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ABSTRACT
This paper presents an analytical model for the performance
prediction of queueing networks with batch services and
batch arrivals, related to the fluid limit of a suitable single-
parameter sequence of continuous-time Markov chains and
interpreted as the deterministic approximation of the aver-
age behaviour of the stochastic process. Notably, the un-
derlying system of ordinary differential equations exhibits
discontinuities in the right-hand sides, which however are
proven to yield a meaningful solution. A substantial numer-
ical assessment is used to study the quality of the approxi-
mation and shows very good accuracy in networks with large
job populations.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies; D.2.8 [Software Engineering]:
Metrics—Performance measures

General Terms
Performance

Keywords
queueing networks, batch services, fluid limits

1. INTRODUCTION
Batches are useful in the study of computer and communi-

cation systems for describing situations when an event gives
rise to the simultaneous arrival of more than one element,
or when servers accumulate a certain number of jobs before
processing them so as to reduce, for instance, overheads in
communication bandwidth [1].

There is a vast body of literature concerned with the
analysis of batch systems, especially within queueing the-
ory, with references which may be tracked as far back as the
Twenties with Erlang’s solution of theM/Ek/1 queue, which
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may also be used to yield that of the Mk/M/1 queue. The
book by Chaudhry and Templeton provides an exhaustive
account of analyses of queueing systems with batch (or bulk)
arrivals and service, both for transient and steady-state so-
lutions [2].

The present paper considers queueing networks with open
batch arrivals and batch services which can be described
in terms of a continuous-time Markov chain (CTMC), with
state descriptor characterised by a population vector which
gives the job population in each station of the network.
Models of this kind have been studied in the past, mostly
with the aim of extending classical product-form solutions
of ordinary queueing networks where jobs arrive at the net-
work, transfer between nodes, and receive service singly [3,
4]. The works by Henderson and Taylor [5] and Henderson
et al. [6] have provided product forms for a class of open and
closed networks, respectively. Despite the considerable value
from a theoretical viewpoint, these results present the draw-
back that in practical applications the computational cost
of the normalising constant may be prohibitive, especially
when analysing networks with large job populations.

The technique herein presented is instead based on an ap-
proximation in terms of a fluid model. In a classical setting,
for a given network under study a sequence of CTMCs in-
dexed by a single parameter, hereafter denoted by N , is suit-
ably constructed so as to be shown to converge asymptoti-
cally to a system of ordinary differential equations (ODEs).
The parameter is usually referred to as the network’s size,
e.g., the larger N the larger the initial population levels
in the system. The limiting fluid behaviour is shown to
be undistinguishable from a sample path of the CTMC for
N → ∞, thus justifying the ODE solution as an analyti-
cal approximate of the average behaviour of the network for
large N . The framework is that of Kurtz, who has proven
this form of convergence under relatively mild assumptions
on the nature of the transitions in general CTMCs with a
population-based state descriptor [7]. A brief overview of
related work concerning fluid models, with applications to
computer and communications systems, is provided in Sec-
tion 2. This is followed by Section 3, where we present the
relevant notation for the fluid framework considered in this
paper.

The mathematics used to describe queueing networks with
batches is discussed in Section 4 by means of a queueing
system with Poisson batch arrivals at a station that serves
singly. Two forms of scaling will be discussed which turn
out to lead to different limit behaviours. The first — and
perhaps the least surprising — case concerns a sequence of
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CTMCs where the batch size is constant and the arrival
intensity grows linearly with N (Section 4.1). This case be-
longs to the aforementioned standard framework of Kurtz.
The other scaling considers the situation when the arrival
rate is constant and the batch size is allowed to grow with
N (Section 4.2). In this case, instead, the limit behaviour
is a stochastic hybrid system (cf. [8]) which mixes contin-
uous flows with Markovian jumps. However, also in this
case a fluid ODE can be syntactically constructed, and its
relationship with the hybrid limit will be discussed.

In Section 4.3, the running example is varied to analyse a
queue with finite capacity. The (illustrative) purpose is to
introduce another form of limit behaviour, namely that of
an ODE with discontinuous right-hand side. To build some
intuition as to how this arises from inherently discontinuities
in the CTMC transitions rates, let c be the queue capacity
and b < c the arrival batch size. Then, the arrival rate will
be some λ > 0 if the queue length is less than c − b and
0 otherwise. Under these circumstances Kurtz’s theorem
cannot be applied, as it requires Lipschitz continuity of the
ODE vector field. However, using recent developments con-
cerned with non-smooth systems [9, 10], we show that such
a fluid limit with discontinuities is meaningful. Clearly, an
analogous form of discontinuity presents itself in the case
of batch services. This situation is studied in detail in Sec-
tion 5, which considers two forms of scaling that give rise to
a deterministic limit and to a hybrid one.

Section 6 unifies these results in a general model of Marko-
vian queueing networks with batch services and batch ar-
rivals. The model is accompanied by a discussion in Sec-
tion 6.2 concerning its applicability to practical situations,
with emphasis on the impact of the forms of scaling stud-
ied in this paper. The natural question as to whether and
under which conditions the deterministic trajectory may be
used as an approximation to the expected behaviour of the
stochastic process is investigated in Section 7 by means of
a substantial numerical study. It confirms that the quality
of the approximation improves with increasing population
sizes, yielding accurate estimates for medium/large sized
networks under a wide range of traffic conditions.

The paper ends in Section 8 with concluding remarks. In
particular, we sketch a methodology to help the modeller
choose between different analysis options—numerical solu-
tion of the underlying CTMC, stochastic simulation, or fluid
approximations—according to the nature of the actual sys-
tem under consideration.

2. RELATED WORK
Mean field and fluid approaches have a long-standing tra-

dition in performance engineering and in queuing theory.
Recently, general frameworks to apply mean-field asymp-
totic results, with limits defined in terms of ODEs, have
been developed [11, 12, 13, 14, 10, 9]. Some of them deal
with discrete-time Markov chain models, and show conver-
gence under a suitable scaling of transition kernels and du-
ration of a time step of the chain [11, 12]. Other deal with
CTMC models [13, 14], possibly connecting the mean field
approximation with high level formal languages to describe
systems [13]. In all cases, Lipschitz continuity is required
for the rates.

As discussed above, extensions of such frameworks to dis-
continuous rates and kernels, including new convergence re-
sults, have been proposed in [9, 10]. Our approach uses

these works to study approximations for queueing networks
with batches. However, the contribution of this paper goes
beyond a mere application of these results since we also con-
sider non-fluid forms of scaling, giving rise to hybrid systems,
which are not considered in all the aforementioned papers.
To the best of these authors’ knowledge, there has not been
any application of fluid approximation to queue models with
batches.

