
Hirundo: A Mechanism for Automated Production of
Optimized Data Stream Graphs

Miyuru Dayarathna
Department of Computer Science

Tokyo Institute of Technology
2-12-1 Oookayama, Meguro-ku,

Tokyo 152-8552, Japan
dayarathna.m.aa@m.titech.ac.jp

Toyotaro Suzumura
Department of Computer Science
Tokyo Institute of Technology and

IBM Research - Tokyo
2-12-1 Oookayama, Meguro-ku,

Tokyo 152-8552, Japan
suzumura@cs.titech.ac.jp

ABSTRACT

Stream programs have to be crafted carefully to maximize
the performance gain that can be obtained from stream pro-
cessing environments. Manual fine tuning of a stream pro-
gram is a very difficult process which requires considerable
amount of programmer time and expertise. In this paper
we present Hirundo, which is a mechanism for automatically
generating optimized stream programs that are tailored for
the environment they run. Hirundo analyzes, identifies the
structure of a stream program, and transforms it to many
different sample programs with same semantics using the no-
tions of Tri-Operator Transformation, Transformer Blocks,
and Operator Blocks Fusion. Then it uses empirical opti-
mization information to identify a small subset of generated
sample programs that could deliver high performance. It
runs the selected sample programs in the run-time environ-
ment for a short period of time to obtain their performance
information. Hirundo utilizes these information to output a
ranked list of optimized stream programs that are tailored
for a particular run-time environment. Hirundo has been
developed using Python as a prototype application for op-
timizing SPADE programs, which run on System S stream
processing run-time. Using three example real world stream
processing applications we demonstrate effectiveness of our
approach, and discuss how well it generalizes for automatic
stream program performance optimization.

Categories and Subject Descriptors

I.2.2 [Computing Methodologies]: Automatic Program-
ming—Program transformation, Program synthesis; H.3.4
[Information Systems]: Systems and Software—Distributed

systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

General Terms

Performance, Design, Measurement, Algorithms

Keywords

Stream processing, performance optimization, fault toler-
ance, data-intensive computing, scalability

1. INTRODUCTION
Importance of high performance data stream processing

has been emphasized more than ever before due to appear-
ance of many online data stream sources. Until now there
have been two dominant stream programming models called
relational model [3] and operator-based model [18][10]. With
the introduction of commercial stream processing systems
such as IBM InfoSphere Streams [24] and open source ini-
tiatives like Yahoo S4 [21], it can be expected that operator-
based stream processing systems may play a key role in fu-
ture high performance stream computing undertakings.

As we pointed out in [10], High performance of a stream
program is characterized not only by its structure, but also
by the topology and performance characteristics of the stream
processing system on which it runs. Nevertheless stream pro-
grams deployed on most of the stream processing systems
may produce low performance while they continuously re-
ceive huge amounts of input data, and while there are abun-
dant computational resources under utilized by the run-time
environment.

One solution for this issue is to manually fine tune the pro-
gram to consume unused system capacity. This will lead to
faster processing of input data leading to a higher through-
put [27]. However, this requires tremendous amount of pro-
grammer’s time and expertise since there are various differ-
ent ways an operator-based stream program can be written
that gives the same semantics but widely different perfor-
mance characteristics. Sometimes programmer needs to port
the program to a different run-time environment that offers
totally different performance characteristics. Furthermore,
in production environments run-time topology may change
quite frequently. E.g. Existing nodes of the run-time may
be brought down for maintenance. Therefore, this approach
costs a lot for organizations, and might not be practical in
certain production environments.

Another solution for this problem is to conduct a profile
driven optimization. Results from profiling can be used to

335

characterize the run-time behavior of operators [32], and an
optimization model can be created to come up with higher
performing alternatives. However, we address the problem of
performance optimization from the point of view of the pro-
grammer because source level design decisions could affect
the entire application’s performance even if profile driven
optimization is used. Since we do not modify the com-
piler/scheduler during the optimization process, our approach
can be generalized to different operator based stream pro-
cessing systems easily.
Given an operator-based stream program, we describe a

method for automatically identifying the best version of the
program that is suited for a particular stream processing run-
time environment. In achieving our goal, we first identify
the structure of the stream program (i.e. input program).
Then we transform the data flow graph of the program to a
number of different data flow graphs (i.e. sample programs)
preserving program semantics. Then we choose a subset of
sample programs using the information gathered from previ-
ous similar performance optimization attempts (we call this
performance prediction). Next, a subset of the chosen sam-
ple programs are run in the stream processing run-time, and
their performance information are gathered. Based on the
results of analyzing the performance information such as
throughput, elapsed time, etc., a ranked subset of sample
programs are identified as the output that provides better
performance compared to input program. An optimization
mechanism prototype based on System S was implemented
using Python to evaluate the feasibility of our approach.
To the best of our knowledge this is the first such attempt

made to automate the construction of optimized stream pro-
grams. Use of the term“Optimized”here means deriving effi-
cient stream programs that can harness the full performance
of stream processing environment they run on. Specifically,
our contributions in this paper can be stated as follows,

• Tri-Operator Transformation : We introduce a novel
method of transforming operator-based data flow graph
of a stream program without violating its semantics.

• Transformer Blocks : We describe the use of collections
of operators as transformation primitives during the
optimization process.

• Stream Program Performance Prediction : Hirundo
uses empirical data of similar optimization attempts
to reduce the effort required for identifying optimized
program versions.

• Stream Program Performance Characterization : Us-
ing K-means clustering on Hirundo’s database, we de-
scribe a method of identifying common characteristics
of high/low performing programs, which would bene-
fit stream programmers in producing high performance
stream programs.

• Fault Tolerance : Hirundo emphasizes the importance
of fault detection in the run-time environment during
the process of optimization in order to ensure accuracy
of the results it produces.

The paper is structured as follows. We describe related
work for Hirundo in Section 2 and provide an overview for

SPADE language in Section 3. We describe the methodol-
ogy in Section 4. The concepts of Tri-Operator Transforma-
tion, Operator Blocks Fusion, and Transformer Blocks are
described in Sections 5, 6, and 7 respectively which forms the
basis of our methodology. We describe how we narrow down
the search space for optimized sample programs in Section 8.
Measures taken to ensure the semantically correctness of the
sample programs is described in Section 9. Fault tolerance
of Hirundo is explained in Section 10. We give implemen-
tation details of Hirundo in Section 11. Evaluation details
of our prototype system are given in Section 12. Next, we
discuss the achievements of our objectives and limitations
of our current prototype under the Section 13. Finally we
present some further work and conclude in Section 14.

