 0.77

results in excessive over-provisioning because of “rippling ef-
fect”. This ruleset assumes resource bottleneck as the only
cause for latency violation and therefore provisions extra in-
stances to improve the observed latency. However, there
might be several other reasons for high latency even after
an instance is available, for example, the warm-up period
of the newly provisioned instance, request-queuing in other
instances or problems in third party web service calls12. If
the rule sets too small a “cool-down” period (how long af-
ter a rule is triggered till it can be triggered again), then
provisioning requests for new instances might be triggered
repeatedly based on latency violation information that has
not yet reflected the earlier provisionings. Figure 5 demon-
strates this rippling phenomenon for one workload.
We computed a single figure of merit based on the SPEC

family of benchmarks as defined in Section 3.2. We used
the platform with ruleset 1 as the reference when evaluating
ruleset 2 and 3. The last column in Table 3 and 4 shows the
ratio of the total penalties for the two rulesets with respect
to ruleset 1 for each of the 10 workload patterns. All but
one of these ratios are smaller than one, indicating that both
ruleset 2 and 3 are generally more elastic than ruleset 1 for
the benchmark workload patterns. We calculated the geo-
metric mean of these ratios (0.52 for ruleset 2 and 0.77 for
ruleset 3), which quantifies the improvement in elasticity.
Thus we demonstrated that our single figure for elasticity
can be effectively used to compare different rule configura-

12See http://aws-musings.com/choosing-the-right-
metrics-for-autoscaling-your-ec2-cluster/

tions. It can also used to detect variation in elasticity level
between platforms from different cloud providers, as well as
variation over time within a cloud provider due to the con-
sistently evolving underlying infrastructures of cloud.

6. DISCUSSION
Our case studies have given us insights into how a cloud

platform can be better or worse at elasticity when follow-
ing a varying workload. Identifying the importance of these
characteristics should be of independent value to consumers
who want to choose a platform, and they may also help a
cloud provider to offer better elasticity in his platform.

It is well understood that the granularity of instances is
important in elasticity. If a substantial PC-like (virtual) ma-
chine is the smallest unit of increased resource, this is less
elastic than a platform which can allow each customer to
have whatever percentage of the cycles that they need, as
in the case of GAE13. Similarly, the time delay between a
request for provisioning, until one can actually run on the
new instance, can be significant. We observed that this de-
lay varies unpredictably, but can be over 10 minutes. If the
workload is increasing fast enough, by the time 10 minutes
have elapsed, the previous configuration may have become
badly overloaded. Ongoing changes in implementation by
platform providers may lessen the provisioning delay, and
thus improve observed elasticity. Finally, the delay to de-
commission an instance is also important. Being too slow to

13See http://code.google.com/appengine

10

94

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

C
P

U
 (

%
)

Time (in mins)

CPU Demand and Supply

demand
a/supply
c/supply

 0
 10
 20
 30
 40
 50
 60
 70

 0 20 40 60 80 100

M
a

x
im

u
m

 L
a

te
n

c
y

 (
in

 s
e

c
o

n
d

s
)

Time (in mins)

Maximum Latency

 0
 5000

 10000
 15000
 20000

 0 20 40 60 80 100N
o

.
o

f
R

e
q

u
e

s
ts

Time (in mins)

Request Counts

 0
 5

 10
 15
 20
 25

 0 20 40 60 80 100

P
e

n
a

lt
y
 (

c
e

n
ts

/m
in

)

Time (in mins)

Penalty for Under-Provisioning

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 20 40 60 80 100

P
e

n
a

lt
y
 (

c
e

n
ts

/m
in

)

Time (in mins)

Penalty for Over-Provisioning

Figure 2: Results of Sinusoidal Workload with 30
Minutes Period

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

C
P

U
 (

%
)

CPU Demand and Supply

demand
a/supply
c/supply

 0
 10
 20
 30
 40
 50

 0 20 40 60 80 100 120M
a

x
im

u
m

 L
a

te
n

c
y

 (
in

 S
e

c
o

n
d

s
)

