
A Class of Tractable Models for Run-Time Performance
Evaluation

Giuliano Casale Peter Harrison∗

Department of Computing
Imperial College London
London SW7 2AZ, U.K.

{g.casale,pgh}@imperial.ac.uk

ABSTRACT
Run-time resource allocation requires the availability of sys-
tem performance models that are both accurate and inex-
pensive to solve. We here propose a new methodology for
run-time performance evaluation based on a class of closed
queueing networks. Compared to exponential product-form
models, the proposed queueing networks also support the in-
clusion of resources having first-come first-served scheduling
under non-exponential service times. Motivated by the lack
of an exact solution for these networks, we propose a fixed-
point algorithm that approximates performance indexes in
linear time and linear space with respect to the number of re-
quests considered in the model. Numerical evaluation shows
that, compared to simulation, the proposed models solved by
fixed-point iteration have errors of about 1% − 6%, while,
on the same test cases, exponential product-form models
suffer errors even in excess of 100%. Execution times on
commodity hardware are of the order of a few seconds or
less, making the proposed methodology practical for run-
time decision-making.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance, Algorithms

Keywords
Run-time prediction, analytical modeling, general distribu-
tions, closed queueing networks

∗The work of G. Casale was supported by an Imperial Col-
lege Junior Research Fellowship. The work of P. G. Harri-
son was supported in part by the Engineering and Physical
Sciences Research Council of the United Kingdom, research
grant number EP/D061717/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

1. INTRODUCTION
Run-time management of software systems often requires

the prediction, in a short amount of time, of the performance
arising from the interaction of multiple requests, resources,
and software components. Run-time operation often re-
quires low computational costs, thus leading to the use of
simplified performance models which assume exponentially
distributed service times. However, this is not a realistic
assumption for several software systems. For example, web
service workloads exhibit different degrees of variability in
their service times [17]. As a result of this, exponential mod-
els ignoring this variance tend to suffer high prediction er-
rors, especially when first-come first-served scheduling poli-
cies are used at resources. Still, first-come first-serve policies
are often used in software performance evaluation, for ex-
ample to describe admission controls limiting the maximum
threading level.

In this paper, we tackle the run-time prediction problem
by introducing a fast approximation technique for the analy-
sis of a quite general class of queueing network models that
overcomes this issue. Queueing networks are often useful
in studying complex resource allocation problems, where ei-
ther hardware, software or network devices may become a
performance bottleneck. The class of queueing networks we
consider has the advantage of being better able to repre-
sent actual, empirical, distributions of resource service times
than models that impose exponential assumptions. The pro-
posed approach leverages on realistic parameterization in-
tervals for the skewness of service time. Motivated by the
analysis of a recent public dataset of 15000 web service invo-
cations [28], we find that when the skewness lies in the same
range seen in the real world trace, queueing systems pa-
rameterized with phase-type (PH) service distributions [20]
exhibit regularities in the solution that we exploit to define
an efficient, approximate solution method. In particular,
the main technical contribution of the paper is a fixed point
algorithm that accurately approximates the model in O(N)
time as the number of requests N issued to the resources
grows. This provides a major advantage over existing meth-
ods for generally-distributed workloads which require poly-
nomial time (typically, cubic or quadratic) and hence are
often too slow for application in run-time service manage-
ment. A case study related to connection pooling is provided
later in the paper, which illustrates a possible application of
the proposed methodology in practice.

The analysis of queueing models with non-exponential
workloads has traditionally focused on approximate meth-

63

ods. Several techniques exist to analyze isolated queues [4],
but a relatively small number of results have been obtained
for networks of queues. First, in [22], Reiser develops an
approximation technique based on the mean value analy-
sis (MVA) equations [4]. The method is enhanced in [11],
using a local iterative approximation approach. Diffusion
approximation is also an important approximation for net-
works in heavy-load [15, 12]. Zahorjan et. al. develop
an approximate technique based on Markov chain decom-
position methods [27, 10]. A general methodology based
on approximation to G/G/1-queues leads to the queueing
network analysis proposed by Whitt [26]. More recently,
work has been done in approximating networks in which
arrival- or service-processes are represented by correlated
Markov-modulated processes [13, 25, 7, 9, 8]. Such methods
are able to evaluate more expressive models than are stud-
ied here, but typically their computational requirements are
much larger than the ones we propose1. For example, meth-
ods based on flow equivalent techniques, such as [8], require
computational costs that grow polynomially in the number
of requests N . This makes it prohibitive to solve models
with more than a few tens of requests. In contrast, using
the proposed approach, we were easily able to solve models
with several hundreds of requests in just a few seconds.

The rest of the paper is organized as follows. In Section 2
we give background about PH distributions and the work-
load models used throughout the paper. Section 3 provides
motivation for this work by showing unexpected properties
of queueing-based solutions when PH distributions are pa-
rameterized with a limited range for the skewness. Section 4
develops an approximate scalar expression to characterize
M/PH/1 and PH/PH/1 queues that is accurate under such
parameterizations. A fixed-point algorithm for solving the
closed PH queueing networks is introduced in Section 5 and
validated in Section 6. Section 7 applies our method to a
connection pooling problem. Finally, Section 8 concludes
the paper.

2. BACKGROUND

2.1 PH Distributions
Phase-type (PH) distributions generalize probability dis-

tributions such as exponential, hyper-exponential, Erlang
and Coxian [20, 4]. Compared to these models, PH distri-
butions are more flexible in approximating the heavy-tailed
distributions that are common in computer workloads [18].
PH models are able in theory to fit any empirical distribu-
tion if their order is sufficiently large [1].

Formally, a PH distribution of orderK, denoted PH(K), is
a continuous-time Markov chain (CTMC) with K transient
states and one absorbing state. The transient states are
called phases. The initial state probability mass function
for the CTMC is specified by a row vector α, where α1 = 1,
1 being a column vector of ones of the same length as α.
The infinitesimal generator matrix for the CTMC is

Q =

[
T t
0 0

]
, t = −T1,

where the T block is called the PH subgenerator. A sub-

1It should be noted that the method in [9] is extremely fast;
however, it is not currently applicable to models with more
than a single non-exponential queue.

generator T is defined similarly to an ordinary infinitesimal
generator except that it satisfies t ≥ 0, tT1 > 0, where the
column vector t = −T1 is called an exit vector and repre-
sents the rate of jumping to the absorbing state from each
of the K transient states of the PH distribution.

Conceptually, PH distributions model inter-arrival times
of events as a time to absorption in a CTMC. Let X be the
random variable for the time that the CTMC takes to reach
the absorbing state after initialization. X can model either
job inter-arrival times or service times, making PH distri-
butions a flexible tool to describe the input parameters of a
queueing model. In particular, with the above parameteri-
zation, it can be shown that the distribution modeled by the
PH is

Pr[X ≤ x] = 1−αeTx1, eTx =
∞∑

k=0

(Tx)k

k!
,

Many techniques for fitting PH distributions to empirical
datasets have been proposed in the literature, using methods
such as the EM algorithm [24] or moment matching [14].
Examples. An exponential distribution with rate μ has

α =
[
1
]
, T =

[−μ
]
,

An Erlang-2 process is represented as

α =
[
1 0

]
, T =

[−μ μ
0 −μ

]
,

A two-phase hyper-exponential distribution with phase-1 se-
lection probability p is defined as

α =
[
p 1− p

]
, T =

[−μ1 0
0 −μ2

]
,

A Coxian distribution with K states has PH representation

α =
[
1 0 . . . 0

]
, T =

⎡⎢⎢⎢⎣
−μ1 p1μ1 0 0
0 −μ2 p2μ2 0
...

. . .
. . .

. . .

0 0 0 −μK

⎤⎥⎥⎥⎦ .