2. RELATED WORK
Optimization of data flow graphs has been widely ad-

dressed research issue.
Early efforts in automatic parallelization of sequential pro-

grams studied methods for automatic data partitioning and
distribution of computations in distributed-memory multi-
computer systems [8][22][6]. However, the distributed com-
puting model handled by these works differ from stream com-
puting model. Hirundo concentrates more on computations
that are data-intensive, and does not conduct any static code
optimizations like these works.

Automatic composition of workflows has been addressed
by Quin et al. [23] and Liew et al. [19]. Compared to them,
Hirundo concentrates on automatic optimization in the con-
text of stream computing, and ensures the optimization pro-
cess does not get affected by node failures. This issue has
not been addressed by these works.

Hirundo introduces use of Transformer blocks during its
data flow graph transformations in the context of stream
computing. There has been similar use of recurring patterns
for optimizing workflows by Liew et al. [29] and Hall et al.
[13].

There has been works on performance prediction of par-
allel applications by partial execution [30] using skeletons
[26] etc. Furthermore, recent relational data base servers
use empirical cost information for producing optimized query
plans [7][1][17]. Yet, Hirundo follows a different approach for
identifying optimized sample programs by integrating results
from partial execution of sample programs with empirical
data.

Subquery optimization of relational database systems by
Bellamkonda et al. [7] has similarity to what Hirundo does
since both the approaches use code transformation as the
means of optimization. Table partitioning in relational data-
bases is a technique used for optimizing SQL query perfor-
mance [14]. This technique is analogous to Hirundo’s Tri-OP
Transformation.

Stream graph partitioning [18][28] tackles the problem of
stream program performance optimization at lower levels of
stream processing environment compared with the approach
followed by this work. Hirundo approaches the solution from
the source program level of a stream application.

Recently there has been interest of automatically optimiz-
ing programs written for MapReduce systems [4]. Similarly
compiler of DryadLINQ [31] system performs static opti-
mizations which enables automatic synthesis of optimized

336

LINQ code. However, these systems do not perform high
level code transformations like Hirundo does during the pro-
cess of optimization. Hirundo outputs a ranked list of op-
timized sample programs, whereas these systems performs
their optimizations in lower levels.

3. SPADE - AN OPERATOR-BASED

STREAM PROCESSING LANGUAGE
Hirundo has been designed for optimizing operator-based

data stream programs. Current implementation of Hirundo
has been developed on top of System S [12] stream processing
system and SPADE language [12][16].
Stream programs developed based on operator-based pro-

gramming model are organized as data flow graphs consist-
ing of operators and streams [18]. Operators are the smallest
possible building blocks that are required to deliver the com-
putation an application is supposed to deliver. Streams are
directed edges that connect pairs of operators, and carries
data from source to destination operators.
SPADE language (the latest version is referred to as Stream

Processing Language (SPL) [15]) consists of two types of
operators called composite and primitive operators [15]. A
composite operator consists of a reusable stream subgraph
that can be invoked to define streams. Primitive operators
are basic building blocks of composite operators. Primitive
operators can be further categorized in to built-in opera-
tors (BIOP), user-defined operators (UDOP), raw UDOPs,
and user-defined built-in-operators (UBOP). In this paper
we mainly concentrate on BIOPs since current Hirundo im-
plementation supports a subset of BIOPs (Source, Functor,
Aggregate, and Sink). Out of them, Source operator is used
to create a stream from data flowing from an external source
[16]. It is capable of parsing, creating tuples as well as inter-
acting with external devices [16]. A Sink operator converts
a stream of data from the program into a flow of tuples
that can be used by external entities. Functor operator on
the other hand, is used for performing tuple-level manipu-
lations such as filtering, projection, mapping, attribute cre-
ation, and transformation etc. Aggregate operators are used
for grouping and summarization of incoming tuples.

4. METHODOLOGY
Hirundo accepts a stream program and a sample data file

as input. The input data file is segmented in to collections of
sample input data files. Input program is analyzed to iden-
tify Operator Blocks. An operator block is simply a collec-
tion of operators (1 or more) that is identified by Hirundo’s
grammar. After Hirundo identifies all the operator blocks
present within the input program it generates sample pro-
grams (S) (More details are given in next section). Based on
current processing environment’s profile information [11] and
learnings from previous optimization runs, Hirundo selects
a subset (U1:U1⊂S;|U1|=n) from the sample programs. The
subset U1 is compiled using parallel compiler of Hirundo,
and the resulting programs are run in the stream processor
environment for a time window Wt. A ranked list of pro-
grams R1 (R1:R1 ⊂U1; |R1|=m; m < n) is selected based on
the performance results obtained by running the programs.
R1 is merged with a next best subset of programs U2 from
S (U2:U2 ⊂S;U1∩U2=∅;|U2|=n-m) to form U3. All the pro-

grams in U3 are run in the stream processing environment.
Similar to previous case, a ranked list of R2 (R2:R2 ⊂U3;
|R2|=m; m < n) is selected as the output. This process is
shown in Figure 1.

Analyze

Program

Structure

Generate

similar

programs with

different flow

graph layouts

Run each program in U1 for

Wt time

A ranked

list of

programs

(R2)

Input

Sample

data file

Synthesize

sample data

Sample

Programs

(S)

Select

programs

U1

Compile programs U3

parallel

Output

Select

programs

U2

Select

programs

R1

Run each program in

U3 for Wt time

Compile

programs U1

in parallel

Calculate

performance details,

rank programs

stream

program

Figure 1: Methodology of Hirundo

5. TRI-OPERATOR TRANSFORMATION
As described in Section 1, we introduce a methodology for

transforming a stream program to a variety of sample appli-
cations, which are used as sample programs for optimization
process. Our method is based on Parallel Streams design
pattern [5]. We term the algorithm that does this transfor-
mation as Tri-Operator Transformation (i.e. Tri-OP Trans-
formation). The algorithm transforms data flow graphs by
three operator blocks at a time.

Trades

&

Quotes

results S F1
A

G

Pass 1
Pass 2

Pass 3
Key
S – Source

Fn – Functor n

AG – Aggregate

SI – Sink

F2 SI

Figure 2: Data flow graph of Volume Weighted Average
Price application and how it is traversed by GENERATE() pro-
cedure.