In the literature, many of the applications of mean-field
limits for specific systems are concerned with models in
which the assumption on Lipschitz continuity holds. With-
out pretending to be exhaustive, we recall recent work on
the analysis of MAC protocols [12, 15], peer-to-peer proto-
cols [16, 17], TCP protocols (with emphasis on data cen-
ters), [18, 19]), and load balancing policies [20, 21].

Similarly to us, [17] also studies a Piecewise Determin-
istic Markov Process [8]. However, the simple structure of
their hybrid model, which permits to decouple stochastic
dynamics from deterministic behaviour, enables analytical
solutions. This is harder in our setting, due to the strong
bidirectional coupling of the two dynamical regimes. This
is why we focussed instead on approximate techniques, see
Sections 4.2 and 8.

The authors of [18], instead, consider a fluid model based
on delay differential equations which contain discontinuities
in the right-hand side, induced by congestion control poli-
cies. However, contrary to queues with batches, such discon-
tinuities have no dramatic impact on the dynamics (there is
no sliding motion). In [19], instead, the focus is more on
the control policy, studied from the point of view of con-
trol theory. Both [17] and [18] focus on the analysis of the
fluid model and provide only experimental evidence of con-
vergence of the pure stochastic system, without discussing
the quality of approximation in detail.

The paper [12] considers a mean field approach that is dif-
ferent from the ones used in this paper. In particular, their
limit result, proved in the paper, is concerned with Lips-
chitz continuous rates in a rapidly varying environment, that
reaches instantaneously equilibrium in the limit. In [15], in-
stead, the authors use a more classical mean field approach,
with a limit in continuous times for Lipschitz continuous
rates, and apply also a central limit result (i.e. a limit
in terms of Stochastic Differential Equations with Gaussian
noise). Papers [20, 21] use a classic mean field approach
(i.e. with limits in continuous time and Lipschitz continu-
ous rates) to study optimisation policies for load balancing.
In particular, [21] exploits mean-field properties to compute
performance measures at the level of single server or job.

3. NOTATION
In order to make the paper self-contained, in this section

we fix the notation that will be used throughout the remain-
der. Additional background on fluid limits will be given in
Section 4, while discussing an example of a queueing system
with batch arrivals.

We will first introduce a simple language to describe net-
work models as population processes, where the variables are
the number of jobs at each station.

Formally, a CTMC representation for such models is the
tuple X = (X,S, x0, T ), where:

• X = (X1, . . . , Xn) is a vector of variables, where n is
the total number of stations in the network;
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�(N), size b(N)

s(N)
µ(N)

c(N)

Figure 1: The queueing system with batch arrivals
considered in Section 4.

• S is the (countable) state space of the CTMC;

• x0 ∈ S is the initial state of the model;

• T is the set of transitions, where τ ∈ T is in the form
τ = (gτ (X), vτ , rτ (X)); gτ (X) is the guard, a conjunc-
tion of inequalities of the form h(X) ≥ 0, for a suitably
smooth function h (usually linear); vτ ∈ Rn, is the
update vector, i.e., a vector giving the net change on
each variable caused by the transition (we require that
X + vτ ∈ S whenever gτ (X) is true); rτ : S → R≥0

is a Lipschitz continuous and bounded rate function,
which specifies the rate of the transition as a function
of the current state of the system.

Given a model X , it is straightforward to obtain the in-
finitesimal generator matrix Q of the CTMC, which is given
by the |S| × |S| matrix defined by

qx,x′ =
∑
{rτ (x) | τ ∈ T , gτ (x) true, x′ = x+ vτ}.

We indicate by X(t) the state of such a CTMC at time t.
We will make our network models depend upon a parame-

ter, N , which plays the role of the system’s size; intuitively,
the larger N , the larger the system, e.g., the more clients
will request service. By varying N , we obtain a sequence
(X (N))N∈N of models, generating a sequence of CTMCs, de-

noted by X(N)(t). We aim at finding a fluid approximation
of these models, for large N . In order to compare mod-
els of different size, we carry out the usual normalisation
step, which consists in dividing all the populations by N ,
and rescaling transitions accordingly. This is essentially a
change of variables from X to X̄ = X/N .

In general, given the CTMC model for level N , denoted

by X (N) = (X,S(N), T (N), x
(N)
0 ), we denote its normalised

version by X̄ (N) = (X̄, S̄(N), T̄ (N), x̄
(N)
0 ), where S̄(N) =

S(N)/N , x̄
(N)
0 = x

(N)
0 /N . The transitions τ̄ ∈ T̄ (N), with τ̄

defined as (ḡ(N)(X̄), v̄(N), r̄(N)(X̄)), are obtained from the

corresponding transitions τ = (g(N)(X), v(N), r(N)(X)) by

setting ḡ(N)(X̄) = g(N)(X), v̄(N) = v(N)/N , and r̄(N)(X̄) =

r(N)(X).
We introduce the following indicator function I{P (X)},

where P (X) is a logical predicate on variables X, which is
useful when describing rates with discontinuities.

I{P (x)} =

{
1 if P (x) true,

0 otherwise.

4. FLUID APPROXIMATION
OF BATCH ARRIVALS

In this section we discuss a simple multi-server queueing
system with batch arrivals. In doing so, we present all fluid
limit results that are needed in the paper. The queue has
an exponentially distributed service rate µ(N) and server
multiplicity s(N). The batch arrivals have exponentially dis-
tributed interarrival times with rate λ(N) and batch sizes

b(N), where N is the scaling parameter for the CTMC se-
quence. The meaning of these parameters is summarised
pictorially in Figure 1. The buffer is hereafter supposed to
be unbounded. Then, Section 4.3 will study the case with
finite capacity, indicated by c(N) in the figure.

The model may be formalised in the notation presented in
the previous section. Its model X (N) has a single variable,
denoted by X(N) with domain N0, which counts the popu-
lation of jobs in the buffer, and two transitions, τ1 and τ2.

The arrival transition τ1 has rate λ
(N)
1 , no guard (g1 = true),

and update vector v1 = b(N), while the service transition τ2
has rate µ(N) min{X(N), s(N)}, no guard, and update vector
v2 = −1.

For given λ, µ > 0 and b, s ∈ N, we consider to scalings of
the network parameters as follows.

S1 The batch size is constant, b(N) = b, but the arrival rate
of batches of clients increases with N , λ(N) = Nλ.

S2 Clients arrive at a constant rate λ(N) = λ, but in batches
of growing size, b(N) = Nb.