PH renewal process. A sequence of independent and iden-
tically distributed (i.i.d.) samples {X1, X2, . . .} is called a
PH renewal process (α,T) if the common distribution of the
samples is PH with initial state probability mass function α
and subgenerator T . A queueing system in which arrivals
are Poisson and service times constitute a PH renewal pro-
cess is called a M/PH/1 queue. If inter-arrival times also
form a PH renewal process, the model is a PH/PH/1 queue.

2.2 Closed Queueing Networks
Throughout this paper, we study closed queueing net-

works as a tool to drive resource allocation decisions. A
closed queueing network is populated by a fixed number
N of circulating requests that visit a set of M resources.
Requests may represent, for instance, a finite pool of N
software threads issuing requests to resources. It is estab-
lished in the literature that, as the population N grows,
a closed model accurately approximates an open one [21].
This makes closed networks quite flexible provided that the
computational costs of their solution techniques grow slowly
with N .

In the models considered here, a request places a demand
of Xk processing units when visiting resource k. Such pro-
cessing units are assumed to include only the actual pro-

64

cessing and thus disregard the overhead due to contention
from other requests. Upon completion, the request is then
routed to another resource. We assume that service times
Xk belong to a PH renewal process (αk,T k) for all resources
1 ≤ k ≤ M and we call the resulting model a closed PH
queueing network2. In such a network, the average service
time at resource k is

Sk = αk(−T k)
−11,

which follows from known expressions for the moments of a
PH distribution [20].

Upon completing service at resource j, a request is routed
to resource k with probability pj,k. The routing matrix

P =

⎡⎢⎢⎢⎣
p1,1 p1,2 . . . p1,M
p2,1 p2,2 . . . p2,M
...

...
. . .

...
pM,1 pM,2 . . . pM,M

⎤⎥⎥⎥⎦
defines a discrete-time Markov chain, which we assume to
be irreducible. The visit ratio to the different resources at
steady-state is given by the row vector v satisfying vP = v,
where v1 = 1. Thus, vk is the fraction of times that a job is
routed to resource k at steady-state. Using the convention
that a job is completed upon passage through resource M ,
we define the average number of visits by a job to resource
k prior to its completion by Vk = vk/vM , so that VM = 1.

Finally, let X(N) be the throughput of completed requests
(as observed at station M) and let Rk(N) be the mean re-
sponse time at resource k, accumulated over Vk visits. The
following output performance metrics of the queueing net-
work model are considered throughout the paper for all re-
sources k = 1, . . . ,M :

• ρk(N) = X(N)VkSk – the utilization of resource k

• Qk(N) = X(N)Rk(N) – the mean queue-length (i.e.,
backlog) at resource k, including the job in service

• πk(n) – the probability of observing n jobs at resource k

All the above metrics refer to the behavior of the system
at steady state. Notice that since, by definition, Qk(N) =∑N

n=1 nπk(n), computing X(N) and πk(n) provides full in-
formation also about the response times Rk(N) at each re-
source. From these, it is easy to compute the system re-
sponse time as R(N) =

∑K
k=1 Rk(N), which is the mean

time taken to complete a route through the resources be-
fore completion. In sections 4 and 5, we discuss the ap-
proximate computation of X(N) and πk(n) for all resources
1 ≤ k ≤ M .

2.3 Matrix Geometric Method
We briefly discuss the M/PH/1 queue where inter-arrival

times are Poisson with rate λ and service times form a PH
renewal process (α,T) of order K. The M/PH/1 queue
with first-come-first-served scheduling can be modeled as a
structured CTMC called a quasi-birth-death (QBD) process.
The CTMC state is a tuple (n, k), where n is the population

2Notice that a closed PH queueing network might be seen
as a specialization of the recently proposed MAP queueing
networks [7], which additionally offer the ability to consider
service times that are correlated as described by a Markovian
arrival process (MAP). However, such models are harder to
solve and thus are less appealing for run-time applications.

of requests in the queue, including any job in service, and
k is the currently active phase, out of K, of the PH service
process. The QBD infinitesimal generator matrix then has
block-tridiagonal form

Q =

⎡⎢⎢⎢⎢⎢⎣
−λ λα 0 0 0 . . .
t T λIK 0 0 . . .
0 tα T λIK 0 . . .
0 0 tα T λIK . . .
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎦
where t = −Te, tα is a rank-1 matrix and IK is the iden-
tity matrix of order K. The steady-state probability dis-
tribution of the CTMC is the set of vectors π(n), n ≥ 0
such that π(n)k is the probability that the state is (n, k)

at equilibrium. Thus, π(n) =
∑K

k=1 π(n)k is the marginal
queue-length probability mass function.

The steady state distribution π(n) is the unique solution
of the global balanced equations πQ = 0, π1 = 1. An
established result of matrix-geometric theory is that such
solution may be expressed as a rate matrix R such that

π(n+ 1) = π(n)R, n ≥ 1

and also π(0) can be obtained as a function of R [20]. Since
the last expression is similar to one defining a geometric se-
quence, where the scalar geometric rate is replaced by the
matrix R, the solution for queueing models parameterized
by PH distributions is often referred to as amatrix-geometric
solution. Finally, we point out that a rich literature is avail-
able on the computation of the rate matrix R, see [20, 4] and
references therein. Publicly available tools for computing R
in languages such as C++ and MATLAB have appeared in
[23, 3] and are free for download.

3. A MOTIVATING EXAMPLE
We first provide motivation for the approximation devel-

oped in the next sections. Let us begin by illustrating the
quality of the matrix geometric method when the service
times of a M/PH/1 queue are parameterized using a real
trace from the software domain. To this end, we consider
the wsdream dataset recently presented in [28]. This dataset
consists of a collection of 15000 response time traces span-
ning 150 invocation sequences for a set of 100 public web
services. Each web service is called several times using dif-
ferent clients deployed on the PlanetLab infrastructure. As
a model, we consider a M/PH/1 queueing system, where
the service time random variable X follows a PH distribu-
tion fitted to a trace of the wsdream dataset. This case
study may be representive of the performance of a software
system that processes requests in first-come first-served or-
der by calling a remote web service every time a request is
admitted to service.

Let us first motivate the need for methods that consider
non-exponential workloads. The squared coefficient of varia-
tion (SCV) of a random variableX is defined as the ratio be-
tween variance and squared mean: SCV = V ar[X]/E[X]2.
Further, let SKEW denote the skewness of X, which de-
scribes the asymmetry in its probability distribution func-
tion. Figure 1(a) illustrates typical values of SCV for the
wsdream dataset. The empirical distribution plot shows that
both high-variability (i.e., SCV > 1) and low-variability
(SCV < 1) traces are frequent in the dataset, with the me-
dian value being SCV = 0.5294, close to an Erlang-2 dis-

65

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

x − squared coefficient of variation

P
r[

S
C

V
 ≤

 x
]

(a) service time variability

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

x − skewness

P
r[

sk
ew

ne
ss

 ≤
 x

]

SCV< 3
3≤ SCV≤ 10
SCV> 10

(b) service time skewness

10
0

0

0.2

0.4

0.6

0.8

1

x − web service response time

P
r[

re
sp

on
se

 ti
m

e
≤

x]

SKEW=6
SKEW=10
SKEW=100

(c) PH models

10
−4

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

x − web service response time

P
r[

re
sp

on
se

 ti
m

e
≤

x]

SCV=16.3, SKEW=10.2
SCV=16.3, SKEW=6.3

(d) wsdream trace

Figure 1: Characterization results for the wsdream trace [28]

tribution (SCV = 0.50). The fraction of traces with vari-
ability greater than an exponential (SCV > 1) is significant
and represents 37.4% of the total. Such traces correspond
to cases where approximating the trace by an exponential
distribution results in the largest errors in the prediction
of performance metrics by queueing models. Figure 1(b)
further illustrates the distribution of SKEW for increasing
SCV values, showing that SKEW is typically positive and
reaches its maximum value around SKEW ≈ 12.
Let us now examine the qualitative properties of skewness.