5.1 Concept
Lets consider three adjacent operator blocks (an operator

block is a collection of operators) A, B, and C in a data flow
graph (Shown in Figure 3(a)). From here onwards we will
denote such operator block as A B C. Note that we use the
term “operator block” to denote each A, B, and C as well as
A B C because A B C itself is a collection of operators.

The aim of Hirundo’s data flow graph transformation is
to generate a variety of data flow graphs for a given stream
program. We have chosen to transform 3 adjacent operator
blocks at a time due to several reasons. First, while choos-
ing more than 3 operator blocks would have enabled us to
create more sophisticated data flow graphs, we decided to
stick with 3 operator blocks due to simplicity of transforma-
tion logic involved with 3 operator blocks. Second, transfor-
mation logic should not increase number of operators expo-

337

nentially. Changing the number of middle operator blocks
(i.e. operator block B shown in Figure 3(a)) in a 3 opera-
tor blocks combination, we can achieve this feature easily.
Furthermore, use of 3 operator blocks at a time allows us
to generate higher variety of patterns than the variety of
patterns that could be generated using only two operator
blocks.

5.1.1 Transformer Patterns

In the rest of this paper we will use the notation i-j-k (i,
j, k are positive integers including 0) to denote a transfor-
mation pattern. Pseudocode of transform() procedure in
Algorithm 3 explains how an operator block A B C is trans-
formed by an i-j-k pattern.

Algorithm 1 tri_op_transform(G, d) Algorithm 2 generate(G, i, j, k)

1: oblist ← emptylist

2: for i ← 0 to d do

3: for j ← 0 to d do

4: for k ← 0 to d do

5: outdictionary ← generate(G, i, j, k)

6: oblist.add(outdictionary)

7: end for

8: end for

9: end for

10: weld(oblist, len(G))

1: m ← 0

2: v ← getroot(G)

3: while v has next do

4: invarray ← getnextthreevertices(v)

5: if length[inarray] = 3 then

6: tvarray[m] ← transform(invarray, i, j, k)

7: m ← m + 1

8: v ← invarray[2]

9: end if

10: end while

11: return (tvarray)

Tri-OP transformation does not do any change to A B C
operator blocks if it transforms using the pattern 1-1-1. The
meaning of 1-1-1 can be described as follows. Keep one A,
increase the number of Bs to 1× 1, and map transformed B
operator blocks to one C. Tri-OP transformation does not
consider any other patterns having only 0s or 1s (e.g. 0-
0-0, 0-0-1) other than the pattern 1-1-1 to avoid duplica-
tion. Transformation pattern 1-2-1 transforms A B C in to
A 2B C (See Figure 3(b)). This means that keep one A, in-
crease the number of Bs to two, and map the two Bs to one
C. This is an example for increase of middle operator blocks.
Minimum number of middle operator blocks is 1.
Tri-OP transformation creates a single B when it finds

j=0. E.g. When transformation pattern 2-0-2 is applied
to A B C, it results in 2A B 2C (Shown in Figure 3(d)). In
this example two As are mapped to a single B. Then streams
from B are mapped to two Cs. The value of j plays an impor-
tant role in describing the structure of the resulting operator
block. Lets take the scenario of applying 2-1-2 transforma-
tion to A B C. This is an example for i = k, j = 1 scenario
in Line 13 of Algorithm 3. It will result in 2A 2B 2C, hav-
ing two operator blocks from each category (shown Figure
3(c)). Furthermore, these operator blocks will be connected
in parallel. Yet when transforming by 2-1-1 it will result
in 2A 2B C, which changes number of A and B operators
to 2, and keeps single C operator. Similarly 2-2-2 (shown
in Figure 3(e)) and 2-2-3 transformation patterns result in
2A 4B 2C and 2A 4B 3C transformed operator blocks re-
spectively.

5.2 Algorithm
Lets consider how Tri-OP transformation is conducted on

a real world example application of stream computing. We
use Volume Weighted Average Price (VWAP) written using
five operator blocks (Described more in the Evaluation Sec-
tion) for this purpose. This program’s data flow graph is
shown in Figure 2.

After Hirundo accepts the input program it parses the
program using Program Structure Analyzer (Described in
sub section 11.1). Program Structure Analyzer identifies
each operator block and creates a graph (G) that repre-
sents the structure of the input program. Graph G is fed
to tri_op_transform() procedure (shown in Algorithm 1)
along with a depth value d. Depth value d is a positive in-
teger that determines to what extent input program will be
transformed.

Initially an empty operator block list (oblist) is created.
An operator block is represented as a dictionary object. The
procedure traverses graph G in steps of 3 operator blocks.
This can be observed from the three for() loops (Lines 2-4,
Algorithm 1). Each pass generates an i-j-k pattern.

The tri_op_transform() procedure calls generate() pro-
cedure passing the graph G and the i, j and k values (Pseu-
docode of generate() is shown in Algorithm 2). Functional-
ity of the generate() procedure can be visualized using Fig-
ure 2. First, generate() procedure moves to the root node
of the graph (in the example it is the source operator (S)).
Then it selects three adjacent operator blocks from root (S,
F1, AG) by calling the procedure getnextthreevertices(),
and applies the transformation of the i-j-k pattern by calling
transform(). This is termed as the pass1 in Figure 2. Then
generate() procedure moves to the neighbor of the root
(that is F1), picks three operator blocks (F1, AG, F2) and
applies the transformation of i-j-k pattern to them (pass2).
Note that we chose the second operator block rather than
the fourth operator block because to enable transformation
of graphs with vertex counts not belonging to multipliers of
three. Finally it applies transformation of i-j-k pattern to
operator blocks AG, F2, SI (pass3). If there are n operator
blocks present in a data flow graph, generate() procedure
does the i-j-k pattern transformation n-2 times. The result-
ing n-2 operator blocks are saved in a dictionary. We call
these operator blocks as Transformed Operator Blocks. The
keys (i.e. labels) of the transformed operator blocks are cre-
ated using i,j,k values and the input operator block names
(i.e. A, B, and C). The dictionary gets saved in the oblist
(See line 6 of Algorithm 1).