In both cases, we need to increase the number of servers
to keep up with the increased traffic, so that we always let
s(N) = sN . Notice that, in closed networks such as the
one of Section 6, a natural interpretation for N is the total
number of clients in the system.

4.1 Fluid Limit (S1)
The main idea behind fluid (or deterministic) approxi-

mations for a sequence of CTMCs X̄(N) is that, if suitable
scaling assumptions are satisfied by rates and update vec-
tors, the sequence converges to a deterministic limit process,
solution of an ordinary differential equation (ODE). Essen-
tially, we have to require that rates increase with N and
updates decrease as 1/N for all transitions. If this is the
case, then as N gets larger and larger, the density of jumps
increases while their magnitude decreases, hence jumps can
be approximated as continuous derivatives in the limit.

To be more precise, the scaling conditions that we require
are the following: for each transition τ (N) ∈ T̄ (N) of the

normalised model, the supremum of the rate r
(N)
τ must be of

order N , i.e. supx∈S̄(N) r
(N)
τ (x) = Θ(N), while the norm of

the update vector v
(N)
τ must be of order 1/N , i.e., ‖v(N)

τ ‖ =
Θ(1/N).

In order to construct the limit ODE, we need to define
the drift of the model, i.e., the mean increment of variables
at each step, which is

F (N)(X̄) =
∑
τ∈T̄

v̄(N)
τ r̄(N)

τ (X̄).

Now, consider the smallest closed subset E ⊆ Rn con-
taining all the state spaces S̄ of normalized models, that is
E = cl

(⋃
N∈N S̄

N
)
, and assume that:

1. F (N) converges uniformly in E to a Lipschitz continu-
ous function F ;

2. the initial state of the CTMC sequence converges to a

point in (the interior of) E, i.e. x̄
(N)
0 → x0 ∈ E;

3. x(t) is the solution of the initial value problem dx(t)
dt

=
F (x(t)), x(0) = x0.
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Under such conditions, it is possible to prove the following
theorem [7, 22, 23]:

Theorem 1 (Deterministic approximation). Under
the previous assumptions, for any T <∞,

lim
N→∞

sup
t≤T
‖X̄(N)(t)− x(t)‖ = 0 in probability.

This theorem states that, for any finite time horizon T , the
trajectories of the CTMC become indistinguishable from the

solution of the fluid ODE dx(t)
dt

= F (x(t)). Essentially, the

sequence X̄(N)(t) behaves as a deterministic process in the
limit.

Of the two forms of scaling introduced at the beginning
of Section 4, we observe that only S1, i.e., λ(N) = Nλ and
b(N) = b, is amenable to fluid approximation. In S2, instead
the arrival transition does not satisfy the scaling assump-
tions because the suprema of both the rate and the update
vector are Θ(1).

Then, considering S1 and computing the drift, we obtain

F (N)(x) = F (x) = kλ− µmin{x, s}, (1)

which is independent of N . Furthermore, assuming x̄
(N)
0 =

x0 = 0, the conditions of Theorem 1 are satisfied, and we can
conclude that the sequence of CTMC converges uniformly to

the solution of dx(t)
dt

= F (x(t)) in any bounded time interval.
In this particular model, however, we can say something

also about the steady-state behaviour of the sequence of
CTMCs. In fact, it is easy to show that each CTMC in
the sequence is irreducible and that the ODE has a unique
globally attracting steady state, equal to kµ1

µ2
, provided that

kµ1 < µ2s.
1 Under such conditions, it can be shown that

lim
N→∞

lim
t→∞

‖X̄N (t)− x(t)‖ = 0

in probability [11, 24].

Finally, we point out that the equation dx(t)
dt

= F (N)(x(t))
has another interpretation, namely as an approximate equa-
tion for the average of the CTMC at level N [25, 26]. Using
either a direct manipulation of the Chapman-Kolmogorov
equations, or by Dynkin’s formula in differential form [8],
the exact equation for the derivative of the expected values
of the CTMC reads

dE[X]

dt
= E

[
F (N)(X)

]
.

By approximating E[min{x, y}] with min{E[x], E[y]}, one
obtains

dE[x]

dt
= E

[
F (N)(x)

]
≈ F (N)(E[x]),

which is the fluid equation (using the level-N drift). In our
example, however, as FN (x) = F (x), this is the proper fluid
limit equation.

4.2 Hybrid Fluid Limit (S2)
Recalling that the scaling laws for case S2 are λ(N) = λ

and b(N) = bN , one observes that in this situation the tem-
poral density of batch arrivals remains constant with re-
spect to N , while the jump is constant in the normalised

1For kµ1 = µ2s, the ODE has an infinite number of equilib-
ria, namely all points x ≥ s, while for kµ1 > µ2s, the ODE
goes to infinity.

variables, meaning that its magnitude increases in the un-
scaled model. Intuitively, the dynamics of such a transition
maintains a similar structure for all N , always showing a
stochastic behaviour. On the other hand, the service rate
does enjoy a suitable scaling, hence this dynamics should
intuitively become deterministic asymptotically. Therefore,
we expect that, overall, this sequence of CTMCs still ex-
hibits a limit behaviour, although not a purely determinis-
tic one in the sense of Theorem 1, since its scaling condi-
tions are not satisfied. Indeed, it turns out that the limit
process is hybrid, mixing discrete/stochastic with continu-
ous/deterministic evolution.

In order to put this intuition into a formal framework,
we introduce Piecewise Deterministic Markov Processes, a
model of stochastic hybrid systems interleaving periods of
continuous evolution with discrete jumps [8]. Following [27],
we consider a simple version with Markovian jumps (while
in general also instantaneous jumps are allowed, happening
as soon as their guard becomes true).

Definition 1. A simple Piecewise Deterministic Markov
Process (PDMP) is a tuple (D,X,D, ϕ, T , d0, x0), where:

• D is a vector of discrete variables, taking values in the
finite set D. An element d ∈ D is usually called a
discrete mode. D can be the empty vector, and in this
case D contains a single point;

• X is a vector of n continuous variables, taking values
in (a subset of) Rn;

• ϕ : D×Rn → Rn is a function that defines a Lipschitz
continuous vector field for each mode d ∈ D;

• T is a set of Markovian transitions in the form (ri, Ri),
where ri : D × Rn → R≥0 is the rate of the transition,
and Ri : D × Rn → D× Rn is the reset map.

• (d0, x0) ∈ D × Rn is the initial state.

Intuitively, the dynamics of a simple PDMP is as follows.
The process starts in the initial state (d0, x0) and the con-
tinuous variables evolve following the solution of the ODE
dX(t)
dt

= ϕ(d0, X(t)), while the discrete variables remain con-
stant. Such a continuous evolution is followed until a time
T1, when Markovian jump happens with rate

r(d0, X) =
∑

(ri,Ri)∈T

ri(d0, X).