For illustration purposes, we first consider PH distributions
having same mean and variance but different skewness and
we assume these PH models to represent response times for
web services. Figure 1(c) illustrates the effects of skew-
ness on the cumulative distribution function for three PH(2)
models with mean E[X] = 1, SCV = 16 and SKEW ∈
{6, 10, 100}, where only the first two skewness values are
representative of actual values seen in the wsdream trace.
As we can see from the figure, for low skewness values, more
probability mass is concentrated on small response times.
This results in a bimodal (hyper-exponential) distribution,
where a significant probability exists of sampling large val-
ues. Conversely, as the skewness increases, there is an in-
creasing probability of sampling huge values, but the distri-
bution is unimodal due to the low overall probability mass
placed on the tail. As suggested by Figure 1(b), low skew-
ness values are more frequent in web service traces, where
it is indeed quite common to observe multi-modal distri-
butions3. Figure 1(d) illustrates two distributions taken
from the wsdream trace that illustrate such a property in
real-world data. Similarly to the PH(2) models shown in
Figure 1(c), low skewness values are associated with multi-
modal behavior.

3.1 Impact on Queueing Performance
Let us now compare the performance for M/PH(2)/1

queueing systems, where service times are parameterized
to follow the same distributions used in Figure 1(c). The
utilization of the queue is set to 80%. The marginal queue-
length probability distributions obtained by the matrix ge-
ometric method are plotted in Figure 2(a). Although the
high-variability makes these probabilities very different from
those of a M/M/1 queue, the two cases for low skewness
follow a regular geometric decay in the queue-length dis-
tribution like in a M/M/1, apart for some perturbations
around the lowest queue-length sizes. Conversely, the model
with SKEW = 100 shows a sharp change in the decay rate

3Manual examination of the wsdream traces is sufficient to
verify the significant frequency of multi-modal traces.

around n = 12 jobs. This behavior can also be observed
in other parameterizations, with the differences being more
clearly visible at high load and for large SCV . Figure 2(b)
shows simulation results for a M/Trace/1 queue, where the
service time distributions are parameterized empirically us-
ing the two traces shown in Figure 1(d). Note that the
maximum observed queue-length for the simulation exper-
iment is limited by the simulation length that was set to
105 samples. The decay behavior of the two traces is consis-
tent with the one seen in Figure 2(a), as can be seen from
the early convergence to a geometric decay in the rate at a
queue-length of around n = 4.

In order to show that such property is driven by skew-
ness, Figure 3(a) and Figure 3(b) report experiments we
performed with the M/PH(2)/1 queue to establish at which
queue-length n the decay rate of the marginal distribution
converges to the asymptotic one η within a 1% tolerance.
That is, we seek the value n∗ such that

n∗ = min
n

∣∣∣πn+1

πn
− η
∣∣∣ < 10−2 (1)

where πn is the marginal equilibrium probability of observ-
ing n jobs in the queue (including any in service) and

η = lim
n→+∞

πn+1

πn

is called the caudal characteristic and represents the asymp-
totic geometric decay of the queue-length distribution. The
results in Figure 3(a) and Figure 3(b) indicate that as the
skewness varies within the range observed in the wsdream
trace (SKEW ≤ 12), there is early convergence to the
asymptotic decay rate typically for small populations n∗ ≤
10 − 15. This property does not hold when we consider a
larger skewness values outside the range observed for the
wsdream trace4.

Summarizing, real-world software workloads can be char-
acterized by large variability, due to the significant probabil-
ity of observing large response times, and low skewness aris-
ing, in the cases we have found, in connection to multi-modal
behavior. Parameterizing the service times of the M/PH/1
queue with low skewness values yields marginal queue-length
probabilities that decay geometrically with good approxi-
mation. Motivated by this important observation, in the

4Notice that the experiment for SCV = 1 uses SCV = 1+ε,
where ε = 0.01, so that we have the ability to control
SKEW without significantly deviating from the variabil-
ity of an exponential distribution. In these experiments, it
is clear that the geometric decay rate is constant from pop-
ulation n = 1 and thus the system always behaves similarly
to an M/M/1 queue.

66

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

n − queue−length size

π n −
 m

ar
gi

na
l q

ue
ue

−
le

ng
th

 p
ro

ba
bi

lit
y

SKEW=6
SKEW=10
SKEW=100

(a)

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

n − queue−length size

π n −
 m

ar
gi

na
l q

ue
ue

−
le

ng
th

 p
ro

ba
bi

lit
y

SKEW=6.3
SKEW=10.2

(b)

Figure 2: Queueing analysis of the two wsdream
traces shown in Figure 1(d).

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

x − SKEW (skewness)

n* −
 a

sy
m

pt
. d

ec
ay

 r
at

e
th

re
sh

ol
d

utilization ρ = 0.50

SCV=1+ε
SCV=4

SCV=16

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

x − SKEW (skewness)

n* −
 a

sy
m

pt
. d

ec
ay

 r
at

e
th

re
sh

ol
d

utilization ρ = 0.90

SCV=1+ε
SCV=4

SCV=16

(b)

Figure 3: Asymptotic decay rate threshold, eq. (1)

next section we derive an approximation for M/PH/1 and
PH/PH/1 queues that is later exploited to define a tractable
class of PH queueing network models.

4. PH QUEUE APPROXIMATION
Based on the observations in the previous section, we now

seek to obtain new approximate scalar expression for the
steady-state distribution of queues with PH service. Let
us consider first the asymptotic behavior of the steady-state
distribution π(n). The caudal characteristic η is the spectral
radius of the rate matrix R, i.e., η = max1≤k≤K |ηk|, where
the quantities ηk are the eigenvalues ofR. Let � and r be the
left and right unit-eigenvectors corresponding to eigenvalue
η such that the rank-1 matrix Π = r� is called the spectral
projector for η. Neuts has shown that asymptotically π(n+
k) = π(n)ηkΠ + o(ηk) as n → ∞ for k ≥ 1, which follows
from the fact that, for irreducible, non-negative matrices R,

Rn = ηnΠ+ o(ηn) (2)

at large n [19]. Therefore the dynamics of a M/PH/1 queue
when the number of jobs n is large is determined by the
eigenvalue η and its projector Π only. The result holds
also for the PH/PH/1 queue, which is considered in the
remainder of the paper [20].

The approximation technique that we develop for queue-
ing networks in this paper is based on the following assump-
tions:

A1. The steady-state solution of a queue with PH service
times is entirely determined by the eigenvalue η and
its projector Π. That is, we assume that (2) is valid at
all populations n ≥ 1, not only asymptoticly. Equiv-
alently, this might be seen as studying a model where
all non-dominating eigenvalues of R are set to 0, so
that R = ηΠ.

A2. The conditional distribution of phases is identical at
each population n ≥ 1, i.e.

θ̃ =
π̃(n)

π̃(n)1

so that θ̃1 = 1, where π̃(n) is the approximate prob-
ability distribution as opposed to the exact one π(n).
We take this conditional distribution to be the exact
asymptotic one, i.e., θ̃ = θ, where θ is a left unit
eigenvector of R, such θΠ = ηθ, see Appendix A for
details.

From the above approximating assumptions, we have, for all
n ≥ 1, that

π̃(n+ 1) = π̃(n+ 1)1 = ηπ̃(n)θΠ1 = ηπ̃(n), (3)

Note that the utilization of the queue, ρ, must be ρ =∑
n≥1 π̃(n) = π̃(1)(1− η)−1, which combined with (3) yields

the main result of this section:

π̃(n) = ρ(1− η)ηn−1, π̃(0) = 1− ρ, (4)

which provides an elegant scalar approximation for the matrix-
geometric solution. The phase information is correspond-
ingly approximated as

π̃(n) = π̃(n)θ, θ = θΠ.