Finally tri_op_transform() procedure calls weld() pro-
cedure (shown in Algorithm 4) by passing the transformed
operator blocks list (oblist) and the input program graph
length (glen) to weld() (glen is 5 for the VWAP application
shown in Figure 2). The weld() procedure selects matching
operator blocks from oblist, and fuses them to create sample
programs. (Concept of fusion is described with more details
in Section 6.) As shown in Algorithm 4, weld() procedure
traverses the list of transformed operator blocks that it re-
ceived. If a particular operator block has one or more source
operators (i.e. It is a source operator block), the procedure
creates a matched operator blocks list (fList). Then it finds
matching operator blocks for source operator block by calling
findoblist() (Line 5 in Algorithm 4) and stores in another
operator block list (tList). The pseudocode of findoblist()
procedure is shown in Algorithm 6. If tList is not empty it
means that there are matching operator blocks for source op-
erator. In this case transformed operator blocks list received
from generate() procedure (oblist), tList, fList, maximum
depth of traversal (glen - 3) are fed to a recursive procedure
called getmatchob() as shown in Line 7 of Algorithm 4.

338

(a)

(b)

(c)

(d) (e)

- A

- B

Key

- C

- Transformation

 element

- Data flow

Figure 3: Some Sample Transformations using Tri-OP transformation. (a) Input operator blocks (b) Result of applying 1-2-1
transformation (c) Result of transforming by 2-1-2 (d) Result of transforming by 2-0-2 (e) Result of transforming by 2-2-2

Algorithm 3 transform(A_B_C, i, j, k) Algorithm 4 weld(oblist, glen)

1: if i = 1 and j = 1 and k = 1 then

2: return A_B_C

3: end if

4: if all i, j, k are 0 or 1 then

5: return

6: end if

7: if i = 0 or k = 0 then

8: return

9: end if

10: if j = 0 then

11: return iA__B_kC

12: end if

13: if j = 1 and i = k then

14: return parallel(iA_iB_iC)

15: end if

16: return iA_(i×j)B_kC

1: fList ← emptyList

2: for all oblock in oblist do

3: if oblock is sourceoblock then

4: fList ← add(fList, oblock)

5: tList ← findoblist(oblist, oblock)

6: if tList not empty then

7: getmatchob(oblist, tList, fList, glen - 3)

8: end if

9: end if

10: end for

11: filter()

12: for all fusion in fusionList do

13: resprog ← fuse(oblist, fusion)

14: save(resprog)

15: end for

1: for all ob in tList do

2: if ob is sinkoblock then

3: fList.add(ob)

4: fusionList.add(fList)

5: else

6: if depth <= 0 then

7: return

8: end if

9: kList ← findoblist(oblist, ob)

10: if kList is not empty then

11: for all obk in kList do

12: fList.add(obk)

13: return getmatchob(obList, kList, fList, depth - 1)

14: end for

15: end if

16: end if

17: end for

Algorithm 5 getmatchob(oblist, tList, fList, depth)

The pseudocode of getmatchob() is shown in Algorithm 5.
It finds matching operators for every operator in the trans-
formed operator block list (oblist), and adds them to fu-
sionList, which is a globally defined list that holds the final
result. Next, it appends operator block ob to fList. A call to
getmatchob() procedure returns a matched operator block
list which keeps lists of matching operator blocks (fusions) in
sequential order. After getmatchob() completes execution,
the duplicate operator blocks in fusionList are removed by
calling filter() procedure (Line 11 of Algorithm 4). Then
weld() procedure fuses each and every fusion that is stored
with in the fusionList to construct sample programs. A fu-
sion in Lines 12-13 in Algorithm 4 refers to a sample pro-
gram with operator blocks which are not fused yet. Merging
of operator blocks located in each individual fusions is done
by fuse() procedure (Line 13).

6. OPERATOR BLOCKS FUSION
A typical stream program may consist of minimum three

operators. They are Source, a computational operator (e.g.
Functor/Aggregate etc.), and Sink. Transformation of such
program directly creates sample programs since the three
operators represent three operator blocks. However, in most
of the scenarios more than 3 operator blocks are present in
stream programs. In such occasions more than one trans-
formed operator blocks are created by generate(). These
transformed operator blocks need to be stitched together
meaningfully (i.e. with same semantics) to produce sample
programs. Synthesis of sample programs in such occasions
is called Operator Blocks Fusion.
A fusion mentioned in the previous section is a list of op-

erator blocks which are arranged in a sequential order which
makes a complete sample program (semantically equivalent
to input program) if they are concatenated. Ordering of
operator blocks is done based on the decision given by is-

match() procedure call shown in Algorithm 7. The is-

match() procedure determines whether two operator blocks

opb1 (iA jB kC) and opb2 (mX nY pZ) should be fused or
not based on their operator types (A,B,C,X,Y,Z) and the
transformation pattern values (i,j,k,m,n,p). For two trans-
formed operator blocks opb1 and opb2 to match with each
other, first and the second operators of opb2 should be the
same as the second and third operators of opb1 (See Line
1 of Algorithm 7). (i.e. X ≡ B and Y ≡ C). This is the
primary requirement for opb1 to match with opb2. Next,
if the opb2’s last operator block (i.e. Z) is a Sink operator
block then if m = 1 and n = p then opb1 and opb2 matches
with each other (See Lines 4 to 7 of Algorithm 7). If opb2’s
last operator block is not a sink operator block then if the
conditions k = (m×n) and m = 1 holds, opb1 and opb2 are
considered matching with each other. (Note: the function
names fopb(), sopb(), topb(), and inopb() correspond to
first operator block, second operator block, third operator
block, and index of operator block respectively).

7. TRANSFORMER BLOCKS
Hirundo uses a set of generic operator blocks called Trans-

former Blocks during transformation of a data flow graph.
These are introduced in between the identified operator bloc-
ks to create coupling between resulting operator blocks (trans-
formed operator blocks) of Tri-OP transformation.
MUX-SINK is a transformer block that multiplexes an input

stream in to n number of sink operators (shown in (a) of
Figure 4). The opposite of this operation, de-multiplexing
of several streams in to a single sink operator is done by
DEMUX-SINK (see (b) in Figure 4). DEMUX-SOURCE transformer
block merges n number of source operators in to one single
stream. Yet, multiple streams from n number of source op-
erators can be obtained using PARALLEL-SOURCE transformer
block. MULTI-FUNCTOR transformer block creates n number
of functor blocks. Similar to PARALLEL-SOURCE, PARALLEL-
SINK transformer block creates n number of sink operator
blocks. A stream is converted to multiple streams using
MUX-STREAM transformer block. MUX-FUNCTOR-N-TO-M trans-

339

Algorithm 6 findoblist(oblist, ob) Algorithm 7 ismatch(opb1, opb2) Algorithm 9 getprogramlabels(optrunList, n)