A discrete transition i is chosen with probability propor-
tional to its rate, i.e. ri(d0, X(T1))/r(d0, X(T1)), and the
system jumps to the new state (d1, x1) = Ri(d0, X(T1)).
Then, the system starts again to evolve continuously from
(d1, x1), until a new jump occurs. Applying this scheme it-
eratively yields the piecewise continuous trajectories of the
PDMP.

We briefly sketch how to define the simple PDMP asso-
ciated with a sequence of models X̄ (N), referring to [27] for
more details. The idea is to partition transitions of model
X̄ (N) into two classes, those amenable of continuous approx-
imation (i.e., those satisfying the scaling conditions of The-
orem 1), and those to be kept discrete (having rate and
update vectors both independent of N in the normalised
model). Then, variables not affected by continuous tran-
sitions will constitute the discrete variables of the PDMP,
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ẋ = −µmin{x, s} rate: λ,
reset: x’ = x + b

Figure 2: Hybrid-automaton representation of the
PDMP associated with the queueing system in Fig-
ure 1 to which scaling S2 is applied. There is one sin-
gle mode and one single variable, x, subject to con-
tinuous evolution given by dx

dt
= −µmin{x, s} and to a

stochastic jump happening with rate λ and changing
the system from x to x+ b.

while all other variables will become continuous variables.
The vector field ϕ is defined like the drift, but restricting
the summation to continuous transitions. Finally, Marko-
vian transitions of the PDMP are obtained straightforwardly
from the discrete transitions of the CTMC.

Applying this construction to the batch arrival example
with the scaling S2, we obtain the following PDMP: it has
one continuous variable (X̄) and one discrete mode (there is
no discrete variable), the vector field is ϕ(X̄) = −µmin{X̄, s},
and its unique Markovian transition has rate λ and reset
map R(X̄) = X̄ + b. A visual representation of this PDMP,
in the usual style of hybrid automata, is shown in Figure 2.

Applying a result of [27], it can be shown that the se-

quence X̄(N)(t) of CTMC converges in distribution to the
PDMP X̄(t) obtained by the previously sketched construc-
tion, provided that the vector field is Lipschitz continuous
(and rate functions are integrable).

The average behaviour of the limit PDMP can also be
described by an ODE, using a more general version of the
Dynkin Formula [8]. For any suitably smooth function f , it
holds that

dE[f(d, x)]

dt
= E

[
∇f(d, x) · ϕ(d, x)

+
∑
i

ri(d, x) (f(Ri(d, x))− f(d, x))

]
.

Let us now specialise the previous formula for the average
E[d, x](t), and apply it to a PDMP obtained from a CTMC
model described with the language of Section 3. For this, it
holds that Ri(d, x) = (d, x) + vi, therefore we obtain

dE[d, x]

dt
= E

[
ϕ(d, x) +

∑
i

viri(d, x)

]
= E[F (d, x)],

where F (d, x) is the (limit) drift of the CTMC model.
If we compute the equation of the average for the PDMP

in Figure 2, we obtain

dE[x]

dt
= λk − µE[min{x, s}],

which, given the approximation E[min{x, s}] ≈ min{E[x], s},
is exactly the fluid differential equation (1) we obtained for
the scaling S1.

4.3 Discontinuity in Rates
All the convergence results presented in the previous sec-

tion require Lipschitz continuity of the drift or of the PDMP
vector field. This is needed to ensure existence and unique-
ness of the solutions of the fluid ODEs. Unfortunately, the

presence of guards in the CTMC transitions may introduce
discontinuities in these functions, thus preventing an appli-
cation of classical deterministic approximation results.

As an example, consider again the batch arrival model,
with scaling S1, but additionally assume that the queue
of the service station has bounded capacity c(N). Further-
more, we assume that the batch arrival is suspended when-
ever an arrival will overcome the capacity c(N). If we let

c(N) = c
(N)
0 + b(N), then arrivals are suspended whenever

X > c
(N)
0 . Such a modification is easily accounted for by

adding the guard X ≤ c
(N)
0 to the batch arrival transition.

In computing the drift for this modified model, we have to
take into account the suspension policy, multiplying the ar-

rival rate by the indicator function I{X ≤ c(N)
0 }, so that the

drift becomes

F (N)(x) = F (x) = kλI{x ≤ c0} − µmin{x, s}.

As F (x) is discontinuous, the associated fluid equation dx(t)
dt

=
F (x(t)) is not an ODE, but rather a Piecewise Smooth dy-
namical system (PWS) [28].

PWS have continuous trajectories showing in general more
complex behaviour than ODE solutions, even if in many cir-
cumstances the solutions of the initial value problems asso-
ciated to a PWS exist and are unique.

Intuitively, the dynamics of a PWS within a continuity
region of the vector field behaves like that of the solution
of the corresponding ODE. However, differences arise in the
proximity of a discontinuity surface. To fix the notation,
suppose that a discontinuity surface H is defined as the set
of zeros of a (sufficiently) smooth function h : Rn → R,
i.e., H = {x | h(x) = 0}. This surface separates Rn in
two regions: R1 = {x ∈ Rn | h(x) < 0} and R2 = {x ∈
Rn | h(x) > 0}. Denote the restriction of the vector field F
to R1 by F1 and the restriction of F to R2 by F2.

In the example, there is a single discontinuity surface, de-
fined by the equation x = c0, which defines the two regions
R1 = {x < c0} and R2 = {x > c0}. The vector field in R1

is F1(x) = kλ− µmin{x, s}, while F2(x) = −µmin{x, s}.
The behaviour of a trajectory of the PWS when it hits the

surface H in a point x essentially depends on the relative
orientation of F1 and F2 around x. If both vector fields
point towards the same region, then the trajectory crosses
H, possibly with a discontinuity in its derivative (transversal
crossing). Formally, this happens if the projections of the
vector fields along the normal ∇h(x) to the surface H in x
(assumed to be always different from zero), F1(x) · ∇h(x)
and F2(x) · ∇h(x), have the same sign.

In our example,∇h(x) = 1 and F2(c0) < 0, hence transver-
sal crossing happens whenever F1(c0) < 0. This corresponds
to the condition λ < µ

k
min{c0, s}. Notice that H can be

crossed only from R2 to R1, an unfeasible situation as the
initial conditions are always in R1.