Notice that the above expressions require knowledge of Π
and η, which follow from exact calculation of the matrix
geometric solution R. This may suggest that the above ap-
proximation does not provide any computational advantage
over an exact solution. However, as we show in the next sec-
tion, the proposed approximation becomes valuable in the
context of closed queueing networks, where the scalar na-
ture of the equations suggest a simple iterative algorithm
to compute the probability distribution of the network state
at equilibrium. This iterative algorithm is detailed later in
Proposition 1.

5. CLOSED PH QUEUEING NETWORKS
This section introduces a technique for the approximate

analysis of closed queueing networks with PH service. We
begin with a brief review of product-form networks with
exponentially-distributed service times.

5.1 Exponential networks
In a closed queueing network with exponential servers,

the joint probability mass function of network states may
be written as:

Pr[n] =

∏M
k=1(1− ρk)ρ

nk
k

C(M,N)
(5)

where nk is the number of requests at station k, the state
is n = (n1, n2, . . . , nM), including the one in service (if any),
C(M,N) is a normalizing constant ensuring that

∑
n∈S Pr[n] =

1, the state space of the network is the set

S =
{
(n1, n2, . . . , nM) :

∑M
k=1 nk = N,nk ≥ 0, nk ∈ N0

}
,

and ρk = X(N)SkVk is the utilization of station (or re-
source) k. Notice also that (5) is often rewritten as

Pr[n] =

∏M
k=1(VkSk)

nk

G(M,N)
, (6)

67

where Sk is the mean service time of station k andG(M,N) =

C(M,N)/
∏M

k=1(1−ρk)/(X(N))M . The two expressions are
equivalent, but (6) does not require a priori knowledge of
the throughput X(N), which becomes an output quantity
obtained by solving the model.

Buzen showed that an exponential network can be solved
by the convolution algorithm [5], which recursively evaluates

G(M,N) = G(M − 1, N) + VMSM G(M,N − 1)

subject to initial conditions G(0, N) = 0 and G(M, 0) = 1,
where G(M − 1, N) (resp. G(M,N − 1)) is the normalizing
constant in a model with station M (resp. with a job) re-
moved from the network. Using the normalizing constant,
one can immediately find the joint probability mass function
(6). This then provides mean performance metrics which are
computed as:

X(N) =
G(M,N − 1)

G(M,N)
,

πk(nk) =
(VkSk)

nkG(Mk, N − nk)

G(M,N)
,

where G(Mk, N − nk) is the normalizing constant of a net-
work with station k removed and N − nk circulating jobs.
Utilizations are Uk(N) = X(N)VkSk =

∑N
n=1 πk(n); mean

queue-lengths are Qk(N) =
∑N

n=1 nπk(n); mean response
times follow by Little’s law as Rk(N) = Qk(N)/X(N), for
stations 1 ≤ k ≤ M .

5.2 Cyclic PH networks
We first consider the analysis of cyclic PH networks where

resources are arranged in series, so that pM,1 = 1 and pi,i+1 =
1, for 1 ≤ i ≤ M − 1. Assume initially that the network
throughput X(N) is known, so that the utilization of each
resource i, ρi = X(N)ViSi, is easily determined. Also, let
j denote the resource sending jobs to resource k, so here,
k = j + 1 mod M .

In order to determine the joint probability mass function
for the network state, we first study each resource k as a
PH/PH/1 first-come-first-served queue in isolation. Both
the service and arrival processes for such a queue are PH
renewal processes (αk,T k) and (αj , ρjT j) respectively. The
latter process is defined by assuming approximately that the
inter-departure time between jobs at resource j has a PH
distribution which is a scaled version of the service process
(αj ,T j); the mean inter-departure rate is adjusted to be
X(N) using the scaling factor ρj multiplying T j . The set of
PH/PH/1 queues defined by the above approach can then
be solved by the matrix geometric method to obtain the
caudal characteristic ηk for each resource 1 ≤ k ≤ K.
Based on our analysis of Section 4, we approximate the

joint probability mass function for the state of the whole
network by

Pr[n|X(N)] =

∑
n∈S

∏M
k=1 Fk(nk)

G(M,N)
(7)

where

Fk(nk) =

{
1− ρk if nk = 0

ρk(1− ηk)η
nk−1
k if nk > 0

We do not need to re-normalize the marginal probability to
sum to unity for nk ≤ N since such a normalizing constant

is included in G(M,N). From expression (7), it is possible
to derive all the usual performance metrics for the queue-
ing network model if the values of G(M,N) and X(N) are
known; we discuss below the computation of these terms.
Finally, observe that, once the model is solved, phase in-
formation for each queue can easily be retrieved using the
relation πk(n) = πk(n)θk proposed as an asymptotically
correct approximation in Section 4.

5.2.1 Normalizing Constant
We first note that (7) may be written as

Pr[n1, . . . , nM |X(N)] =

∑
S

∏M
k=1 qk(1− ηk)η

nk−1
k

H(M,N)
, (8)

whereH(M,N) =
∏M

k=1(1−ρk)G(M,N), qk = ρk(1− ρk)
−1.

Expression (8) may be interpreted as the joint probability
mass function at equilibrium of a Markovian queueing net-
work with load-dependent service rates, where resource k
serves jobs with rate

μk(nk) =

{
q−1
k (1− ηk)

−1, nk = 1

η−1
k , nk > 1

This enables direct computation of the normalizing constant
H(M,N) by the load-dependent convolution algorithm [5].
However, since load-dependent convolution is numerically
unstable and existing stabilization techniques become ex-
pensive for models with several queues [6], we introduce a
specialized method for computing the normalizing constant
in (7). This determines efficiently the normalizing constant
in O(MN) time and O(M) space.

Proposition 1. The normalizing constant G(M,N) in
(7) can be computed recursively by

G(M,N) = (1− ρM)G(M − 1, N) + ρMGaux(M,N − 1)

Gaux(M,N) = (1− ηM)G(M − 1, N) + ηMGaux(M,N − 1)

with termination conditions

G(0, n) = 0, 1 ≤ n ≤ N (9)

Gaux(m, 0) = (1− ηm)
∏m−1

i=1 (1− ρi), 1 ≤ m ≤ M, (10)

where Gaux(M,N) is the normalizing constant of an auxil-
iary model in which ρM is replaced in (7) by ηM .

Proof of the proposition is given in the final appendix. MAT-
LAB code for computing the normalizing constant is re-
ported in Algorithm 1.

5.2.2 Solving the Model
We wish to obtain the throughput X(N) of the PH net-

work by searching for a fixed point of the system of equations
defined by (7), with the consistency constraints

ρk = 1−
∑

n:nk=0

Pr[n1, . . . , nM |X(N)]

= 1− (1− ρk)G(Mk, N)

G(M,N)
, (11)

for 1 ≤ k ≤ M . The key observation that motivates this ap-
proach is that (11) is not, in general, satisfied for all guesses
of X(N) and thus of ρk = X(N)VkSk. This is because
our analysis is approximate and so (7) does not guarantee a
consistent description of the steady-state for all values of the

68

Algorithm 1 MATLAB code for computing G(M,N).

Input: M , N , rho(k) = ρk, eta(k) = ηk, for 1 ≤ k ≤ M
Output: G(M,N)
resource indexes = 1 : M ;
g = zeros(M + 1, N + 1);
gaux = zeros(M + 1, N + 1);
for k = resource indexes do

gaux(1+k, 1+n) = prod(1−rho(1 : k−1))∗(1−eta(k));
end for
for k = resource indexes do

for n = 1 : N do
gaux(1 + k, 1 + n) = max(0, 1 − eta(k)) ∗ g(1 + k −
1, 1 + n) + eta(k) ∗ gaux(1 + k, 1 + n− 1);
g(1+ k, 1+n) = max(0, 1− rho(k)) ∗ g(1+ k− 1, 1+
n) + rho(k) ∗ gaux(1 + k, 1 + n− 1);

end for
end for
return g(1 +M, 1 +N)

input parameter X(N). The proposed approximation lever-
ages the heuristic hypothesis that, by guessing a suitable
initial value for X(N), a fixed point algorithm that seeks
to minimize the violation of (11), while satisfying (7), will
terminate with an estimate for X(N) that is close to exact.