1: if sopb(opb1) = fopb(opb2) and topb(opb1) = sopb(opb2) then

2: inopb1 ← getIndexes(opb1)

3: inopb2 ← getIndexes(opb2)

4: if inopb2[1] = 1 then

5: if topb(opb2) = ‘SI’ and inopb2[2] = inopb2[3] then

7: return true

8: else if inopb1[3] = (inopb2[1]*inopb2[2]) then

9: return true

10 else

11: return false

12: end if

13: end if

14: end if

1: inproglabels ← getinputproglabels()

2: alldict[label, avgdifflist] ← emptyDictionary

3: for all optrunid in optrunList do

4: labelslist ← getSampleProgLabels(optrunid)

5: filtlist ← removeInputProgLabels(labelslist, inproglabels)

6: labeldict[label, perfvalue] ← getperfvals(optrunid, filtlist)

7: perfdict[label, avgdiff] ← getAvgPerfvalDiffs(labeldict)

8: alldict.append(perfdict)

9: end for

10: rlabels ← sortUsingAveragePerfDiffAsc(alldict)

11: result_labels ← selectTopN(rlabels, n)

12: return result_labels

1: optrunList ← getOptruns(metrics, tschema)

2 : optrunList ← sortUsingTransformationDepth(optrunList, d)

3: optrunList ← sortUsingMatchingIndices(G, optrunList)

4: optrunList ← sortUsingMatchingNodes(nodePerf, optrunList)

5: optrunList ← selectTopN(optrunList, m)

6: return optrunList

Algorithm 8 getmatchingoptruns(G, nodePerf, metrics, d, m, tschema)

1: tList ← emptyList

2: for all oblock in oblist do

3: if ismatch(ob, oblock) then

4: tList.add(oblock)

5: end if

6: end for

7: return tList

former block creates n×m number of functor blocks accept-
ing n input streams. TRANSFORMER-N-TO-M is a transformer
block that accepts N number of input streams which can
output M number of streams (see (i) of Figure 4). A slightly
different transformer block to TRANSFORMER-N-TO-M called
TRANSFORMER-MODULUS-N-TO-M accepts N input streams and
outputs M streams. However, in the latter scenario, symme-
try of the internal operators is not preserved. This can be
observed from (j) of Figure 4.
Transformer blocks are created as supporting primitives

for Tri-OP transformation process. They are reusable and
useful when Hirundo is updated to support new operator
types in future. While Tri-OP transformation algorithm
concentrates on increasing/decreasing number of operator
blocks in a data flow graph, transformer blocks concentrate
on solving the problem of how to make links (i.e. streams)
between the operators in transformed operator blocks. Trans-
former blocks should not be confused with similar constructs
such as Composite Operators of IBM Stream Processing Lan-
guage [15].
Furthermore, the decision of mapping output streams from

split operators of transformer blocks such as TRANSFORMER-
N-TO-M, TRANSFORMER-MODULUS-N-TO-M, etc. has been taken
in order to preserve the isometry of data flow graph. Isom-
etry of a data flow graph is an important factor for highly
availability of a stream application [18].

8. SAMPLE PROGRAM RANKING
Hirundo’s data flow graph transformation algorithm gen-

erates many sample programs for a given input program.
E.g. 32 sample programs are generated for regex applica-
tion during an optimization run with d = 4. Running all
these sample programs for small time period may take time
in the order of minutes. E.g. Running all the aforemen-
tioned 32 sample programs (+input program) in a System
S environment with 8 nodes took 17 minutes and 22 sec-
onds (an average calculated over 7 optimization runs). We
observed that performance of a stream program in a cer-
tain environment can be repeated. Hence we can predict
up to a certain level, what kind of performance could be
obtained from a stream program using empirical data. We
have implemented an algorithm (The Algorithms 8 and 9
corresponds to this prediction process.) in Hirundo that
predicts similarity of optimization runs considering the pa-
rameters of structure of data flow graph (G), performance
metrics used (e.g. throughput, elapsed time), optimization
run depth (d), input data tuple schema (tschema). Hirundo

uses a relational database to store its information. Current
optimization environment’s profile information such as num-
ber of hosts, CPU, RAM capacity are stored in the database
prior to any optimization attempt. All the important opti-
mization run information (i.e. optimization session informa-
tion) such as start time, end time, performance metrics used
are recorded in the database. Furthermore, performance in-
formation (i.e. throughput, elapsed time, etc.) of each sam-
ple program which ran during the optimization session are
also stored in this database.

In this mode of operation Hirundo predicts what kind of
performance could be obtained from the input program. Al-
gorithm 8 first selects a list of optimization runs based on the
optimization metric used and the input data tuple schema.
Next, it sorts the list based on the transformation depth and
the structure of the input data flow graph (i.e. A,B,C val-
ues of the graph A B C). Finally the optimization runs are
sorted based on node performance values, and top m opti-
mization runs are selected as matching optimization runs.
Next, these optimization run ids are fed to the getprogram-
labels() procedure shown in Algorithm 9 to obtain sample
program labels to run. For each optimization run, the per-
formance differences of sample programs are gathered, and
stored in a dictionary called alldict. The items in the dic-
tionary are sorted based on their performance difference val-
ues in ascending order. The top n labels of this sorted list are
selected as the candidate labels. These n labels correspond
to the U1 subset of the sample program labels mentioned in
Section 4 (Methodology Section), and the remaining steps of
the Methodology Section are followed to obtain a ranked list
of sample programs (R2) as the output. We use such method
of two phase ranking in order to increase the accuracy of the
end result. Section 12 demonstrates results we obtained by
operating Hirundo in this mode.