On the other hand, if the vector fields point in opposite
directions of the surface H (in particular, the vector field in
R1 points towards R2 and vice versa, meaning that F1(x) ·
∇h(x) > 0 and F2(x) · ∇h(x) < 0), then the trajectory is
constrained to move along H, a behaviour known as sliding
motion. In fact, the PWS moves along H following the so
called sliding vector field G(x), which is obtained as the
convex combination of F1(x) and F2(x) tangential to H.2

2Formally, G(x) = α(x)F1(x)+(1−α(x))F2(x), where α(x)
satisfies G(x) · ∇h(x) = 0.
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Figure 3: Closed queueing network with batch ser-
vices (indicated by the small boxes within the ser-
vice centre) studied in Section 5.

In our example, sliding motion happens whenever F1(c0) >
0, i.e. whenever λ > µ

k
min{c0, s}. In this case, the sliding

vector field is G(x) = 0, hence once a trajectory hits the
surface H, it remains there forever.

Existence and uniqueness of solutions of a PWS is guaran-
teed if in each point of the surfaceH either F1(x)·∇h(x) > 0
or F2(x) · ∇h(x) < 0 holds (this is known as the Filippov
condition). This condition is verified by the batch arrival
with bounded capacity.

Starting from a sequence of CTMC with nontrivial guards
(but defined by smooth functions, for instance linear func-
tions), and computing the drift as in the fluid approxima-
tion, we therefore obtain a PWS. In [9, 10], the authors have
shown that such a sequence of CTMC converges to the so-
lution of the associated PWS,3 provided that such solution
exists and is unique (and additionally it crosses a finite num-
ber of times discontinuity surfaces in any finite amount of
time). This allows the use of fluid approximation also in
these situations, once the regularity conditions on the PWS
are proved.

For the batch arrival with bounded capacity, these regular-
ity conditions hold hence the sequence of CTMC converges
to the limit PWS.

5. BATCH SERVICES
We study suitable scalings for queues with batch services

by considering the closed tandem network in Figure 3, which
is also convenient to highlight the form of scaling to which
the job population is subjected. Let the population vector

be denoted by X(N) = (X
(N)
1 , X

(N)
2 ), where X

(N)
1 and X

(N)
2

represent the queue length at the delay station and at the

batch service station, respectively. LetX
(N)
0 = (X

(N)
1,0 , X

(N)
2,0 )

be the initial condition, withX
(N)
1,0 +X

(N)
2,0 = N , i.e., the pop-

ulation grows with N . Let k(N) be the batch service size and

µ
(N)
1 and µ

(N)
2 be the service rates at the delay station and at

the queue with batches, respectively. The model is described
by two transitions: τ1 (service at the delay station) has rate

µ
(N)
1 , no guard (g1 = true), and update vector v1 = (−1, 1);

τ2 (batch service) has rate µ
(N)
2 , guard X

(N)
2 ≥ k(N), and

update vector v2 = (k(N),−k(N)).
As in the case of batch arrivals, we consider two different

scalings, for given k ∈ ‘N , µ1, µ2 > 0, and X0 ∈ N2.

S3 k(N) = k, µ
(N)
1 = µ1, µ

(N)
2 = Nµ1, X

(N)
0 = NX0, i.e.,

the batch size is kept constant but the service rates

3Convergence is uniform in probability for any finite time
horizon, as for Theorem 1.

ẋ = µ1(1− x) guard:x ≥ k, rate:µ2,
reset: x’ = x - k

Figure 4: HA-like representation of the limit PDMP
for the example of Section 5.2.

grow with N , to keep up with increasing population
sizes.

S4 k(N) = Nk, µ
(N)
1 = µ1, µ

(N)
2 = µ2, X

(N)
0 = NX0, i.e.,

the batch grows but the service rates are maintained
constant. Population sizes are increased as in S3.

In either case, the rate at the delay station is not varied.

5.1 Constant batch sizes, increasing rates (S3)
Classical limit theorems are not applicable under these

circumstances because of the guard X
(N)
2 ≥ k(N), which in

the N -th normalised model becomes X̄2 ≥ k(N)/N . This
will give rise to a service rate which may be written in the
form µ2I{X̄2 ≥ k/N}. The drift F (N) of the normalised
CTMC at level N is therefore

F (N)(x1, x2) = (−1, 1)µ1x1 + (k,−k)µ2I{x2 ≥ k/N},

which converges to the limit drift

F (x1, x2) = (−1, 1)µ1x1 + (k,−k)µ2I{x2 ≥ 0},

thus defining the limit PWS dx(t)
dt

= F (x(t)). Although the
presence of discontinuities prevents the use of classical limit
theorems, the results discussed in Section 4.3 allow us to
derive the convergence to F for this sequence of CTMCs.

5.2 Increasing batch sizes, constant rates (S4)
Under scaling S4, in the normalised model the update vec-

tor as well as the rates of the CTMC transitions are Θ(1).
This independence from N is the characteristic scaling of
the hybrid fluid limit introduced in Section 4.2. More specif-
ically, the batch service will remain discrete and stochastic
in the limit PDMP model, which is shown in Figure 4.

However, also in this case we can compute the drift and
construct the fluid equation, which is now interpreted as a
first-order approximation to the average behaviour of the
limit PDMP. The drift of the CTMC at level N is

F (N)(x1, x2) = F (x1, x2)

= (−1, 1)µ1x1 + (k,−k)µ2I{x2 ≥ k},

which is independent from N and gives rise to the ODE

(with discontinuous right hand side) dx(t)
dt

= F (x(t)).

5.3 Properties of the fluid equation
The fluid equation dx(t)

dt
= F (N)(x(t)), constructed using

the N -dependent drift, is an approximation of the average
behaviour both for scaling S3 and S4. In general, this equa-
tion is

dx(t)

dt
= (−1, 1)µ1x1+

(
k(N)

N
,−k

(N)

N

)
µ

(N)
2 I

{
x2 ≥

k(N)

N

}
,

where µ
(N)
2 and k

(N)
2 scale either as S3 or as S4. It can be

proved that this PWS system has a unique solution for any

50



possible initial state x ∈ [0, 1]2, x1 + x2 = 1. Furthermore,
there is a unique globally attracting steady state, which is(

k(N)µ
(N)
2

Nµ1
, 1− k(N)µ

(N)
2

Nµ1

)
if µ

(N)
2 ≤ µ1

(
N

k(N) − 1
)
,(

1− k(N)

N
, k

(N)

N

)
otherwise.

The latter case corresponds to sliding motion along the

discontinuity surface x2 = k(N)

N
, and the equilibrium is reached

in a finite amount of time.
The existence and uniqueness of solutions for any initial

conditions and the presence of a global attractor bring us
to conjecture that the results about limit behaviour holding
for Lipschitz continuous fluid limits with a single globally
attractive steady state extend also to this PWS system, al-
lowing the use of the fluid equation to estimate the steady
state behaviour. A formal proof of this result is current
ongoing work.

