
Analysis of Bursty Workload-aware Self-adaptive Systems

Diego Perez-Palacin
Dpt. de Informática e

Ingeniería de Sistemas
Universidad de Zaragoza

Zaragoza, Spain

diegop@unizar.es

José Merseguer
Dpt. de Informática e

Ingeniería de Sistemas
Universidad de Zaragoza

Zaragoza, Spain

jmerse@unizar.es

Raffaela Mirandola
Dip. di Elettronica e

Informazione
Politecnico di Milano

Milano, Italy
mirandola@elet.polimi.it

ABSTRACT

Software is often embedded in dynamic contexts where it is sub-
jected to high variable, non-stable, and usually bursty workloads.
A key requirement for a software system is to be able to self-react
to workload changes by adapting its behavior dynamically, to en-
sure both the correct functionalities and the required performance.
Research on fitting variable workload traces into formal models has
been carried out using Markovian Modulated Poisson Processes
(MMPP). These works concentrate on modeling stable workload
states, but accurate modeling of transient times still deserves at-
tention since they are critical moments for the self-adaptation. In
this work, we build on research in the area of MMPP trace fitting
and we propose a Petri net fine-grained model for highly variable
workloads that also accounts for transient times. We analyze dif-
ferences between models of adaptive software that accurately rep-
resent workload state changes and models that do not. We evaluate
their performance and availability and compare the results.

Categories and Subject Descriptors

C.4 [Performance of Systems]: [Modeling Techniques]; D.2.2
[Software Engineering]: Design Tools and Techniques—Petri nets

General Terms

Design, Performance

Keywords

Self-adaptive software, Bursty workload, Markovian models

1. INTRODUCTION
Software is often embedded in dynamic contexts where it is sub-

jected to changes in its execution environment, workload or re-
quirements. Self-adaptive software allows capabilities to detect
context changes and to react to them, managing its processing re-
sources autonomously and allocating or releasing them dynami-
cally. Among the multiple sources of change, in this work we deal
with changes in the workload.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

The workload, for some kind of systems, is far from being stable
but it presents high variability and shows burstiness, i.e., irregular
spikes of congestion. This is a fact for example in networked and
service-based systems, but not only [10]. If the workload model
does not account for the existing burstiness, then the model anal-
ysis can lead to optimistic results; e.g., it declares a fair resource
utilizations and probability of congestion, while in the real setting
they would not be guaranteed.
Some formal methods that can model workloads considering the

burstiness in the arrival rate are theMarkov Arrival Processes (MAP)
and a concrete subtype of them, the Markov Modulated Poisson
Process (MMPP) [5]. Research on workload and network traffic
fitting using MAPs and MMPPs have been already done and their
results show an accurate modeling of the workload variability.
In particular, work on fitting MMPP and MAP parameters from

workload traces with burstiness is very useful for the analysis of
properties, such as performance or availability, of a wide range of
systems. However, when we observe self-adaptive systems care-
fully, we realize that their optimal configurations are different de-
pending on the workload they are receiving. These systems should
adapt (e.g., provisioning or release of resources) during the tran-
sient periods, i.e., when the workload is becoming bursty and when
the burst of arrivals is finishing. Usually there is no need for a
software to change its context during stable periods of workload,
it should have been adequately provisioned before, in fact during
these transient periods.
Therefore, to properly analyze the performance or availability of

self-adaptive systems, we need an accurate model of the workload.
This model should include the transient times, even when they cor-
respond to a small percentage of the total time (the rates normal
and burst can last for hours while the change between them lasts
just some minutes). Otherwise, results from model-based system
analysis can be far away from results of the real working system.
The reason is that the system starts the adaptation when anticipates
the workload is close to be bursty. In this way, when the burst of
requests arrive, the system is already in its optimal configuration.
However, a systemmodel whose workload does not care about tran-
sient times is not able to anticipate any workload change, and it will
start its adaptations when the bursts of requests are already arriv-
ing. This can lead to too pessimistic performance and availability
results from the model analysis.
In this work, we propose a model to take into account these tran-

sient periods. We exploit the research already done for two-state
MMPP fitting and we aggregate to this MMPP a submodel of the
transient times between normal arrival rate and bursty rates. Using
the aggregation of models, we are able to analyze more accurately
the non functional properties (NFP) of the software. To this end we
build on the work done in [6, 2] for MMPP and MAP parameter

75

fitting and we extend the generated models to be able to deal with
self-adaptation.

Related Work.
The parameter fitting of Markovian models such as MMPPs and

MAPs is a promising research field. For example, works [7, 8, 11,
6, 15, 3, 2] propose MAP and MMPP parameter fitting techiques
starting from traffic traces. Some of these fitting works also deal
with the modeling of burstiness characteristic and use the index of
dispersion as burstiness estimator.
In our work we build on the results obtained in [6, 2] to choose

the estimators of the workload trace and fit a two-sate MMPP that
models the same characteristics as the workload trace for these es-
timators. However, to the best of our knowledge, our work is the
first one modeling the transient times between workload states and
using them when evaluating workload-aware self-adaptive systems.