Maximum Latency

 0
 5000

 10000
 15000
 20000
 25000

 0 20 40 60 80 100 120N
o

.
o

f
R

e
q

u
e

s
ts

Time (in mins)

Request Counts

Figure 3: Results for the Trapping Scenario

give up resources is wasteful, but being too eager can leave
the consumer without resources if/when workload recovers
to previous levels.
We have seen how important it is to understand the way

the consumer is charged for resources, We have seen that
this can be quite different from the actual access to those
resources, and the difference is important for the consumer’s
perception of elastic behavior. When charging runs till the

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160

C
P

U
 (

%
)

Time (in mins)

CPU Demand and Supply

demand
a/supply
c/supply

 0
 10
 20
 30
 40
 50
 60
 70

 0 20 40 60 80 100 120 140 160

M
a

x
im

u
m

 L
a

te
n

c
y

 (
in

 S
e

c
o

n
d

s
)

Time (in mins)

Maximum Latency

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000

 0 20 40 60 80 100 120 140 160N
o

.
o

f
R

e
q

u
e

s
ts

Time (in mins)

Request Counts

 0
 5

 10
 15
 20
 25
 30
 35

 0 20 40 60 80 100 120 140 160

P
e

n
a

lt
y
 (

c
e

n
ts

/m
in

)

Time (in mins)

Penalty for Under-Provisioning

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 20 40 60 80 100 120 140 160

P
e

n
a

lt
y
 (

c
e

n
ts

/m
in

)

Time (in mins)

Penalty for Over-Provisioning

Figure 4: Results for Exponential Workload with
Growth 24/hour and Decay 3/hour

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250

C
P

U
 (

%
)

Time (in mins)

CPU Demand and Supply

demand
a/supply
c/supply

Figure 5: Rippling Effect for Sinusoidal Workload
with 90 Minutes Period

end of a substantial quantum (e.g., an hour, for EC2), we
can see financial losses from too rapid response to changed
load. In particular, if the fluctuating load leads a consumer
to give up an instance, and then they need to request it
back, they may end up paying for it twice over.

Our experiments have shown how changes to the provi-
sioning and deprovisioning rules can alter the elasticity of
the platform. This seems to deserve much more attention
from consumers, and we haven’t found useful guidelines in
research or tutorial literature. In particular, many applica-
tions seem to follow sample code, and use a default policy
where instances are created or given up based on utilisation
levels holding for a fairly short time (e.g., 2 minutes). By
being less eager to deprovision, we saw a different ruleset
gave significant improvement (about 50% for ruleset 2) in
the elasticity measure. We also observed better SLA confor-
mance for rules based on QoS (i.e., latency-based ruleset 3)

11

95

as compared to the utilisation-based one (CPU-based rule-
set 1); however, ruleset 3 is less reliable for autoscaling as it
causes excessive over-provisioning when a QoS threshold is
breached because of external factors (e.g., latency spike in
other tiers or web services) instead of resource scarcity.
Running our benchmark has been informative for us. We

now reflect directly on the advantages and disadvantages of
the decisions we made in proposing this benchmark, that is,
how exactly we decided to measure elasticity.
Having workloads with diverse patterns of growth and de-

cline in demand is clearly essential. Those that rise rapidly
(that is, fast compared to the provisioning delay in the plat-
form) reveal many cases of poor elasticity. When demand
declines and rises again, we see effects of charging quanta.
We followed the SPEC approach to combine information

from several workloads into one number. It gives consistent
relative scores no matter which platform is the reference. It
is very robust in that it does not change depending on subtle
choice of weights, nor on the scale chosen for each workload.
Our calculated penalty for overprovisioning is based on the

charged level of resources, rather than on the resources that
are actually allocated (as in Weinman’s discussion of elastic-
ity [15]). We have seen that there can be a considerable dif-
ference between these quantities. By this decision, we prop-
erly give a worse score for a system if it keeps charging over
a longer quantum. Our penalty calculation for underprovi-
sion is based on observed QoS, and using consumer-supplied
functions to convert each observation into the opportunity
cost. We do not assume a constant impact of each unmet
request. This clearly fits with widespread practice, where
SLAs with penalty clauses are enshrined in contracts.
Overall, our approach fits the decision-making of a con-

sumer selecting a suitable cloud platform for their needs.