6. NETWORKS WITH BATCHES
We are now ready to define fluid limits for a general class

of queueing networks with batch services and arrivals. The
general model is provided in Section 6.1, which also intro-
duces two forms of scaling which combine those already dis-
cussed in Sections 4 and 5.

6.1 General model
Using standard notation and terminology, we consider an

open network of n stations with exponential services and ar-
rivals. In the following, let Jb and Js be a partition of the set
{1, 2, . . . , n}, where Jb denotes the batch service stations and
Js denotes the single-job multi-server stations. The model
is characterised by the following parameters.

• λ = (λ1, . . . , λn) is the vector of the (Poisson) intensi-
ties of the exogenous arrivals at each station;

• b = (b1, . . . , bn) is the vector of the sizes of the batch
arrivals;

• P = (pij)1≤i,j≤n is the routing probability matrix of
size n × n. Upon service at station i, jobs leave the
network with probability 1−

∑n
j=1 pij ;

• {ki | i ∈ Jb} is the set of batch service sizes;

• {si | i ∈ Js} is the set of server multiplicities at single-
job stations. Let si =∞ define an infinite-server (i.e.,
a delay) station;

• µ = (µ1, . . . , µn) is the vector of service rates. For
single-job stations, it is the rate for each server in that
station;

• X = (X1, . . . , Xn) is a reachable state of the CTMC
that defines the network, with Xi being the queue
length at station i, including the jobs in service or
currently accumulated in the batch;

• X0 = (X1,0, . . . , Xn,0) is the initial state of the CTMC.

In order to define the family X (N) of CTMCs, let λ(N),
b(N), . . . be the network configuration of the N -th CTMC of
the sequence. We assume that the routing probabilities do
not scale with N , i.e., P (N) = P for all N . Now, let ei be a
vector of length n of all zeros except the i-th element which

is set to 1. For all 1 ≤ i, j ≤ n, the transitions of the N -th
CTMC X (N) are as follows.

batch arrival: (·, b(N)
i ei, λ

(N)
i );

batch service: if i ∈ Jb,
(X

(N)
i ≥ k(N)

i ,−k(N)
i ei + k

(N)
i ej , pijµ

(N)
i );

batch service (leaving network): if i ∈ Jb,
(X

(N)
i ≥ k(N)

i , −k(N)
i ei, (1−

∑n
j=1 pij)µ

(N)
i );

single job service: if i ∈ Js,
(·,−ei + ej , pijµ

(N)
i min{X(N)

i , s
(N)
i })

single job service (leaving network): if i ∈ Js,
(·,−ei, 1−

∑n
j=1 pij)µ

(N)
i min{X(N)

i , s
(N)
i })

In the remainder of this section, we study two distinct
forms of scaling:

S5 λ
(N)
i = Nλi, b

(N)
i = bi, and X

(N)
0 = NX0. Furthermore,

µ
(N)
i = Nµi, k

(N)
i = ki for i ∈ Jb, i.e., for all batch

service stations, while µ
(N)
j = µj and s

(N)
j = sjN for

j ∈ Js, i.e., for stations that serve singly. This essen-
tially corresponds to combining scaling S1 (for arrivals)
and S3 (for batch services). The initial job populations
scale as in the case of the closed network analysed in
Section 5, whereas multiplicity levels at ordinary sta-
tions have the scaling as in Section 4.

S6 λ
(N)
i = λi, b

(N)
i = biN , and X

(N)
0 = NX0. Moreover,

µ
(N)
i = µi, k

(N)
i = kiN , for i ∈ Jb, while µ

(N)
j = µj

and s
(N)
i = sjN for j ∈ Js. Giving the same depen-

dence upon N to initial job populations and to server
multiplicities, this scaling considers S2 for arrivals and
S4 for batch services.

Similarly to the limit results presented in Sections 4 and
5, also in this general case the scaling will determine the
kind of limit process. Scaling S5 results in a sequence of
CTMCs having a fluid limit in terms of a PWS, due to the
presence of discontinuities in the rate functions induced by
batches. Also in the general case, we can invoke the re-
sults of [9, 10] to conclude convergence of the sequence of
CTMCs to this limit. However, care has to be taken to en-
sure that the PWS has the regularity properties requested
by the limit theorems (essentially, existence and uniqueness
of the solutions everywhere). At the moment we still do not
have a general result for the class of PWS models considered,
hence we need to check all generated PWS for satisfaction
of regularity properties. However, all the examples we stud-
ied enjoyed the requested properties, and we are currently
working on a proof for the general case, or for reasonably
large subsets.

On the other hand, if we consider scaling S6, we are in a
situation leading to a stochastic hybrid limit, where all batch
arrivals and services remain stochastic, and all other transi-
tions are approximated by deterministic flows. In any case,
we can always derive a fluid equation also for this scaling,
using the drift of the CTMC at level N , to be interpreted as
an approximation of the average of the stochastic process,
or of the limit stochastic hybrid system.
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Specifically, we can derive the following set of differential
equations, that are a PWS: For all i = 1, . . . , n, let

dxi
dt

= λibi +
∑
j∈Jb

pjikjµjI
{
xj ≥ κ(N)

j

}
+
∑
j∈Js

pjiµj min(xj , sj)− µi min(xi, si), if i ∈ Js,

dxi
dt

= λibi +
∑
j∈Jb

pjikjµjI
{
xj ≥ κ(N)

i

}
+
∑
j∈Js

pjiµj min(xj , sj)− kiµiI
{
xi ≥ κ(N)

i

}
, if i ∈ Jb,

where

κ(N)
z =

{
kz/N for scaling S5,

kz for scaling S6.

6.2 Discussion

Mixing scalings.
In assuming S5 or S6, we are requesting that all batch

transitions scale in the same way, i.e. with constant batch
size and increasing rate (S5) or with increasing batch size
and constant rate (S6). However, it is possible to consider a
mixed scaling, in which some batch arrivals or services scale
as S5 and some scale as S6. These models give rise to a
limit PDMP, in which only transitions with increasing batch
sizes are kept discrete. Therefore, the PDMP may exhibit
discontinuous rates, unlike the previous cases. However, we
conjecture that the limit results of [9, 27] can be combined so
that convergence still holds, provided the PWS system has
a sufficiently regular structure (existence and uniqueness of
solutions for any initial condition).