Paper Organization.
The paper is organized as follows: Section 2 describes MAPs,

MMPPs and their parameter fitting from a workload trace. Section
3 explains the meaning of the transient time and proposes a model
for its representation. In Section 4 we put together the MMPPs
model and the new model for the transient time and we present the
complete workload model of their aggregation. Section 5 presents
an experimental analysis that shows the difference between con-
sidering or not the transient time in the workload model by evaluat-
ing the performance and availability requirements of a self-adaptive
system. Section 6 concludes the paper.

2. MMPP’S AND MAP’S
Accurate characterization of real workload traces is a need to

devise a proper workload model. For some kind of systems, e.g.
networked ones, such characterization should capture the high vari-
ability of the requests as well as the fact that they burst in on the
system sometimes [10].
MMPPs are suitable to model variability and autocorrelation for

event generation. An MMPP is a stochastic process that has been
extensively used to model event arrivals processes and network traf-
fic [5, 6, 7], which is able to represent high variability and temporal
dependencies in the arrivals. In an MMPP, the arrival rate at each
moment is determined by the state of a continuous-time Markov
chain (CTMC). So, when the chain is in state i, the arrival process
is a Poisson process with rate λi. An MMPP with N states is de-
fined by a NxN matrix Σ representing the CTMC and a vector Λ
of N components representing the arrival rates in each state.

Σ =

0

BB@

−σ11 σ12 ... σ1N

σ21 −σ22 ... σ2N

...
σN1 σN2 ... −σNN

1

CCA , Λ =(λ1, ..., λN),

where ∀ i, j, σij ≥ 0, λi ≥ 0 and ∀ i,
P

j:j != i σij = σii.

In this work, we consider MMPPs with two states. One of the
states will represent the normal arrival rate (and we call it nor-
mal) and the other will represent the bursty arrival rate (and we
call it bursty). A graphical representation of this two-state MMPP
is given in Figure 1. λ1, the normal arrival rate, and λ2, the bursty
arrival rate, are supposed to be much higher than transitions rates
σ12 and σ21.
A two-state MAP, Figure 2, can be seen as a continuous time

Markov chain of two states, and the active state defines the arrival

Bursty

12

!21

" 2" 1
Normal

!

Figure 1: A two states MMPP

rate. In the chain, there can be transitions associated with the arrival
of an event (called completion transitions, λij , darker in the fig-
ure) and transitions that are not associated with event arrival (called
background transitions, σij). Moreover, when the chain is in state
i, it can also generate arrivals with rate λii without changing its
state, modeled as a self-transition, λii.
Formally, a MAP can be defined by two squared matrices D0 and

D1, where D0ij , i $= j represents the background transition rates
from state i to j, D1ij describes completion transition rates, and
D0ii = −(

P
j:j !=i D0ij +

P
j D1ij). Thus,Q = D0+D1 is the

infinitesimal generator matrix of the chain.

Bursty

12

!21

" 11 " 22

" 21

" 12

Normal

!

Figure 2: A two states MAP

An MMPP is a MAP that do not admit completion transitions
that change the CTMC state, i.e., the elements not in the diagonal
of D1 must be zero. Then, a two-state MMPP can be seen as a
MAP whose matrices D0 and D1 are:

D0 =

„
−(σ12 + λ1) σ12

σ21 −(σ21 + λ2)

«
, D1 = diag(Λ)

2.1 MMPP fitting from a workload trace

Finding the characterizing values of a trace.
To fit a real workload trace to a two-state MMPP we just need to

set its four parameters: λ1, λ2, σ12, σ21. To this end, we will use
four characterizing values from the workload trace.
The first value is the index of dispersion for counts (IDC) of the

trace. The IDC is frequently used as an estimator of the burstiness
in a trace. The higher IDC value is, the more burstiness the trace
has. In [6, 7] it is calculated as

76

IDCt =
var(Nt)
E(Nt)

where Nt is the number of arrival in an interval of t time units.
So, the IDC is the variance in the number of arrivals in t time units
divided by the mean number of arrivals in t time units. Since we are
interested in the index of dispersion of arrivals in the steady state,
we calculate

lim
t→+∞

IDCt

To calculate the IDC we use the algorithm presented in [9, 2].
This algorithm is able to estimate the index of disperson IDCt→+∞
of a single workload trace.
For the rest of the characterizing values we take advantage of the

work in [2], that indeed fits workload traces to MAP caring about
the burstiness. Besides the IDC, these values are: the mean inter-
arrival time of requests (m), the 50th percentile (i.e, the median)
and the 95th percentile. Since in that work the authors are charac-
terizing the burstiness of service times, the burstiness happens for
high values of these service times, then making important to know
the value for which the 95% of service times are lower. However,
we are dealing with inter-arrival times, and the burstiness happens
when the values of inter-arrival times are low. So, we prefer to
know the value for which the 95% of times the inter-arrival time is
higher than. For this reason, we use the 5th percentile instead of
their 95th.