9. PRESERVATION OF INPUT PROGRAM

SEMANTICS
We took two key measures to ensure the semantically

equivalence of the sample programs to their input program.
We believe these measures preserve the semantics of all the
input programs processed by Hirundo. First, Operator Block
Fusion uses fusions that have the same operation type se-
quence similar to input program. Second measure is related
to the problem of Stateful Operators in Parallel stream de-
sign pattern described in [6]. Hirundo provides the notion
of annotations to ensure semantically correctness of sam-
ple programs with Stateful Operators. E.g. The sample

340

- Source

- Functor

Key

- Sink

- split

- Data flow

…

…

…

…

…

(a) (b)

(e)

(c)

(d) (f) (h) (i) (j) (g)

- bundle

Figure 4: Some Sample Transformer blocks used by Hirundo. (a) MUX-SINK (b) DEMUX-SINK (c) DEMUX-SOURCE (d)
PARALLEL-SOURCE (e) MULTI-FUNCTOR (f) PARALLEL-SINK (g) MUX-STREAM (h) MUX-FUNCTOR-N-TO-M (i) TRANSFORMER-N-TO-M

(j) TRANSFORMER-MODULUS-N-TO-M

programs generated for the VWAP application shown in
Figure 2 may produce semantically wrong code if AG,F2,
and SI operator blocks are transformed to multiple opera-
tors by Hirundo. In order to avoid this, the SPADE code
corresponding to AG,F2, and SI operators can be enclosed
between two Froze annotation tags (these are marked as
#Hirundo-meta:Froze:Start and #Hirundo-meta:Froze:End

in program code). When code generator finds an opera-
tor block A B C having one or more operator blocks be-
ing marked as frozen, it makes sure that transform() pro-
cedure does not change the number of operator blocks in
the corresponding transformed operator block that is out-
put for A B C. Furthermore, we checked the output tuples
of randomly chosen sample programs with each correspond-
ing original input program’s output and got confirmed that
they produce the same outcome.

10. FAULT TOLERANCE OF HIRUNDO
Compared to many related work mentioned in Section 2,

Hirundo emphasizes the importance of fault tolerance during
automatic program optimization process. Hirundo strives to
eliminate instance failures that might occur in the stream
processing environment. An instance failure is just failure
of a run-time instance (i.e. a process spawned by stream
processing environment). Unexpected failures may occur in
stream processing environment when such automatic opti-
mization process has been conducted. While the stream
processing run-time could continue with the remaining set
of instances, it may not reflect the actual performance that
could have been achieved by using a sample program. Ul-
timately this may lead to an inaccurate ranking of sample
programs. Note that there are no such recording made dur-
ing the experiments mentioned in this paper since all the
faults were successfully resolved by Hirundo.
We have observed that certain large sample programs over-

load the run-time instances, and they might run out of mem-
ory creating instance failures. Finding the set of sample
programs that provide highest performance without break-
ing the stream processing run-time environment’s stability
is a challenging issue. Hirundo uses streamtool of System S
periodically to obtain the health information of the System
S runtime, and compares those information with the runtime
snapshot (original health record) obtained at the beginning
of the optimization run to detect failures. (Note that at the
very beginning of the optimization run, Hirundo displays the
original health record to user, and gets it confirmed free of

faults). If found a failure, Hirundo tries to restart the run-
time, and compares the health of the newly started runtime
with the original health record. If the status of the runtime
was restored, it starts running the interrupted job (sample
program). It follows the same procedure during three con-
secutive failures. If it cannot succeed, it marks the sample
program as a failure (by recording throughput as -1) and
continues the optimization run.

11. IMPLEMENTATION
Hirundo has been implemented using Python program-

ming language. It has been separated in to two modules
called Main module and Worker module. Architecture of
Hirundo is shown in Figure 5.

Hirundo

SPADE

program

Input

Sample

data file

Program

Structure

Analyzer

Data

Preparator

Program

Generator

Parallel

Compiler

Worker
Worker Worker

Worker
Worker

Performance

Meter

SPADE

Compiler

A ranked

list of

programs

Output

Program

Ranker

Hirundo database

Main

Module

System S

Fault

Tolerance

Runtime Orchestrator

Hirundo

grammar

DB

Communication

Network File

Server (NFS)

Distributor

Figure 5: System Architecture of Hirundo.

Current version of Hirundo has been developed target-
ing stream programs written using SPADE language. Hence
Hirundo depends on System S and SPADE compiler during
its operations. It should be noted that, although System S is
dependent on a shared file system such as NFS, Hirundo has
been designed not to use such file systems for optimization
runs. It uses local hard disks to store the data it handles
during optimization runs. Hirundo uses a SQLite database
to store its information. Main module has been separated
in to ten sub modules based on different functionalities they
handle. We briefly describe functions of important modules
below.

341

11.1 Program Structure Analyzer
SPADE program analysis logic has been implemented in

Program Structure Analyzer of Hirundo. As pointed out in
Section 5.2, Hirundo uses a bespoke grammar written for
parsing a SPADE program to identify its structure. Cur-
rent implementation of Hirundo’s grammar supports Source,
Functor, Aggregate, Sink BIOPs, and UDOPs (with the use
of annotations described in Section 9). This module uses
an LALR parser [2]. Hirundo’s parser has been developed
using the GOLD parser generator developed by Cook et al.

[9]. The grammar has been coded separately from Hirundo
(independent of Python programming language), and can be
modified easily using the GOLD parser generator [9]. Cur-
rent version of the grammar consists of 34 rules. Only the
rule that defines the structure of a program is shown in Fig-
ure 6. Program analyzer creates a representative graph G for
the program it analyses if it can identify its structure. This
graph keeps details of all the operators (vertices) identified
from the program and the links between them.

<Program> ::= <PREAMBLE><SOURCE><FUNCTOR><SINK>

|<PREAMBLE><SOURCE><FUNCTOR><MUX-SINK>

|<PREAMBLE><AUTO-BUNDLE-SINGLE><PARALLEL-SOURCES-CSV><MUX-FUNCTOR-N-TO-M><DEMUX-STRM-M-N-To-1><SINK>

|<PREAMBLE><AUTO-BUNDLE-MULTI><PARALLEL-SOURCES-CSV><MULTI-FUNCTOR><TRANSFORMER-N-TO-M>

 <MUX-SINK-WITH-STRM-NAME>

|<PREAMBLE><PARALLEL-SOURCES-CSV><MULTI-FUNCTOR><PARALLEL-SINK>

|<PREAMBLE><AUTO-BUNDLE-SINGLE><PARALLEL-SOURCES-CSV><MULTI-FUNCTOR><DEMUX-SINK><SINK>

|<PREAMBLE><AUTO-BUNDLE-MULTI><SOURCE><MUX-SOURCE-CSV><MULTI-FUNCTOR><TRANSFORMER-N-TO-M><PARALLEL-SINK>

|<PREAMBLE><AUTO-BUNDLE-SINGLE><SOURCE><MUX-SOURCE-CSV><MULTI-FUNCTOR><DEMUX-SINK><SINK>

| <PREAMBLE><AUTO-BUNDLE-SINGLE><DEMUX-SOURCE-CSV><FUNCTOR><MUX-SINK>

| <PREAMBLE><AUTO-BUNDLE-MULTI><PARALLEL-SOURCES-CSV><MUX-FUNCTOR-N-TO-M><TRANSFORMERMODULUS>

 <MUX-SINK-WITH-STRM-NAME>

|<PREAMBLE><SOURCE><STRING-OF-FUNCTOR><SINK>

|<PREAMBLE><SOURCE><AGGREGATE><SINK>

|<PREAMBLE><SOURCE><STRING-OF-FUNCTOR><AGGREGATE><STRING-OF-FUNCTOR><SINK>

|<PREAMBLE><SOURCE><META><AGGREGATE><META><SINK>

|<PREAMBLE><SOURCE><STRING-OF-FUNCTOR><META><AGGREGATE><STRING-OF-FUNCTOR><META><SINK>

|<PREAMBLE><META><UDOP><META><STRING-OF-FUNCTOR><META><AGGREGATE><META><SINK>

Figure 6: A sample rule from Hirundo’s Grammar.