Practical considerations.
In real applications, we generally do not have a sequence

of CTMCs, but rather a specific model, with a given set of
parameter values. Furthermore, it may not be known how
the parameters are to scale with respect to N . This sug-
gests to adopt the following policy. Construct the fluid limit
equation, using the drift at level N , and approximate the
average behaviour of the system by the solution of such an
equation. Under the proper scaling conditions, as discussed
above, then this equation also gives the limit behaviour of
the model. However, for a fixed set of parameters, we wish
to assess the accuracy error, i.e., how close the solution of
the fluid PWS system is to the real average. This is problem-
atic from a theoretical viewpoint as currently known error
bounds are shown to grow doubly exponentially with the
time horizon [23].

As a rule of thumb, we expect that if the population/scaling
factor is large and the batch sizes are small (compared to
the population/scaling factor), the behaviour is close to S5,
hence the fluid equation will perform better. On the other
hand, for relatively large batch sizes, the behaviour is close
to the hybrid limit and the fluid equation may perform
worse.

Indeed, let us consider again the example of Section 5.
Applying the Dynkin formula to the generic drift F (N), we
can see that the real average of the system follows the equa-

tion

dE[x]

dt
= (−1, 1)µ1E[x1]

+ (k/N,−k/N)µ
(N)
2 E

[
I{x2 ≥ k(N)/N}

]
,

from which we obtain the limit fluid equation by the approx-
imation

P
{
X̄2 ≥ k(N)/N

}
= E

[
I{x2 ≥ k(N)/N}

]
≈ I{E[x2] ≥ k(N)/N}.

This can be quite crude, especially for values of the proba-

bility P
{
X̄2 ≥ k(N)/N

}
far from 0 or 1. In fact, with the

considered approximation, we are just checking if the (ap-
proximate) average of the stochastic process is above or be-

low the threshold k(N)/N}. Now, if the average is far away
from such a threshold, we can expect that the probability

p = P
{
X̄2 ≥ k(N)/N

}
to be close to 0 or 1, hence the ap-

proximation is good. However, when the average is close
to the threshold, then p will have an intermediate value be-
tween 0 and 1, hence we expect the approximation to be
worse. This phenomenon is less severe for large N (and
small batch sizes), as we can assume S5 scaling, for which
there is convergence to the solution of the fluid equation. On
the other hand, for small N or large batch sizes (relatively to
N), we expect large errors, because we are“closer” to scaling
S6, for which the fluid equation is only an approximation of
the average of the limit PDMP.

In the following section we provide numerical evidence
showing that this fluid approach works quite well in many
cases, but may introduce large errors, expecially for large
batch sizes and when the limit PWS system shows sliding
motion, i.e., when the process remains close to the switching
threshold of the indicator function.

7. NUMERICAL EVALUATION
The quality of the accuracy provided by the approximate

deterministic models was assessed by a numerical evaluation
over a large parameter space. In studies of this kind two
major routes may be taken. One is to carry out tests on a
randomly generated validation dataset; the other approach
is to perform an exhaustive exploration of a relatively small
parameter space to subject the network under consideration
to a wide variety of operating conditions. The numerical
evaluation herein presented is based on the latter method
and is inspired by early literature which deals with accuracy
estimation in queueing networks [29, 30, 31].

7.1 Set-up and metrics
The simple tandem network presented in Figure 3 was

used in this study. A summary of the parameter ranges is
provided in Table 1. The job population sizes were kept pur-
posely small across all tests. Hardly do these networks need
to be subjected to approximate solution techniques since
the state spaces of their underlying Markov chains is only
of a few hundred states, which can be even easily dealt with
by ordinary numerical CTMC solvers. These conditions are
particularly problematic for deterministic approximations,
thus the intent of this section is to stress this technique un-
der its most unfavourable circumstances.
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Case k Range of µ1 µ2 Range of job population

A1 5 [0.005, 0.500] 1.0 15, . . . , 80
A2 5 [0.005, 0.500] 5.0 75, . . . , 400

B1 10 [0.010, 1.000] 1.0 15, . . . , 80
B2 10 [0.010, 1.000] 5.0 75, . . . , 400

C1 15 [0.020, 2.000] 1.0 15, . . . , 80
C2 15 [0.020, 2.000] 5.0 75, . . . , 400

Table 1: Network parameters used for the assess-
ment of the approximation accuracy. The labels in
the first column are referred to in Section 7.2. For
each dataset 700 equally spaced points in the pa-
rameter space were considered.

In each validation dataset, denoted by A1, A2, and so
forth, the value of µ2 was kept fixed whereas µ1 and the job
populations were changed so as to obtain different utilisation
levels for the batch queue. This utilisation is here measured
as the fraction of the network’s steady-state throughput di-
vided by the maximum attainable throughput at the batch
queue, which is given by kµ2. To study the speed of con-
vergence to the deterministic approximation, each configu-
ration in the validation datasets labelled with 1 was scaled
up according to the scaling laws S5. For instance, the model
with µ1 = 0.005, µ2 = 1.0, N = 15 in A1 has the same fluid
limit as that in A2 with µ1 = 0.005, µ2 = 5 × 1.0 = 5.0,
and N = 5×15 = 75. Different batch sizes were also tested.
In order to roughly maintain the same spectrum of network
utilisations across all batch sizes, the ranges of µ1 where
adjusted in each validation dataset.

The approximation accuracy was measured as the per-
centage relative error of the throughput with respect to its
statistical expectation, as computed by stochastic simula-
tion with 95% confidence intervals below 1% radius. The
fluid estimate was computed by standard numerical integra-
tion of the ODE, enhanced with an event-detection mech-
anism to check for sliding motion and to alter the vector
field accordingly. This information was also used to test the
hypothesis whether the ODE solutions that undergo sliding
motion are generally less accurate than those that do not
cross discontinuity regions.

7.2 Results
The results for the case A1 are shown as a contour plot

in Figure 5a, where the levels are labelled with the relative
error of the throughput for each network configuration. The
axes are organised in such a way that points in the bottom-
left part represent situations with light loads, as they are
characterised by relatively low rates at the delay station
and/or small population levels. Conversely, the points in
the top-right part are related to high loads. The graph
shows that the fluid model is particularly accurate in the
latter situation (cf. absence of contours) whereas it suffers
large errors in the former. This is perhaps not surprising
since fluid models are generally not usable for networks with
small population levels. Notably, a region where the approx-
imation does not behave well is found in the middle of the
chart; this corresponds to mid- to high-utilisation conditions
for the batch queue of around 70–80% (cf. Figure 5d, which
shows the utilisations for case A1). The error plots for cases
B1 and C1, shown in Figures 5b and 5c, respectively, show

similar trends. For the sake of conciseness, the figures re-
garding the remaining cases are not provided.