Experiment proposed.
As example of workload trace, we have used the monitored ar-

rival times of requests to the FIFA 1998 World Cup site [16]. This
has been the most complete example of workload trace we have
been able to find. The timestamps are provided with granularity of
one second and we have just used the requests that arrived to the
Paris server region. Figure 3 shows the count of requests received
by this region per minute. Since the workload was very low when
the system was started and also the last days after the world cup,
we have just concentrated in the middle days. We have used the
arrivals of 34.7 consecutive days, then from minute 60,000 until
minute 110,000. The arrivals in these 50,000 minutes have been
considered in groups of 10 seconds and they are depicted in Fig-
ure 4. It is easy to see that the shape of the graph depicts a quite
bursty workload. The selection of this time interval is not a restric-
tion just to make the fitting algorithm work better but it exemplifies
the kind of workloads we are really interested in. Since we are
dealing with systems that are intended to continue working in the
long term, we assume that the workload should not start and finish
being low (as it happened to the World Cup website), but be always
in the normal regime. So, we consider the first and last minutes
as the system warm up and cool down, and we consider only the
world cup days where the system was most used.

Fitting MMPP parameters.
The characterizing values of the trace are the following. The

number of requests that we have dealt with is 140,998,569. The
mean inter-arrival time of requests is 0.021276 seconds (i.e, close
to 47 requests per second), calculated as the number of received
requests divided by 3 · 106 (the amount of seconds in 50,000 min-
utes). The median (percentile 50th) of the inter-arrival times is
0.0159744408 and the 5th percentile is 0.00367 (this is, the inter-
arrival time of the 95% of requests was higher than this value). The
IDC is 686,200, we admitted a tolerance of 1 · 10−7 for its cal-
culation using the algorithm in [2]. The amount of time that the

Figure 3: Requests per minute received in Paris region

Figure 4: Requests every 10 seconds

algorithm considered approximate to infinite and for which the al-
gorithm stopped was 45,140 seconds.
From these characterizing values, we fitted the MMPP. To fit the

mean, 50th and 5th percentiles we have used the same equations
as [2]. To fit the ICD, we have used the equation in [6, 7] that
concretely deal with two-state MMPP parameters1.
The results are:

σ11 = σ12 = 0.0000001314169

σ22 = σ21 = 0.0000273058047

λ1 = 45.5395329586

λ2 = 350.195877

As expected, we can see that the mean sojourn time in each state,
σ−1

12 , σ−1
21 , is orders of magnitude higher than the mean requests

inter-arrival times, λ−1
1 , λ−1

2 .

1This equation is IDCt→+∞ = 1 + 2σ12σ21(λ1−λ2)2

(σ12+σ21)2(λ1σ21+λ2σ12)

77

2.2 GSPN workload model
An accurate workload model with burstiness, as the one pro-

posed by the MMPP, is a necessary and very useful tool for the
eventual analysis of systems that execute under such conditions.
GSPNs [1] are broadly used to model the behavior and workload

of systems and also as analyzable models to predict properties of
software systems. GSPNs have already been used to analyze some
properties of self-adaptive software systems, such as performance
and energy [13, 12, 14]. Since our workload model should rep-
resent the injection of requests in the system in the same language
as the behavioral system model, we pursue the proposed MMPP
workload model but in terms of GSPN.
Since both GSPNs and MMPPs represent markovian processes,

we can get a GSPN with the same behavior as the MMPP in a
quite straightforward manner. This GSPN, the one in Fig. 5 rep-
resenting the two state MMPP in Fig. 1, has as many places as
states the MMPP, in this case P1 and P2 (for normal and bursty,
respectively). Another place, Parrivals, will mean the injection of
requests in the system, i.e. injection of tokens in the GSPN that
represents the behavior of the self-adaptive system. The time tran-
sitions T12 and T21 represent the MMPP change of state, then their
firing rates are σ12 and σ21 obviously. The last two transitions,
Tarrival1 and Tarrival2, represent the arrival rates in the MMPP,
therefore their firing rates are λ1 and λ2 and they feed the Parrivals

place.

Parrivals

P1 P2

T12

T21

Tarrival1 Tarrival2
"1 "2

!12

!21

Figure 5: GSPN for the two states MMPP

3. MODELINGTRANSIENTTIMEBETWEEN

STATES

3.1 Problem statement
As declared in the Introduction, a self-adaptive system needs

some time to perform corrective actions (e.g., provisioning or re-
lease of resources) to fit into the new execution context. In sys-
tems whose adaptations depend on the workload variations, such
adaptations should happen when the system changes from normal

to bursty or vice versa, i.e., the system adapts to the environment
during the transient times between states.
When looking at the real workload trace in Figure 6 we observe

that such transient time, although fast, is not immediate, it lasts
for around 41.6 minutes, starting around 850 and ending around
1100 (1100−850

6 = 41.6). The figure shows a period of 250 min-
utes which corresponds to the zoom in the range from 209,500 to
211,000 in Figure 4. The transient time is assumed to be fast w.r.t.
the mean sojourn time in each stable state that last for many hours.
Our workload model should reflect the transient time accurately
since in this period the self-adaptive system:

• perceives that the workload is leaving the normal state and
the burst of arrivals are near to arrive, and

• performs its adaptations to change its configuration to a new
one able to withstand the burst of requests.