11.2 Data Preparator
Unlike most static program optimizers, Hirundo runs se-

lected sample programs for fixed time period in the stream
processing environment to identify their performance. The
sample programs require representative data during their ex-
ecution. Data Preparator is the module that creates these
required sample data. At the beginning of optimization pro-
cess, user should provide a sample data file along with input
program. This file is splitted in to total [d(d+1)/2 - 1] num-
ber of files staring from the groups 2, 3, up to d. The number
d is the depth value that is accepted by Tri-OP transfor-
mation algorithm. The files are splitted in this way since
Tri-OP transformation with depth d may produce d num-
ber of maximum transformed source operator blocks for any
optimization run. Furthermore, such splitting ensures that
all the input data are received by all the source operators of
the sample programs homogeneously. User should enter only
required size input data file (smaller size file is preferred) to
Hirundo since very large files impose unnecessary overhead
on Hirundo during its optimization runs. Furthermore, we
use a file rather than online data source in order to keep the
input fixed during all the optimization attempts the input
program faces since this could directly affect the end result
of program ranking.

11.3 Parallel Compiler
Hirundo would have spent substantial portion of its pro-

cessing time on compilation, if Hirundo were to compile all
the sample programs on a single node. E.g. Compiling

VWAP (25 programs), regex (33 programs), and Twitter
(27 programs) applications described in this paper on a sin-
gle node takes approximately 11, 43, 50 minutes respectively.
To reduce total time taken for compilation we created a par-
allel compiler for Hirundo. Current version of Hirundo de-
ploys one worker per each node of the node cluster of which
it operates on during its instantiation. Parallel compiler as-
signs compilation task of a single program to one worker.
We were able to reduce the percentage of time required for
compilation of VWAP, regex, and Twitter applications to 5,
7, and 8 minutes resulting 51%, 84%, and 84% compilation
time reduction respectively on 8 nodes.

12. EVALUATION

12.1 Experimental Environment and Method-
ology

The experiments were performed on a cluster of Linux
Cent OS release 5.4 installed with IBM Infosphere Streams
Version 1.2. Each machine (i.e. node) has a dual core AMD
Opteron(tm) Processor 242, 1MB L2 cache per core, 8GB
memory, 250GB hard drive, 1Gigabit Ethernet. In the first
half of the experiments we disabled the sample program
ranking of Hirundo, and made it to run all the sample pro-
grams it generated for a short period of time (less than 1
minute). In the second half we enabled the sample program
ranking of Hirundo. In all of these experiments Hirundo
ensured that the experiments are not affected by sudden in-
stance failures by re-instantiating the run-time environment,
and re-running the sample program that faced the instance
failure. The graphs in Figures 8, 9, 10, and 11 show re-
sults of single runs (i.e. No average values were considered).
We used three different real world stream applications dur-
ing these evaluations. Note that program labels on X axis
are shown increasing order of operator indexes from left to
right. Each point corresponds to one sample program’s per-
formance during one optimization run.

The first application is the VolumeWeighted Average Price
Application (VWAP) shown in Figure 2. The data flow
graph of VWAP application contains 5 operators including
two Functors (F1 and F2) and an Aggregate operator (AG).
F1 filters the tuples for valid records. AG finds the maxi-
mum/minimum of the trading prices using a sliding window
of size 4 and outputs a tuple for each tuple it receives. F2
makes arithmetic operations on tuple data fields to create a
volume weighted average price. The input data file size is
2.4 MB.

The second application is a data converter application
(regex) (Shown in Figure 7 (a)). This application also con-
sists of five operators including three functors (F1, F2, and
F3). It converts an input data stream with date time data
tuples represented as 2011-04-14 to 14-APR-2011. Further-
more, all the “00”s in the time portion of the tuple are re-
placed with “22”s. F1 filters the date time data tuples from
the stream it receives from SI. Date time format conversion
is done by F2. F3 does the replacement of “00”s with “22”s.
Input data file size is 8.5 MB.

Third application is a Twitter hash tag counter application
(Twitter). This is a 6 operator application (shown in Figure
7 (b)) including one UDOP (U), three Functors (F1, F2, and
F3), and an Aggregate operator (AG). UDOP reads data

342

Date &

Time

values

results S F1 F2 F3 SI

Key S – Source Fn – Functor n AG – Aggregate SI – Sink

results F1 F2 F3
A

G
SI U Tweets

(a)

(b)

regex

Twitter

Figure 7: Data flow graphs of regex and Twitter applica-
tions.

from a dump of twitter data (size ≈ 181 MB). F1 tokenizes
the tweets, and F2 extracts hash tags from the words. F3
eliminates empty tuples. AG aggregates hash tag tuples,
emits the has tag count for every 10 tuples it receives, and
emits summary of results for each tuple it receives.

12.2 Sample program performance
First, we disabled the performance prediction and sample

program ranking feature of Hirundo. Therefore, the appli-
cation ran the entire sample program space. We compared
throughput of sample programs for three optimization runs
using 8 nodes in each session. We use the term“Optimization
run (Opt run)” to denote a single running of Hirundo in this
mode. Our intention is to observe the performance char-
acteristics of each sample program generated by Hirundo.
Each optimization run had a transformation depth value of
4 for regex and Twitter. For VWAP we set the depth value
to 8 since a depth of 4 produced few sample programs for
VWAP application. Hirundo generated 32, 24, and 26 sam-
ple applications for regex, VWAP and Twitter respectively.
From the three graphs it can be observed that certain

sample programs produce higher throughput compared to
the input application (e.g. 4SCSV 2F 2AG 2F 2SI in the
case of regex, 8SCSV 6F F AG F SI in the case of VWAP
and U 4F 2F F AG SI for Twitter). Note that the notation
used for sample program labels represents the arrangement
of operator blocks in the resulting sample programs. E.g.
In Twitter sample application U 4F 2F F AG SI, the label
means there is one UDOP, four F1s, two F2s, one F3, one
AG, and one SI.