Since it is difficult to provide theoretical guarantees on the
returned estimate due to the lack of characterizations of
the exact solution of a PH queueing network, we first build
confidence in the effectiveness of the approach by consider-
ing a small case study. The details of the particular fixed
point algorithm are deferred to the next subsection. We con-
sider here M = 2 resources, each having mean service time
E[X1] = E[X2] = 1, arranged in a cyclic network topol-
ogy. The population is N = 10 requests. Resource 1 has
exponentially distributed service times, while resource 2’s
SCV and SKEW are chosen as follows. We progressively
increase SCV from 1 to 64 by powers of 2, while simulta-
neously setting SKEW to the minimum possible value sup-
ported by a PH(2) distribution with the specified SCV 5.
As a result of this parametrization, SKEW grows from 2 to
12, thus remaining representative of the web service traces
studied in Section 3. Figure 4 illustrates experimental re-
sults. Figure 4(a) shows the exact throughput (exact) com-
puted by numerical solution of the underlying CTMC and
the product-form solution of an exponential queueing net-
work (pfexp), solved by the convolution algorithm. As ex-
pected, the increase in SCV results in a change of the system
throughput that is not reflected in the exponential queue-
ing network solution. Conversely, fp-exact and fp-pfexp are
the solutions returned by the fixed point approach described
above when the exact and pfexp throughput estimates are
used to set up the initial throughput value used by the al-
gorithm. It is found that, regardless of the initial point cho-
sen, the fixed-point method converges to the same solution,
which follows the exact trend with a very small approxima-
tion error (average 1.85%, maximum 3.56%). Figure 4(b) il-
lustrates the additional time needed to converge to the fixed

5Minimum skewness for a PH(2) distribution may be ob-
tained by imposing E[X3] = 6E[X]3(h2

2 + h3), where h2 =
(E[X2]/2 − E[X]2)/E[X]2 and h3 = h2(1 − h2 − 2

√−h2)
[14].

10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

exact
pfexp
fp−exact
fp−pfexp

(a)

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

SCV − queue 2 service process

fix
ed

 p
oi

nt
 s

ol
ut

io
n

tim
e

[s
ec

]

fp−exact
fp−pfexp

(b)

Figure 4: Fixed point algorithm result for a tandem
model with M = 2 queues. Queue 1 has exponential
service times. Population is N = 10.

point as a function of the initial throughput value. In all
cases a fixed point is found and the execution time in MAT-
LAB is less than 1 second on a laptop PC. For N = 1000
jobs, the execution time remains less than 4 seconds.

5.2.3 Fixed-Point Algorithm
The fixed-point algorithm comprises the following steps:

Step 0a. Initialize the iteration number to i = 0, set I ≥ 1
as the maximum number of iterations and εtol > 0 as the
tolerance level for acceptable convergence.
Step 0b. Determine an initial throughput guess X(0)(N)
by solving a corresponding queueing network model where
all stations have exponential service times (with the same
mean value) instead of PH. This can be done easily using
the convolution algorithm or the mean value analysis (MVA)
algorithm [5, 16].
Step 1. Increase the iteration number by setting i := i+ 1.

Step 2. Compute ρ
(i−1)
k = X(i−1)(N)VkSk, for 1 ≤ k ≤ M .

Step 3. Determine the caudal characteristics η
(i)
k for iter-

ation i by application of the matrix geometric method to
the PH/PH/1 queues with PH arrival process given by

(αj , ρ
(i−1)
j T j) and PH service process given by (αk,T k),

for all resources 1 ≤ k ≤ M .
Step 4. Solve the PH network parameterized by X(i−1)(N)
by computing its normalizing constant using Proposition 1.
Then obtain the new utilization estimates

ρ̃
(i)
k = 1− (1− ρ

(i−1)
k)G(Mk, N)

G(M,N)

for all resources 1 ≤ k ≤ M .
Step 5. Obtain a new throughput estimate X(i)(N) using
the average of the throughputs predicted at the resources as
follows:

X(i)(N) =
M∑
k=1

1

M

(
ρ̃

(i−1)
k

VkSk

)

Step 6. If |X(i)(N) − X(i−1)(N)| ≤ εtol, the algorithm has
converged adequately to a fixed point. Terminate, returning
the estimate X(N) = X(i)(N). Conversely, if |X(i)(N) −
X(i−1)(N)| > εtol, go to Step 1 if i ≤ I; go to Step 7 other-
wise.
Step 7. The algorithm has not converged to a fixed point;
terminate returning the sequence average

∑I
i=1 X

(i)(N)/I,
together with an error message.

69

5.3 Generalizations
We now develop generalizations of the class of PH queue-

ing networks considered in the previous subsection.

5.3.1 Infinite-server scheduling
Our first generalization involves the integration of−/G/∞

queues, where requests can always be served in parallel thanks
to the presence of an ample number of servers. Such re-
source models are commonly used in queueing networks to
describe constant delays on the end-to-end path of a request
or to model user think times. In the rest of the paper, we
refer to infinite server stations as delay stations or simply
delays.

We integrate delays in (7) as follows. Assume station
indices are labeled such that k = 1, . . . , D are delay sta-
tions while k = D + 1, . . . , D + M are PH queues. Then
Z =

∑D
k=1 VkSk represents the cumulative mean service

time spent by each request in delay stations prior to com-
pleting at the reference resource M . We propose to replace
the first D delay stations by a single resource with index
k = 0 having mean service time Z and V0 = 1 visits, and to
rename all the station indexes in order to range between 0
and M . Then ρ0 = ZX(N) is the mean number of requests
in the delay stations at steady-state.

We can account for the state of the delays in (7) using
the M/G/∞ marginal queue-length distribution. That is,
we revise (7) as follows:

Pr[n] =

∑
(n0,n1,...,nM)∈S0

D(n0)
∏M

k=1 Fk(nk)

G(M,N)
,

where the state space is now

S0 =
{
(n0, n1, . . . , nM) :

∑M
k=0 nk = N,nk ≥ 0, nk ∈ N0

}
,

and the factor for the delay is

D(n0) =
ρn0
0

n0!
,

where the local normalizing term e−ρ0 is factored into the
network’s normalizing constant. The computation of the
normalizing constant now follows as before, the only differ-
ence being that (9) is replaced by the condition G(0, n) =
D(n), for 1 ≤ n ≤ N . The fixed-point algorithm is modified
according to the assumption that, for the delay station, the
inter-arrival time and inter-departure time distributions are
identical. This assumption is exact in the limiting case of
a deterministic delay. Thus, if station k is fed by a delay
station j, which in turn is fed by resource v, we assume that
the distribution of arrivals at k is the inter-departure distri-
bution of v. We have observed that in models where the flow
was assumed to be Poisson, the throughput approximation
errors were about 5-10 times larger than according to the
above approximation.

5.3.2 Processor-sharing scheduling
The analysis of processor-sharing resources is simple thanks

to the equivalence at steady-state between the queue length
metrics of the M/G/1 processor-sharing queue and of the
correspondingM/M/1 first-come-first-served queue with same
utilization. We assume that this result remains valid when
queues are embedded in PH queueing networks. This is,
in general, an approximation since the input process at a
resource may not be Poisson anymore.

Stemming from this idea, the product-form factor in (7)
for a processor-sharing queue is defined to be

Fk(nk) = (1− ρk)ρ
nk
k , nk ≥ 0,

which is the marginal queue-length distribution of a M/M/1
first-come-first-served queue with utilization ρk. Note that
it is sufficient to set ηk = ρk to use the same implementation
of both the normalizing constant algorithm and the fixed-
point iteration for both first-come-first-served and processor-
sharing queues.