In a two-state MMPP the transient time is not modeled as we can
see in Figure 7. This figure represents a workload trace generated
by the fitted MMPP in Section 2 and we observe that the change
from normal state (arrival rate around 455 requests each 10 sec-
onds) to bursty state (around 3500 requests during 10 seconds) is
abrupt, no transient time is perceived.

Figure 6: Real workload trace: focus on the increment

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

"../MMPPsimulation"

Figure 7: Workload trace modeled by the MMPP

3.2 Setting parameters of workload model
We pursue a GSPN to model the transient times in the real work-

load trace, i.e., the increments and decrements in the arrival rates
of the requests. The zones of increment or decrement can be char-
acterized by three parameters:

• the well-known λ1 and λ2,

78

• the amplitude of the zone, we call itmtinc ormtdec, they are
measured in seconds, and they represent the mean amount
of time that the workload is increasing from normal state to
bursty state or decreasing from bursty to normal respectively,

• and additionally, from these parameters we can also calculate
the acceleration of the curve in the zone,mrinc ormrdec, in
requests · seconds−2.

In the following we describe how these parameters can be obtained
from a real workload trace. Algorithm 1 shows the case of the cal-
culation of the mean amount of time that the workload is increasing.
First (line 1 in Algorithm 1), we apply the technique presented

in Section 2.1 to get λ1 and λ2.
Second (line 2), we go all over the counts2 in the workload trace.

Let us call countj the number of requests received by the count in
position j. We find each j such that countj−1 < λ1 ≤ countj , we
call it candidatej . That is, the candidates are the counts where the
arrival rate has changed from being under the mean for the normal
state to be over the mean.
Third (lines 3..9), for the first candidatej we find the first k, k >

j, such that (λ1 > countk) ∨ (countk > λ2).

• If the first condition holds, we can discard candidatej since
it means that the workload is not incrementing, but it had just
exceeded the mean for a while and it has returned under the
mean again (this is the usual behavior when the workload is
in a stable state).

• If the second condition holds, we keep candidatej since we
could have found a period of increment in the workload from
normal to bursty arrival rates, this period is [j, k].

Fourth (lines 10..17), for each [j, k] period we have to discover
whether it can be considered as a real workload increment or not.
We assume that a real increment happens when the counts between
[j, k] increase constantly in a coarse-grained view of the workload.
As coarse-grained we mean that we zoom-out the counts in or-

der to mask the short-term variability. To create the coarse-grained
view, we reduce the k − j monitored counts to N values, where
each Nn, 0 ≤ n < N < (k − j), counts the number of arrivals
in a period of length L. L is a choice and represents how much
coarse will be the study. A too low L will not avoid the short-term
variability (and then we will not realize that the workload is truly
increasing), and a too big L will recognize as periods of constant
increment some that should not be. Once L value is chosen, N is
calculated as the largest value for which N · L ≤ (k − j), i.e,
(k − j) < (N + 1) · L. If N · L $= (k − j), we obviate in the
study the last values k − j − N · L of the interval, that is, the
interval to work changes from [j, k] to [j, j + N · L]. Now, we
sum up in Nn the values of each group of L counts. Therefore,
Nn =

PL−1
i=0 (countn·L+j+i).

To finish the fourth step, we decide that [j, k] is a real constant
increment. Ideally, a constant increment happens if the number of
countsNn are increasing values, i.e, if ∀ n ∈ {1..N−1}, Nn−1 <
Nn. However, we found that in every increment interval in the
trace, there is at least one unexpected count of arrivals that is very
different from its neighbor counts (too less or too much) that are
also visible in the coarse-grained view. This unexpected count pre-
vents satisfying the for all in the previous condition. To solve it,
we add a percentage of tolerance tol ∈ IR, 0 ≤ tol ≤ 1. Then,
the amount of counts Nn, n ∈ {1..N − 1} that must satisfy the
2Remember that a count means the number of requests received in
10 seconds.

condition Nn−1 < Nn is reduced from N − 1 (i.e, all counts) to
(1 − tol)(N − 1).
Fifth, if it has been decided that the interval represents a constant

increment in the coarse-grained view, we get a parameter to char-
acterize the interval [j, k]: the amplitude tinc = k − j. Besides,
we can derive more parameters from the interval such as the accel-
eration rinc in the request arrival, calculated from λ1, λ2 and tinc

as rinc = λ2−λ1
tinc

.

Sixth, we repeat the third, fourth and fifth steps for all candidatej .
Finally, using the discovered tinc and derived rinc in each iter-

ation, we get the values of mtinc and mrinc as the mean of them
(lines 18..23).