The dotted curve in the error plots divides the N -µ1 plane
into two regions according to the behaviour of the ODE solu-
tions. Parameters lying below the curve give rise to solutions
that undergo sliding motion, whereas those above the curve
do not cross discontinuity surfaces. In order to quantify the
differences in accuracy between these two cases, let us con-
sider the aggregated error statistics for all cases, collectively
reported in Table 2. Aggregating the statistics according to
these two regions of the parameter space sustains the hy-
pothesis that such discontinuities do have a negative impact
on the quality of the approximation. These results also in-
dicate that the accuracy tends to degrade with increasing
batch sizes (compare, e.g., A1, B1, and C1). However, the
errors in the cases without sliding motion tend to be com-
parable across all cases, whereas significant differences may
be noted in the cases exhibiting sliding motion.

Finally, the table clearly shows how the quality of the
approximation improves with increasing population sizes —
compare, for instance, the error statistics of A1 and A2.
Let us remark that the accuracy is already satisfactory for
most practical purposes for all configurations in A2, B2,
and C2, although, as discussed above, those cases are not
intended to be served by deterministic approximations given
their excellent computational tractability. It is therefore not
unreasonable to except very good accuracy in the case of
large-scale models, where explicit enumeration is unfeasible
and stochastic simulation costly.

8. CONCLUSION

Summary of contributions.
This paper has discussed deterministic approximations for

queueing networks with batch arrivals and batch services. In
some cases it is possible to straightforwardly apply classical
limit theorems and interpret the solution to the resulting
ODE system as the sample-path trajectory of a suitable se-
quence of CTMCs, thus justifying, for instance, its practical
application as an estimate of the stochastic behaviour for
large-scale models. However, for other network configura-
tions, it turns out that the limit behaviour is an ODE with
discontinuous right-hand side, or that it is not a determin-
istic process but rather a stochastic hybrid one.

In the former case, by appealing to recently established re-
sults we have been able to show that the discontinuous ODE
model is still a meaningful limit trajectory in the sense of
an extension of Kurtz’s theory (which is originally valid for
smooth ODEs). In the latter situation, instead, we have
derived an approximating ODE system which may be inter-
preted as a first-order approximation to the limit hybrid au-
tomaton. A numerical study has highlighted that the qual-
ity of the approximation increases quite rapidly with larger
populations of the network under consideration, with errors
less than 3% on average even for networks of moderate size
(i.e., a few hundred jobs).

Practical implications.
There are two main assumptions in our models. The first,

which is common to all analyses based on CTMCs, is that
every activity in the system under study can be reasonably
considered as being distributed exponentially. The second,
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(f) Case C1: Utilisations

Figure 5: Contour plots of the percentage relative errors and the utilisations of the batch queue for the vali-
dation datasets in Table 1. The dotted line in the error plots divides the plane into two regions characterised
by network parameters which lead to ODE solutions with sliding motion (below) and without discontinuities
(above).

which is specific to our approach, is that of deterministic
batch sizes. Under those assumptions, the techniques herein
discussed are readily usable for the analysis of batch net-
works with general topologies. Taken together, the theoret-
ical results and the numerical assessment suggest the fol-
lowing strategy for the performance evaluation of systems
exhibiting batch behaviour.

• If the system is sufficiently small, the traditional nu-
merical routes to transient or steady-analysis of the
underlying CTMC may be taken [32]. In this case, the
computational cost tends to be dominated by the pop-
ulation sizes of the jobs more than by the number of
queues in the network.

• Larger models are typically more difficult to solve nu-
merically due to the size of the generator matrix. In
this case, stochastic simulation appears to be a viable
option; stringent enough confidence interval give per-
formance estimates which are usable for all practical
purposes.

• The deterministic approximations presented in this pa-
per could be used for massive systems: the numerical
investigation suggests excellent accuracy for networks
with thousands of jobs and more under all situations
of traffic conditions and all parameter configurations
(cf. last four columns for cases C1 and C2 in Table 2).

• Differential equations may still be preferred for sys-
tems of medium size in virtue of the low computational
cost of the solution. This is particularly appealing for
parameter sweeps over large configuration spaces dur-
ing early-stage capacity planning, when the modeller

may be willing to trade accuracy for speed. Practically
useful error bounds are not available, however the nu-
merical results suggest some heuristic approaches to
assessing the quality of the approximation. For in-
stance, situations of sliding motion, which can be eas-
ily checked with a simple routine integrated with the
numerical ODE solver, may flag potential inaccuracies.

Future work.
Though this paper was concerned with batch processing,

there are other forms of service in queueing networks which
may enjoy similar results in terms of nonstandard fluid lim-
its. Ongoing work is being devoted to studying the case of
multiclass networks with priorities.

Another interesting research line could be to study the
hybrid limits further. Here, they have been approximated
with deterministic equations. However, a hybrid automaton
may be considered per se as an approximate representation.
This raises the question whether it is possible to provide ex-
act solutions; in any case, its simulation may be seen as an
intermediate approach which is expected to be faster than
the simulation of the overall CTMC, and more accurate than
the deterministic approximation. The authors have been
recently involved in (numerical) studies of this kind which
confirm this behaviour, although in a different context [33].
Along this direction, a promising approach which we wish
to investigate is that of using suitable moment-closure tech-
niques [34] in order to improve the approximation of the
expected behaviour of the hybrid automaton.
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With Sliding Motion Without Sliding Motion Overall

Case % 5th Avg. 50th 95th % 5th Avg. 50th 95th 5th Avg. 50th 95th

A1 33 0.74 8.63 6.80 21.41 67 0.11 3.14 1.13 15.04 0.15 4.96 1.87 18.92
A2 73 0.14 2.59 1.44 9.06 27 0.03 0.94 0.41 4.04 0.04 1.40 0.52 6.81

B1 38 1.21 15.23 12.56 38.08 62 0.15 5.22 1.71 21.54 0.23 9.16 4.57 30.12
B2 29 0.25 4.12 2.77 12.83 71 0.04 1.45 0.44 8.84 0.05 2.21 0.63 10.63

C1 34 1.86 28.28 18.29 79.80 66 0.15 5.22 1.84 26.51 0.19 13.80 5.27 73.79
C2 23 0.31 5.52 3.80 15.86 77 0.05 1.65 0.43 10.11 0.06 2.53 0.59 12.30

Table 2: Error statistics (5th quantile, average, median, and 95th quantile) for the validation sets in Table 1.
The overall results (cf. last four columns) are disaggregated into two groups according to the nature of the
ODE solution (with/without sliding motion). The first column for each group gives the fraction of models
considered.
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