5.3.3 General non-cyclic topologies
General topologies introduce complications relating to the

splitting and joining of request flows. Consider two queues i
and j that feed queue k and assume that they have utiliza-
tions ρi and ρj respectively, such that their departure flows
may be approximated as PH renewal processes (πi, ρiT i)
and (πj , ρjT j). Further, let pi,k and pj,k be the routing
probabilities to queue k for jobs departing from queues i
and j, respectively. Then the joined flow seen as input to
queue k is not in general i.i.d. For example, the joined flow
is negatively correlated when the distributions of the PH
renewal processes are Erlang.

The problem can be addressed by revising the definition
of the block matrices in the QBD for queue k. Let ⊗ and
⊕ be the Kronecker product and sum operators respectively
and let U , V and K be the numbers of phases of the PH
service processes of queues i, j and k, respectively. Then
the QBD may be written as

Qk =

⎡⎢⎢⎢⎢⎢⎣
L0 F 0 0 0 . . .
B L F 0 0 . . .
0 B L F 0 . . .
0 0 B L F . . .
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎦
where

L0 = (ρiT i ⊕ ρjT j)⊗ IK

L = ρiT i ⊕ ρjT j ⊕ T k

F = (pi,kρitiαi ⊕ pj,kρjtjαj)⊗ IK

B = IU·V ⊗ tkαk

in which In is the identity matrix of order n and tu = −T u1.
Solving for the caudal characteristic η provides an immediate
generalization of the approach used for a cyclic PH network
to a general network topology.

6. VALIDATION
In this section, we study the accuracy of the proposed ap-

proximations for networks with increasing size and different
service time distributions.

6.1 M = 2 resources
We first investigate the accuracy of the proposed approx-

imation method on a network with M = 2 resources. We
perform experiments similar to the ones depicted in Figure 4,
but for different parameterizations of the model. Figure 5(a)
and Figure 5(b) illustrate the throughput error when the
rates of the two stations are unbalanced. The mean service
rate is shown at the top of both figures. The results indi-
cate that for low SCV values the approximation is excellent,
whereas at high SCV , there is some deviation between the

70

10 20 30 40 50 60

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

S
1
 = 0.50, S

2
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(a) exp+ph, N = 10

10 20 30 40 50 60

0.35

0.4

0.45

0.5

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

S
1
 = 2.00, S

2
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(b) exp+ph, N = 10

10 20 30 40 50 60

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

S
1
 = 1.00, S

2
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(c) exp+ph, N = 5

10 20 30 40 50 60

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

S
1
 = 1.00, S

2
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(d) exp+ph, N = 20

Figure 5: Sensitivity to values of mean service time and to population size; the model has M = 2 queues.

exact results and the approximations. The initial through-
put value used for the fixed point algorithm is unimportant
since fp-exact and fp-pfexp yield identical results. This was
also observed in all the other experiments in this section.
Quantitatively, the deviation at SCV = 64 is just 5.74% in
Figure 5(a) and 6.35% in Figure 5(b). Once again, the re-
sults for corresponding product-form exponential networks
are much worse, with an error of 38.41% in Figure 5(a) and
30.66% in Figure 5(b).

Notice that in all experiments, the maximum resource uti-
lization is Umax = maxk SkX(N), and Figure 5(a) and Fig-
ure 5(b) span a utilization range for the bottleneck queue
from 0.70 to 1.00. Figure 5(c) and Figure 5(d) illustrate
sensitivity to the network load by altering the number of
requests N to N = 5 and N = 20, respectively. The results
indicate that the accuracy of the method is quite insensitive
to such changes in the job populations.

Figure 6(a) and Figure 6(b) illustrate the sensitivity of
models when resource 1 is set, respectively, to have either
an Erlang-2 distribution or a PH distribution identical to
the one used in resource 2. Notice that for SCV = 1 the
exact result no longer matches the exponential case, the first
resource no longer being exponential. The former case is in-
deed very important for web services due to our observation
in Section 3 that about 50% of recorded experiments have
SCV < 0.52. The results in the two figures suggest again
that the accuracy of the method is quite insensitive to the
change in SCV .

Figure 7(a) shows how the accuracy of the method is af-
fected by the skewness of the distribution. It is clear that,
as the skewness raises above the SKEW ≤ 12 boundary
that we considered in Section 3, the scalar approximation we
have proposed for the PH/PH/1 queue is no longer valid.
It is still interesting to note, however, that most of the ex-
periments with large skewness show a good agreement with
the product-form exponential solution. This suggests that
resources with high-skewness might be approximated as ex-
ponential resources without incurring major errors.

Figure 7(b) shows instead the growth of computational
costs as the number of phases increases. For simplicity of pa-
rameterization, we consider an Erlang-n process at resource
n and explore the values n = 1, 2, 4, 8, 16, 32. It is found that
a parsimonious PH description with up to 8 states provides
execution times that are less than 1 second. For n = 16
the time grows to 1.28 seconds and for n = 32 it grows
to 6.80 seconds. Closer examination of execution traces re-
veals that the dominating component of the execution time
is the matrix-geometric solution used to compute ηk for all
resources.

Figure 8 shows sensitivity results for the case where a

10 20 30 40 50 60

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

S
1
 = 1.00, S

2
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(a) erl2+ph, N = 10

10 20 30 40 50 60

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

S
1
 = 1.00, S

2
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(b) ph+ph, N = 10

Figure 6: Sensitivity to choice of distribution at re-
source 1; the model has M = 2 queues.

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SKEW − queue 2 skewness

S
1
 = 1.00, S

2
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(a) exp+ph, N = 10

10
0

10
1

10
−2

10
−1

10
0

10
1

ex
ec

ut
io

n
tim

e
[s

ec
]

n − number of Erlang phases

S
1
 = 1.00, S

2
 = 1.00

fp−exact
fp−pfexp

(b) exp+erl, N = 10

Figure 7: Sensitivity to skewness of distribution and
to number of phases; the model has M = 2 queues.

delay station is added to the cyclic network, placed after re-
source 2. The population is N = 10. The two cases consider
average delays Z = 2 and Z = 10, respectively resulting in
worst-case approximation errors of 3.4% and 11.8%, which
are much better than the corresponding errors in product-
form models of 59.0% and 40.0%.

The execution times for fp-exact and fp-pfexp in all exper-
iments in this subsection were less than 1 second on MAT-
LAB. Memory requirement was negligible as well – of the
order of kilobytes.

6.2 M = 3 resources
We next assessed the sensitivity of the results against the

size of the network. Figure 9(a) and Figure 9(b) illustrate
two cyclic networks with one or two resources having PH
distributed service times. Notice that the range of maxi-
mum utilization is larger than in the previous experiments,
especially in Figure 9(b), where it is between 0.4 and 1.00.
We see that increasing the number of resources results in
more accuracy in Figure 9(a), where the maximum error is
just 2.84% for the fixed point method against 60.0% for the
exponential product-form solution. In Figure 9(b), the er-
rors grow to 6.13% for the fixed point and 109.1% for the

71

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

S
1
 = 1.00, S

2
 = 1.00, Z = 2.00

exact
pfexp
fp−exact
fp−pfexp

(a) exp+ph, N = 10

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 2 service process

S
1
 = 1.00, S

2
 = 1.00, Z = 10.00

exact
pfexp
fp−exact
fp−pfexp

(b) exp+erl, N = 20

Figure 8: Sensitivity to delay stations; the model
has M = 2 queues and a delay station.