Algorithm 1 Parameter estimation

Require: Workload trace with the count of arrivals
Ensure: mtinc

1: (λ1,λ2)←MMPPfitting(count);
2: candidates ← findCandidates(count, λ1);
3: intervals ← ∅;
4: for all candidate ∈ candidates do
5: k ← getFirstCrossingValue(count,candidate,λ1,λ2);
6: if countk>λ2 then

7: intervals ← addInterval(intervals, [candidate, k]);
8: end if

9: end for
10: L ← chooseL(); tol ← chooseTol();
11: for all interval ∈ intervals do
12: N ← calculateN(L, interval);
13: subtrace ← makeCoarse(trace, interval, N);
14: if not isContinuousIncrement(subtrace, tol) then
15: intervals ← discardInterval(intervals, interval);
16: end if

17: end for
18: numberOfIntervals ← 0; incrT ime ← 0;
19: for all interval ∈ intervals do
20: incrT ime ← incrT ime + interval.amplitude;
21: numberOfIntervals ← numberOfIntervals+1;
22: end for
23: mtinc ← incrTime

numberOfIntervals ;
24: returnmtinc

We perform the same steps to discover the periods of time where
the workload is decreasing. Using these periods, we will obtain
mtdec andmrdec.
Note that mrinc and mrdec are real positive values (IR

+). So,
we are assuming a constant acceleration and deceleration in the
workload during transient time. On the one hand, this linear in-
crement in the arrival rate is more accurate than the previously as-
sumed immediate increment. Besides, the linearity in the incre-
ment/decrement corresponds to the long-term view of the incre-
ment, since we are still modeling the variability in the short-term.
On the other hand, we are approximating to be linear any work-
load increment/decrement between states. Other possible represen-
tations of the workload increment/decrement are possible, but the
identification of the kind of increment in the coarse-grained view is
more complicated since we would also come into the field of curve
fitting.

3.3 GSPN model for the transient time
The GSPNs in Figure 8 (a) and (b) model the transient time from

normal to burst (increment in the arrival rate of requests) and from
burst to normal (decrement in the arrival rate of requests), respec-
tively.

79

GSPN model: from normal to burst.
A key point is that, during the transient period, the arrival of

requests are modeled as tokens created in place Parrivals at a vari-
able rate. This rate will be λ1 + λinc · #Pinc2 since transitions
Tarrival1′ and TarrivalInc provide the tokens

3. The former transi-
tion generates the workload of the normal state, λ1, while the latter
transition generates the increment of requests4.
A token in Pinc1 means that the system enters in the transient

state so leaving the normal one. Then, every σinc units of time
a new token is set in Pinc2 to precisely generate the increment of
requests. When the number of tokens in Pinc2 is w1, it means that
the transient time has completed and the system enters in the bursty
state P2 by firing transition tinc2.
Although not yet observed in the figure, transition t12 will fire

when the normal arrival rate of request in the system has finished,
hence to start this transient period.

(a)

(b)

#
1

Parrivals

"inc

t 12

P2Pinc1

TarrivalInc

t inc2
"1

Tarrival1’

Tinc1

!inc

Pinc2

Parrivals

"dec

t 21

P1Pdec1

TarrivalDec

t dec2

Tdec

!dec

Pdec2

#2

"1
Tarrival1’

Figure 8: GSPNs: (a)increasing and (b)decreasing arrival rates

of requests

Fitting GSPN parameters.
We use the four parameters computed in the previous subsec-

tion, λ1, λ2,mrinc andmtinc, to set the parameters of the GSPN,
w1, λinc, σinc.
First, note that the modeling of transient times increases the state

space for the analysis. Fortunately, we can decide the amount of
increment we allow. For the transient time that models the change
from normal to bursty, the state space grows linearly with param-
eter w1 ≥ 1, and we can freely decide its value. The rationale is
that w1 corresponds with the amount of token variability in Pinc2.
Then, observe that Pinc2 can have tangible markings in the interval
[0, w1 − 1], while markings where #Pinc2 = w1 are vanishing

3#Pi is the number of tokens in place Pi.
4It is worth noting that we are considering infinite server semantic
for all transitions

and do not affect for the state space analysis. This allowed vari-
ability entails that we model w1 − 1 increments in the workload
between λ1 and λ2. So, each token will increase the arrival rate
in inc = λ2−λ1

w1
units. This inc is the value of λinc. Finally, we

calculate how fast are created the tokens in Pinc2, this is, we cal-
culate σinc of Tinc1. This transition fires w1 − 1 times for each
transient period, and it should fire inmtinc time units. So its firing
rate σinc = w1−1

mtinc
.

Now it can be easily seen that we preserve the short term vari-
ability in the workload increment since the arrival rate is still based
on stochastic processes exponentially distributed.

GSPN model: from burst to normal.
The differences between this model, in Figure 8 (b), and the pre-

vious one are:

• t21 starts this transient state by setting w2 tokens in Pdec2.
Again, parameter w2 represents the amount of complexity
we can afford to model the decrementing period in the work-
load. The size of the state space will bew2+1 times the state
space of the workload model without decrementing period.

• Tokens in Pdec2 decrease at rate σdec, when Pdec2 is empty
the system enters in the normal state P2. The σdec firing rate
is w2

mtdec
.