7. CONCLUSION
Small and medium enterprises are heading towards the

cloud for many reasons, including varying workload. To
choose appropriately between platforms, a consumer of cloud
services needs a way to measure the features that are impor-
tant, one of which is the amount of elasticity of each plat-
form. This paper offers a concrete proposal giving a numeric
score for elasticity. We suggested specific new ways to use
SLAs to determine penalties for underprovisioning. We have
defined a suite of workloads that show a range of patterns
over time. We carried out a case study showing that our ap-
proach is feasible, and that it leads to helpful insights into
the elasticity properties of the platform. In particular, we
have shown that one gets poor elasticity when following a
widespread ruleset for provisioning and deprovisioning.
In future, we will extend our measurements to other plat-

forms with a wider range of features. We hope to con-
sider workloads that grow much further than our current set
(which peak at demand for about half-a-dozen instances).
We also will try examples with a greater range of SLAs
and opportunity cost functions. We would like to make the
benchmark running as automatic as possible. We see this
paper as an important step towards allowing consumers to
make informed choices between cloud platforms.

Acknowledgement

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications

and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program. A grant
from Amazon provided access to AWS.

8. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

[2] C. Bash, T. Cader, Y. Chen, D. Gmach, R. Kaufman,
D. Milojicic, A. Shah, and P. Sharma. HPL-2011-148:
Cloud Sustainability Dashboard, Dynamically
Assessing Sustainability of Data Centers and Clouds.
Technical report, Hewlett-Packard Labs, 2011.

[3] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing.
How is the weather tomorrow?: towards a benchmark
for the cloud. In Proc DBTest’09, 2009.

[4] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with YCSB. In Proc SoCC’10, pages 143–154, 2010.

[5] J. Dejun, G. Pierre, and C. Chi. EC2 performance
analysis for resource provisioning of service-oriented
applications. In ICSOC Workshops (Springer LNCS
6275), pages 197–207, 2009.

[6] D. Huang, D. Ye, Q. He, J. Chen, and K. Ye.
Virt-LM: a benchmark for live migration of virtual
machine. In Proc ICPE’11, pages 307–316, 2011.

[7] D. Kossmann, T. Kraska, and S. Loesing. An
evaluation of alternative architectures for transaction
processing in the cloud. In Proc SIGMOD’10, pages
579–590, 2010.

[8] S. Krompass, D. Gmach, A. Scholz, S. Seltzsam, and
A. Kemper. Quality of service enabled database
applications. In ICSOC, pages 215–226, 2006.

[9] A. Li, X. Yang, S. Kandula, and M. Zhang.
CloudCmp: comparing public cloud providers. In Proc
IMC’10, pages 1–14, 2010.

[10] F. Nah. A study on tolerable waiting time: how long
are web users willing to wait? Behaviour &
Information Technology, 23(3):153–163, 2004.

[11] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
measurements in the cloud: Observing, analyzing, and
reducing variance. PVLDB, 3(1):460–471, 2010.

[12] W. Smith. TPC-W: Benchmarking an ecommerce
solution. White paper, Transaction Processing
Performance Council, 2000.

[13] K. Srinivasan, S. Yuuw, and T. Adelmeyer. Dynamic
VM migration: assessing its risks & rewards using a
benchmark. In Proc ICPE’11, pages 317–322, 2011.

[14] V. Stantchev. Performance evaluation of cloud
computing offerings. In Proc IEEE AdvComp’09,
pages 187–192, 2009.

[15] J. Weinman. Time is Money: The Value of
”On-Demand”. www.joeweinman.com/Resources/Joe_
Weinman_Time_Is_Money.pdf, Jan. 2011.

[16] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann.
C-meter: A framework for performance analysis of
computing clouds. In Proc CCGrid’09, pages 472–477,
2009.

12

96