10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 3 service process

S
1
 = 1.00, S

2
 = 1.00, S

3
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(a) exp+exp+ph, N = 10

10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 3 service process

S
1
 = 1.00, S

2
 = 1.00, S

3
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(b) exp+ph+ph, N = 10

Figure 9: Sensitivity to choice of distribution at re-
source 1; the model has M = 3 queues.

exponential product-form solution. Such a difference from
the case in Figure 9(a) may be explained by observing that,
when more queues are PH, the request-flows between re-
sources tend to deviate more markedly from a Poisson pro-
cess. Such a situation cannot be handled by exponential
networks6, whereas our fixed-point method accounts for it
effectively, thanks to the scaled input processes (αj , ρjT j).
To test this conjecture, we repeated the experiment in Fig-
ure 9(b), replacing the scaled input processes (αj , ρjT j) by
an exponential inter-arrival time with the same mean. Thus,
the caudal characteristics ηk are for M/PH/1 queues rather
than PH/PH/1 queues. It is found that the fixed point so-
lution error grows to 37.69% for SCV = 64, so it is about
600% larger than with the PH/PH/1 approach. For the
model in Figure 9(a), the degradation is similar, at 32.9%.
These additional experiments provide robust evidence that
the proposed approach is effective in describing the distri-
bution of inter-departure times from resources.

Finally, Figure 10 shows sensitivity experiments similar
to the ones developed in Figure 5. As before, no major
deviations from the exact solution are observed. As with
the cases of M = 2 resources, for M = 3, the execution
times for fp-exact and fp-pfexp in all experiments were less
than 1 second.

6.3 Large intractable models
We now illustrate the accuracy and scalability of the fixed-

point method on models that are intractable by direct so-
lution of the Markov chain. Figure 11(a) shows results for
a model with N = 100 requests and M = 10 resources.
The number of states in the underlying Markov process is
4.366 × 1015, which is clearly intractable. All service times
at the queueing resources follow an identical PH(2) distri-

6Notice that in closed exponential networks the flows are
not Poisson either. However, empirical observations suggest
that their variability is usually not too far from SCV = 1.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue i service process

S
1
 = 1.00, S

2
 = 1.00, Z = 2.00

exact
pfexp
fp−exact
fp−pfexp

(a) 10×ph, N = 100

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

ex
ec

ut
io

n
tim

e
[s

ec
]

M − number of resources

N=50 req.
N=100 req.
N=300 req.
N=500 req.

(b)

Figure 11: Sensitivity to model size.

bution with the specified SCV . The exact solution is com-
puted by simulation, using the Java Modelling Tools suite
simulator [2], configured with the independent replication
method and 95% confidence intervals. Notice that utiliza-
tion is identical for all resources and equal to the through-
put since Sk = 1, for 1 ≤ k ≤ M . Results indicate that
the method is very accurate for SCV ≤ 10 when the net-
work is more heavily-loaded, whilst it gives slightly larger
errors than in the previous examples at large SCV s. Over-
all, the trend is captured fairly well, especially when com-
pared to the pfexp method. We have performed additional
experiments and observed that as the bottleneck load grows,
performance appears to be captured better at large SCV .
Thus, it appears that the proposed approximation tends to
perform better at medium/high loads. This is consistent
with the discussion in Section 3, since under light load, the
different decay rate at queue-length 1 (i.e., ρ(1− η)/(1− ρ)
as opposed to η) may reasonably become dominant.

Figure 11(b) shows computation times for large models
with N up to 500 requests and networks of increasing size,
M . In all cases, the fixed-point method can solve the model
in a few seconds on a laptop computer. In particular, the
execution times scale very efficiently with the population N ,
thanks to the O(N) complexity of the normalizing constant
computation.

7. SERVICE MANAGEMENT EXAMPLE
Finally, we introduce a case study of practical interest

for the proposed class of performance models. Consider an
application that defines a set of enterprise Java beans (EJBs)
to deal with the business logic. Each EJB acquires data from
a pool of C connection objects that represent entry-points
for web services and database resources, collectively referred
to as data sources. Assume that there are D data sources
and there exist one or more dedicated connection objects for
each data source. Thus C ≥ D and we denote by Cd the
number of connection objects for data source d, 1 ≤ d ≤ D.
Assume also that queueing delays for outstanding calls at
data sources are negligible and that each connection object
stores the pending calls it will serve in a first-in-first-out
buffer.

We consider the problem of allocating residual bandwidth
at run-time by instantiation of new connection objects. In-
deed, as the number of connection objects grows, more data
can be fetched in parallel per unit of time from data sources
and thus increase the application throughput if data acqui-
sition is the performance bottleneck. However, a physical
bandwidth limit exists which calls for deciding which data
source to prioritize. For simplicity, we focus here on identify-

72

10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 3 service process

S
1
 = 1.00, S

2
 = 1.00, S

3
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(a) ph+ph+ph, N = 5

10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 3 service process

S
1
 = 1.00, S

2
 = 1.00, S

3
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(b) ph+ph+ph, N = 10

10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 3 service process

S
1
 = 1.00, S

2
 = 1.00, S

3
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(c) ph+ph+ph, N = 20

10 20 30 40 50 60

0.3

0.35

0.4

0.45

0.5

th
ro

ug
hp

ut
 X

(N
)

SCV − queue 3 service process

S
1
 = 0.50, S

2
 = 2.00, S

3
 = 1.00

exact
pfexp
fp−exact
fp−pfexp

(d) ph+ph+ph, N = 10

Figure 10: Sensitivity to values of mean service time and to the population size; the model has M = 3 queues.

ing the data source d∗ that would be able to exploit best the
greatest portion of the residual bandwidth, and thus acquire
more data per time unit.

The decision problem may be tackled by studying a closed
queueing network with N circulating requests representing
the number of calls issued by EJBs to the connection ob-
jects. Define Zd to be the average time that elapses be-
tween completion of a call to data source d and the suc-
cessive arrival of a new call to that data source. Such a
delay may be due to several factors, such as gaps in the
arrival stream of requests, time taken by EJBs to process
the business logic, level of parallelism for software worker
threads used by the application. We model the system as
a cyclic network with a first-come-first-served queue, rep-
resenting the new connection object, a processor-sharing
queue, representing available bandwidth, and a delay server
with exponential rate Z−1

d . Let Rd be the random vari-
able for the response time of data source d and let E[Bd]
be the average data size in bits of a response from data
source d over the network. Further, denote by μ the net-
work bandwidth in bits per second and by ρnet,d the current
network utilization due to calls to data source d. The aver-
age time to transfer data from source d may be estimated
as Snet,d = E[Bd]μ

−1. Since we consider single class models
and the network utilization is available at run-time, we con-
sider the scaled quantity S∗

net,d = ((Cd + 1)/Cd)Snet,d(1 −∑
i �=d ρnet,i)

−1. Here the utilization scaling factor accounts
for the delay due to shared network bandwidth under the as-
sumption that class d will not affect the bandwidth allocated
to class i �= d. Instead, the factor ((Cd + 1)/Cd) estimates
the extra demand placed on the network by a new connec-
tion for source d. The example is based on two web service
time-traces from the wsdream dataset, having respectively
E[R1] = 412.43ms, SCV [R1] = 22.35, SKEW [R1] = 9.96
and E[R2] = 661.00ms, SCV [R2] = 0.50, SKEW [R2] =
9.30, which are fitted by PH(2)s. Thus, data source 1 has
high-variability in its response while data source 2 has low
variability. The other parameters used in the experiments
are given in Table 1.

Notice that source d = 1 has the highest demand on net-
work bandwidth and the smallest delay Zd; thus the choice
d∗ = 1 seems natural. However, we find that low variability
makes the choice d∗ = 2 a better one. Simulation and an-
alytical results are shown in Figure 12. Execution time for
the fixed-point algorithm is just 4ms per experiment, as op-
posed to simulation that takes about 10s to converge. As we
can see, the exponential network model pfexp, which cannot
represent high-variability, predicts that an additional con-
nection object would roughly provide the same bandwidth
utilization for both data sources, with a slight preference for

D = 2 C1 = 1 C2 = 1
d 1 2
N 10 10
Z 400ms 430ms

Snet,d 250ms 100ms
ρnet,d 0.5242 0.1518

Table 1: Model parameters.