• The transient state generates requests at rate

λ1 + λdec · #Pdec2.

Where λdec is
λ2−λ1

w1
.

4. COMPREHENSIVEWORKLOADMODEL
So far we have proposed GSPN models separately, one model

for the two characteristic states, in Figure 5, and two for the tran-
sient times, the increment of the workload in Figure 8(a) and the
decrement in Figure 8(b). Our challenge now is to merge these
three GSPN models to get a single one that cares for burstiness and
transient times as required by self-adaptive systems.
Before merging the GSPNs we need to slightly modify the net of

Figure 5: we remove the arc from T12 to P2 and the arc from T21 to
P1. The rationale behind this modification is that we want to avoid
the immediate change between normal, P1, and burst, P2, and vice
versa.
The resulting GSPN is the one in Figure 9. We have used the

composition operator for GSPNs formally defined in [4]. The essence
of the operator is easy to understand, it overlaps the transitions
(places) with the same name. For example, the place Parrivals ap-
pears in the three nets, however in the resulting net it appears only
once, having as input arcs all the input arcs of the three original
places.
The expert reader can argue that the GSPN in Figure 9 can be

equivalent to a M-state MMPP where M = 1 + w1 + w2. In that
case, the parameters of that M-state MMPP with the same charac-
teristics as our workload model would be:

80

Parrivals

P1 P2

T
12

Tarrival1
Tarrival2

"1
"
2

!12
#
1"inc

Pinc1

TarrivalInc

t inc2

"1
Tarrival1’

Tinc1
!inc

Pinc2

#2

!
21

T21

"1
Tarrival1’TarrivalDec

t dec2

Pdec1
Tdec

!dec

"dec

Pdec2

GSPN for increasing wk

GSPN for decreasing wk

GSPN for normal and burst states

Figure 9: Complete workload model

Σ =

0

BBBBBBBBBBBBBBBB@

−σ11 σ12 0 ... 0
0 −σinc σinc 0 ... 0

...

0... 0 −σ22 σ22 0 ... 0
0... 0 −σdec σdec 0 ... 0

...

0... 0 −σdec σdec
σdec 0... 0 −σdec

1

CCCCCCCCCCCCCCCCA

Λ =(λ1, λ1+λinc, ..., λ1+(w1−1)λinc, λ2, λ1+w2λdec, ..., λ1+λdec)

Then, a question arise: could that M-state MMPP be directly
obtained from the workload trace using the technique presented in
Section 2 for two-state MMPP?
The answer is yes. Nevertheless, there are some restrictive chal-

lenges to obtain the characterizing values of aM-stateMMPP. These
are: the algorithm to fit parameters of a M-state MMPP is much
more time consuming and the estimation of its parameters are much
more prone to inaccuracies. Moreover the current techniques to fit
MMPP parameters do not directly deal with our problem (gaining
accuracy in the transient times models).

5. EXPERIMENTAL ANALYSIS
In this section, we illustrate the results obtained in our exper-

imentation. To this end we have considered a very simple sys-

tem with different workload models: first MMPPs and second our
GSPN model, that includes the transient time between workload
states. A third experiment is used as a benchmark for comparing
the accuracy of the obtained results, it is a system simulation having
a real workload trace, the one in Figure 4.
The system we use in this experimentation is a very simple soft-

ware made of only one activity that requires on average 3ms of pro-
cessing time 5. There is a single processor executing a maximum
of ten concurrent requests, queueing and serving them following a
FIFO policy. Requests above ten are rejected.
We assume that requirements to architect the system are:

• R1- availability: at least 99% of requests must be served,

and

• R2- performance: the mean response time should be lower
than 1 second.

Note that the response time is not a critical requirement, since
the maximum length of queue of requests to be served is nine, and
they are served in a mean of 3ms. On the contrary, requirement R1
is the critical one.
When we analyzed the system considering a workload model

without burstiness (i.e., taking into account the mean inter-arrival
time derived from the real trace), the requirements were satisfied.
On the contrary, when taking into account the arrival in bursts,

the analysis of the system showed that R1 cannot be guaranteed.

5To be able to compare approaches without including more vari-
ables that can distort results, we assume that the mentioned pro-
cessing time is exponentially distributed with mean 3ms

81

A possible solution passes through the addition of a second pro-
cessing resource. Now, having two processing resources, the sys-
tem is able to satisfy both R1 and R2 also during bursty periods.
However, the second processing resource has been added just to al-
low the requirements satisfaction during the periods of burstiness,
which represents the worst-case scenario for the system. So, during
the normal arrival rate periods, there is a wasting of resources.
We can use the model proposed in Section 3 to take into ac-

count the workload variability. To this end, we consider a system
enhanced with a monitoring component. The monitor is a passive
observer that measures the system workload. Then, the monitor
notifies to a separate component, which acts as a controller, when
the workload is changing and when to add a second processing re-
source. In the same way, it also decides to switch off one of the
processing resources when the workload decreases. So, the system
deployment is no longer static but it is dynamically adaptable.
We have set the following parameters for the self-adaptive sys-

tem:

• The maximum arrival rate of requests that can be served by
only one processing resource is the 80% of its maximum ca-
pacity. In other words, the controller decides to add a new
processing resource when the workload goes above 1

3ms ·
0.8 ≈ 266 requests per second.