Exact Add CO d*=1 Add CO d*=2
0

0.2

0.4

0.6

0.8

1

ne
tw

or
k

ut
ili

za
tio

n

sim
fp−pfexp
pfexp

Figure 12: Application example results.

d = 1. Conversely fp-pfexp, the fixed-point algorithm initial-
ized with the pfexp solution, correctly predicts that a benefit
can be achieved only if the additional connection object is
for data source d = 2. This is because the high variance of
data source 1 would often block the line of requests queueing
at the connection object buffer.

Summarizing, this small, but realistic, example shows that
the proposed class of models may return surprising – but cor-
rect – decisions compared to those suggested by commonly
used exponential models. Such predictions are obtained in
negligible time and so are compatible with application to
run-time decision problems of far greater complexity than
that of this exemple.

8. CONCLUSION
We have presented a class of product-form expressions

that approximate a diverse range of closed queueing net-
works with resources having generally distributed process-
ing times. When the skewness of the distribution is not too
large (e.g., SKEW ≤ 12), it was found that the accuracy
of the approximation is excellent at all levels of variability,
as characterized by the second moment. A fixed-point al-
gorithm that obtains such approximate solutions cheaply in
terms of both time and space requirements has been imple-
mented and its application to run-time service management
has been illustrated. Future work will focus on the general-
ization of the proposed method to multi-class workloads as
well as load-dependent and multi-server resources.

73

9. REFERENCES
[1] S. Asmussen and F. Koole. Marked point processes as

limits of Markovian arrival streams. J. Appl. Prob.,
30:365–372, 1993.

[2] M. Bertoli, G. Casale, and G. Serazzi. User-friendly
approach to capacity planning studies with Java
Modelling Tools. In Proc. of SIMUTools 2009, pages
1–9. ACM, 2009.

[3] D. Bini, B. Meini, S. Steffé, and B. Van Houdt.
Structured Markov chains solver: software tools. In
Proc. of SMCTOOLS Workshop. ACM, 2006,
http://win.ua.ac.be/~vanhoudt/.

[4] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi.
Queueing Networks and Markov Chains. 2nd ed.,
Wiley and Sons, 2006.

[5] J. P. Buzen. Computational algorithms for closed
queueing networks with exponential servers. Comm. of
the ACM, 16(9):527–531, 1973.

[6] G. Casale. A note on stable flow-equivalent
aggregation in closed networks. Queueing Systems,
60(3-4):193–202, 2008.

[7] G. Casale, N. Mi, and E. Smirni. Bound analysis of
closed queueing networks with workload burstiness. In
Proc. of ACM SIGMETRICS 2008, pp. 13–24. ACM
Press, 2008.

[8] G. Casale, N. Mi, L. Cherkasova, and E. Smirni.
Dealing with burstiness in multi-tier applications: new
models and their parameterization. IEEE Trans.
Software Eng., to appears.

[9] G. Casale, M. Tribastone. Fluid Analysis of Queueing
in Two-Stage Random Environments. in Proc. of
QEST, Aachen, Germany, Sep 2011.

[10] P. Courtois. Decomposability, instabilities, and
saturation in multiprogramming systems. Comm. of
the ACM, 18(7):371–377, 1975.

[11] D. L. Eager, D. Sorin, and M. K. Vernon. AMVA
techniques for high service time variability. In Proc. of
ACM SIGMETRICS, pages 217–228. ACM Press,
2000.

[12] E. Gelenbe and I. Mitrani. Analysis and Synthesis of
Computer Systems. Academic Press, London, 1980.

[13] A. Heindl. Traffic-Based Decomposition of General
Queueing Networks with Correlated Input Processes.
Ph.D. Thesis, Shaker Verlag, Aachen, 2001.

[14] A. Heindl, G. Horvath, and K.Gross. Explicit Inverse
Characterizations of Acyclic MAPs of Second Order.
Proc. of EPEW, Springer LNCS 4054, 108–122, 2006.

[15] H. Kobayashi. Application of the diffusion
approximation to queueing networks I: equilibrium
queue distributions. Journal of the ACM,
21(2):316–328, 1974.

[16] E. D. Lazowska, J. Zahorjan, G. S. Graham, and
K. C. Sevcik. Quantitative System Performance.
Prentice-Hall, 1984.

[17] T. Marian, M. Balakrishnan, K. Birman, and R. van
Renesse. Tempest: Soft state replication in the service
tier. In DSN, pages 227–236. IEEE Computer Society,
2008.

[18] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel.
Performance impacts of autocorrelated flows in
multi-tiered systems. Perform. Eval.,
64(9-12):1082–1101, 2007.

[19] M. F. Neuts. The caudal characteristic curve of
queues. Adv. Appl. Prob., 18:221–254, 1986.

[20] M. F. Neuts. Structured Stochastic Matrices of M/G/1
Type and Their Applications. Marcel Dekker, New
York, 1989.

[21] B. Pittel. Closed exponential networks of queues with
saturation: the Jackson-type stationary distribution
and its asymptotic analysis. Math. Oper. Res.,
4:357–378, 1979.

[22] M. Reiser. A queueing network analysis of computer

communication networks with window flow control.
IEEE Trans. on Communications, 27(8):1199–1209,
1979.

[23] A. Riska and E. Smirni. MAMsolver: A matrix
analytic methods tool. In Proc. of TOOLS, pp.
205–211. Springer-Verlag, 2002,
http://www.cs.wm.edu/MAMSolver/.

[24] A. Riska, V. Diev, and E. Smirni. An EM-based
technique for approximating long-tailed data sets with
PH distributions. Perform. Eval., 55(1-2):147–164,
Jan. 2004.

[25] R. Sadre and B. R. Haverkort. Fifiqueues: Fixed-point
analysis of queueing networks with finite-buffer
stations. In Proc. of MMB, pages 77–80, 1999.

[26] W. Whitt. The queueing network analyzer. The bell
system tech. journal, 62(9):2779–2815, Nov. 1983.

[27] J. Zahorjan, E. D. Lazowska, and R. L. Garner. A
decomposition approach to modelling high service
time variability. Perform. Eval., 3:35–54, 1983.

[28] Z. Zheng and M. R. Lyu. Collaborative reliability
prediction of service-oriented systems. In Proc. of
ACM ICSE, pp. 35–44, May 2010.

APPENDIX

A. ASYMPTOTIC DISTRIBUTIONS
The exact asymptotic distribution of the conditional dis-

tribution in a PH/PH/1 queue is known to exist from equa-
tion (2), i.e.,

θ̃ = θ = lim
n→∞

π(n)

π(n)1

= lim
n→∞

π(1)Rn−1

π(1)Rn−11

= lim
n→∞

π(1)ηn−1Π

π(1)ηn−11

=
π(1)r

π(1)1
�

Thus, θ is a left-Perron-eigenvector of R (parallel to �) and
so, by the previous assumption, θR = θηΠ = ηθ. Thus
θΠ = θ. Notice that Π is the spectral projector for the R
matrix associated with the exact solution π(n).

B. PROOF OF PROPOSITION 1
The normalizing constant may be written as

G(M,N) =
∑
S

M∏
i=1

[(1−ρi)(1−δ(ni))+ρi(1−ηi)η
ni−1
i δ(ni)]

where δ(ni) = 1 if ni ≥ 1, 0 otherwise. Observe now that

G(M,N) =
∑

(n1,...,nM):nM=0

(1− ρM)

M−1∏
i=1

xi(ni)

+
∑

(n1,...,nM):nM≥1

ρM (1− ηM)ηnM−1
M

M−1∏
i=1

xi(ni) (12)

where xi(ni) = (1−ρi)(1−δ(ni))+ρi(1−ηi)η
ni−1
i . Factoring

out of the two summations (1 − ρM) and ρM , respectively,
the right-hand side terms are, by definition, G(M−1, N) and
Gaux(M,N − 1), respectively. The terminations conditions
also follow immediately by definition of G and Gaux.

74