• The maximum arrival rate of requests that can be served us-
ing both processing resources is 40 requests per second. When
the workload rate is under this value, the second processing
resource is shut down.

• Booting and shutting down times of the processing resources
is one minute.

In the following, we explain the set-up of each experiment and
the obtained results. After, we compare and discuss results.

MMPP workload model.
As MMPP workload we used the one already calculated in Sec-

tion 2. We composed the MMPP model, in GSPN terms, with the
GSPN that models the behavior of the described system. We ana-
lyzed the resulting GSPN and obtained the following results:
The percentage of requests rejected is 1.43%, so the availability

is 98.56%; and the mean response time is 5.3ms.

Then, R2 is satisfied while R1 cannot be guaranteed.

MMPP with transient times workload model.
Using the MMPP parameters already calculated in Section 2 we

applied the process described in Section 3 to identify in the trace in
Figure 4 periods of coarse-grained-constantly-increasing workload.
The parameters L and tol have been set to 5 minutes and to 0.2,

respectively. Then, the workload parametersmtinc,mrinc,mtdec

andmrdec are:

mtinc = 5192s mrinc = 0.58requests · s−2

mtdec = 3770s mrdec = −0.8081requests · s−2

Following the procedure described in Section 3 we defined the
structure of the GSPN models for the transient times. We then used
the previous results as parameters of these GSPN models.
To complete the model definition, we decided the amount of af-

fordable increment in the state space as w1 = 10, w2 = 9. Using
these values, the remaining GSPNs parametersw1, λinc, σinc, w2, λdec

and σdec have been derived.

The GSPNmodeling the workload has been obtained as described
in Section 4 by composing the MMPP part with the GSPN derived
for the transient times. Next, we composed the GSPN workload
model with the GSPN that represents the behavior of the system.
We analyzed this GSPN and we obtained the following results:
The percentage of requests rejected is 0.56%, so the availability

is 99.44%; and the mean response time is 5ms.

Hence, R1 and R2 are satisfied.

Real workload trace execution.
For validation purpose, we have implemented a simulator of the

system described in the example. We run the simulator and we
injected the requests following the real workload trace.
We have obtained the following results:
The percentage of requests rejected is 0.05%, so the availability

is 99.95%; and the mean response time is 3.7ms.

With the simulation and the real workload both requirements are
satisfied.

MMPP with Real

MMPP transient times trace

Availability 98.56% 99.44% 99.95%

Performance 5.3ms 5ms 3.7ms

Table 1: Evaluation results with different input workload

5.1 Results discussion
Looking at Table 1 we can observe that the results obtained with

both theMMPPmodel andMMPPwith explicit transient time work-
load model are pessimistic with respect to the real ones. Indeed,
the analysis of the models produced results showing lower avail-
ability and higher average response time with respect to the results
obtained by the system simulation using the real workload trace.
However, the results obtained with the MMPP including the tran-
sient time model are better than the ones obtained with the simple
MMPP and closer to the system simulation results.
Actually, in this simple example we can see that the expected

rejection probability of requests from model analysis with MMPP
is 1.43

0.05 = 28.6 times higher than the calculated by simulating the
real trace. Adding the transient times to the MMPP model, we
have reduced this error to be 0.56

0.05 = 11.2 times higher; so, we
have brought the result a 60% closer to the real one. Besides, the
conclusion from the analysis of the model with MMPP workload
would be that the proposed adaptive solution for the system does
not satisfy availability requirement. This decision would be wrong
because the actual system satisfies it.
Regarding the mean response time, adding the transient times to

the MMPPmodel, we have just reduced the error of the results from
being 1.43 times the real ones to be 1.35 times.
Note that, although all the experiments regarding requirement

R1 seem to produce very similar results, this is not the case since
availability is used to be measured as the “number of nines”. In
other words, if we compare a system with 99% of availability and
another one with 99.9%, the latter is not just 0.9% more available
than the first one but it is ten times more available. In our exper-
iments, the availability obtained with the MMPP workload model
without transient times resulted 28.6 times lower than the availabil-
ity of the system with the real workload. Adding the transient time
between states to the workload model we have been able to reduce
the error of around the 60%, of course this is still not enough to
guarantee results very close to the real ones.

82

6. CONCLUSION
Modern techniques to model high variable workloads and bursti-

ness are based on Markovian models such as Markov Arrival Pro-
cesses and Markov-Modulated Poisson Processes. They offer a
powerful theory to model workload. Moreover, since they are based
on Markovian processes, they can be easily included into the rest of
the system model if it is also Markovian, such as the broadly used
Markovian queueing networks or stochastic Petri nets. In this work
we have identified a gap in the workload modeling for self-adaptive
systems when using the MMPPs that makes inaccurate the analy-
sis results. This gap refers to the modeling of the transient time
between workload states.
This transient time is not modeled in MMPPs, because they fo-

cus on modeling stable workload states. Although these transient
times may not be important for static systems, they are crucial
when analyzing worklod-aware self-adaptive systems. To solve this
challenge we have exploited previous results on MMPP fitting and
we have proposed a model based on Petri Net taking into account
the arrivals during the transient time between states. The obtained
model has then been integrated in a Petri net describing the MMPP,
so allowing a more complete representation of the workload.
A first experimentation comparing the results obtained with the

proposed model and the classical MMPP models tested against a
real trace workload, showed an increment in the analysis accuracy
when the transient time are taken into account.
Besides, form our experimentation it is evident that, although

we have reduced the errors in the analysis results, there is still a
gap between model analysis results and real simulation ones.
At present, we are working on the implementation of our method-

ology on a real testbed, to assess its effectiveness through a more
comprehensive set of real experiments. Another direction that de-
serves further investigation is the representation of the workload
transient times when there are more than two stable states. Since
the addition of the transient time models increases the state space
of the model to analyze, if the MMPP that models the stable states
has more than two states, it may not be possible to create the incre-
menting and decrementing transient time model between any two
states. Contrarily, we should search which state transitions deserve
attention to model their transient times and which ones do not de-
serve it.

Acknowledgments

This work has been partially supported by the European Commu-
nity’s Seventh Framework Programme under project DISC (Grant
Agreement n. INFSO-ICT-224498), by CICYT DPI2010-20413,
by Fundación Aragón I+D and by the IDEAS-ERC Project 227977-
SMScom.

7. REFERENCES

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. John Wiley Series in Parallel Computing -
Chichester, 1995.

[2] G. Casale, N. Mi, L. Cherkasova, and E. Smirni. Dealing
with burstiness in multi-tier applications: Models and their
parameterization. IEEE Trans. Software Eng. To appear,
2012.

[3] G. Casale, E. Z. Zhang, and E. Smirni. Kpc-toolbox: Best
recipes for automatic trace fitting using markovian arrival
processes. Perform. Eval., 67:873–896, September 2010.

[4] S. Donatelli and G. Franceschinis. PSR Methodology:

integrating hardware and software models. In ICATPN,
volume 1091 of LNCS, pages 133–152, 1996.

[5] W. Fischer and K. Meier-Hellstern. The Markov-modulated
Poisson process (MMPP) cookbook. Perform. Eval.,
18:149–171, September 1993.

[6] R. Gusella. Characterizing the variability of arrival processes
with indexes of dispersion. Selected Areas in
Communications, IEEE Journal on, 9(2):203 –211, feb 1991.

[7] H. Heffes and D. Lucantoni. A markov modulated
characterization of packetized voice and data traffic and
related statistical multiplexer performance. Selected Areas in
Communications, IEEE Journal on, 4(6):856 – 868, sep
1986.

[8] A. Horváth and M. Telek. Markovian modeling of real data
traffic: Heuristic phase type and map fitting of heavy tailed
and fractal like samples. In M. Calzarossa and S. Tucci,
editors, Performance Evaluation of Complex Systems:
Techniques and Tools, volume 2459 of Lecture Notes in
Computer Science, pages 267–282. Springer Berlin /
Heidelberg, 2002. 10.1007/3-540-45798-4_17.

[9] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Burstiness
in multi-tier applications: symptoms, causes, and new
models. In Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, Middleware ’08,
pages 265–286, New York, NY, USA, 2008. Springer-Verlag
New York, Inc.

[10] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel.
Performance impacts of autocorrelated flows in multi-tiered
systems. Perform. Eval., 64:1082–1101, October 2007.

[11] H. Okamura and T. Dohi. Faster maximum likelihood
estimation algorithms for markovian arrival processes. In
Quantitative Evaluation of Systems, 2009. QEST ’09. Sixth

International Conference on the, pages 73 –82, sept. 2009.

[12] D. Perez-Palacin and J. Merseguer. Performance sensitive
self-adaptive service-oriented software using hidden markov
models. In Proceedings of WOSP/SIPEW ’11, pages
201–206, 2011.

[13] D. Perez-Palacin, J. Merseguer, and S. Bernardi.
Performance aware open-world software in a 3-layer
architecture. InWOSP/SIPEW ’10, pages 49–56, New York,
NY, USA, 2010. ACM.

[14] D. Perez-Palacin, R. Mirandola, and J. Merseguer.
Enhancing a qos-based self-adaptive framework with energy
management capabilities. In Proceedings of the joint ACM
SIGSOFT conference – QoSA and ACM SIGSOFT

symposium – ISARCS on Quality of software architectures –

QoSA and architecting critical systems – ISARCS,
QoSA-ISARCS ’11, pages 165–170, New York, NY, USA,
2011. ACM.

[15] T. Rydén. An em algorithm for estimation in
markov-modulated poisson processes. Comput. Stat. Data
Anal., 21:431–447, April 1996.

[16] World Cup 1998 Access logs.
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
1998.

83