12.3 Performance Prediction
We enabled the performance prediction and sample pro-

gram ranking feature of Hirundo. In this mode each ex-
periment completed in less than 15 minutes time, a 50%
reduction of total experiment time compared to without use
of performance prediction. The results are shown in the
corresponding graphs on Figures 8,9, and 10. Two out of
five sample programs had higher performance compared to
regex application, whereas the sample programs pointed out
for VWAP had higher performance for two out of the three
optimization runs. In the case of Twitter application all
the four sample programs predicted by Hirundo had higher
performance compared to original Twitter application.
Next, we ran a completely different application (numap-

plong) which had never been optimized by Hirundo before
(results shown in Figure 11). It has similar structure to regex
application, but all the three functors chained together in-
cremented an integer they received (each operator by 100).

Only one out of the four programs predicted by Hirundo had
higher performance than numapplong application. However,
after running two optimization runs in non-predictive mode
we ran another optimization run with prediction enabled.
Three out of five sample applications pointed by Hirundo
had higher performance compared to the original version.

12.4 Performance Clusters
We conducted a cluster analysis on the data sets corre-

sponding to Opt run 1, 2, and 3 of each performance curves
of Figures 8,9, and 10. Our intention was to find the char-
acteristics of data flow graphs which lead to higher perfor-
mance. We used K-Means clustering [20] for this purpose
since we needed to group the data points based on their per-
formance values, and the data sets were of convex shape. We
set the minimum gap between the clusters as 100B/s. The
algorithm was implemented using Python and Scipy [25] and
the results are shown in Figures 12, 13, and 14. We calcu-
lated average performance values of each clusters, and also
recorded program labels if all the three data points corre-
sponding to the three optimization runs fall in to a particular
cluster.

VWAP data set resulted in 5 clusters. We saw that the
cluster with the highest performance (6393B/s) had all the
three data points corresponding to label 8SCSV 6F AG F SI
whereas the second highest cluster (3885B/s) had all the
three data points corresponding to the label 8SCSV 4F AG -
F SI. However, two low performance clusters had all the data
points corresponding to the labels SCSV 8F AG F SI and
2SCSV F AG F SI. This indicates that having large num-
ber of source operators would produce high throughput in
the case of VWAP application described in this paper.

The clustering results for Twitter application is somewhat
different than the VWAP because Twitter application’s UD-
OP was frozen during program transformation. The highest
performing cluster (961B/s) had all data points correspond-
ing to the label U 4F 2F F AG SI, whereas a medium per-
formance cluster (2nd cluster from the lowest end, having
440B/s performance) had all the data points corresponding
to labels U 2F 4F F AG SI. The difference between these
programs is that there are more mid level operators (F2,
F3 in Figure 7) in low performing one, and there are more
F1 operators in the high performance one. It is clear that
having more tokenizer Functors (F1) has supported for high
performance for Twitter sample applications.

Regex application’s highest performing cluster did not in-
clude all the three points form any sample application. How-
ever, the second highest performing cluster (474.67KB/s)
had all the three data points of SCSV 2F 2F 2F 2SI and
4SCSV 2F 2F 2F 2SI. The cluster with lowest performance
(25KB/s) had all the points of labels 4SCSV 4F 2F 4F 4SI,
4SCSV 2F 2F 4F 4SI, SCSV 2F 4F 4F 4SI, SCSV 4F 2F -
4F 4SI. When comparing these two clusters it is clear that
having a variety in the number of middle operators has pro-
duced less performance for regex application.

13. DISCUSSION AND LIMITATIONS
Our intention of this paper was to introduce a method-

ology for automatically producing optimized versions for a
given data stream program. Our approach produced higher
performance gains (1.7,2.3, and 2.9 times for regex, VWAP,

343

0

200

400

600

800

1000

1200

T
h

ro
u

g
h

p
u

t
(B

\s
)

T
h

o
u

sa
n

d
s

Sample Program Label

Throughput of sample programs generated for regex application (d = 4, Nodes = 8)
Opt run 1
Opt run 2
Opt run 3
Perf Predict run

Figure 8: Comparison of three optimization runs (Opt run 1,2,3, and Perf Predict) with regex application using equal opti-
mization parameters (d=4, nodecount=8)

0
1
2
3
4
5
6
7
8
9

T
h

ro
u

g
h

p
u

t
(B

\s
)

T
h

o
u

sa
n

d
s

Sample Program Label

Throughput of sample programs generated for VWAP application (d = 8, Nodes = 8) Opt run 1
Opt run 2
Opt run 3
Perf Predict run

Figure 9: Comparison of four optimization runs (Opt run 1,2,3, and Perf Predict) with VWAP application using equal
optimization parameters (d=8, nodecount=8)

0

200

400

600

800

1000

1200

1400

T
h

ro
u

g
h

p
u

t
(B

\s
)

Sample Program Label

Throughput of sample programs generated for Twitter application (d = 4, Nodes = 8) Opt run 1
Opt run 2
Opt run 3
Perf Predict run

Figure 10: Comparison of four optimization runs (Opt run 1,2,3, and Perf Predict) with Twitter application using equal
optimization parameters (d=4, nodecount=8)

0

200

400

600

800

1000

1200

1400

T
h

ro
u

g
h

p
u

t
(B

\s
)

T
h

o
u

sa
n

d
s

Sample Program Label

Throughput of sample programs generated for numapplong application (d = 4, Nodes = 8) Opt run 1

Opt run 2

Perf Predict 1

Perf Predict 2

Figure 11: Comparison of four optimization runs of numapplong (Opt run 1,2,Perf Predict 1, and Perf Predict 2). Application
uses equal optimization parameters in all runs (d=4, nodecount=8)

344

and Twitter applications respectively) exceeding the expected
performance improvement (2 times) for two out of the three
input programs.

��
��

��
��

�
�
��

��
	

��
��

�

��

�
�
��

��
	

��
��

��
��

�
�
��

��
	

��
��

��
��

�
�
��

��
	

��
�
��

��
��

�
��

��
	

��
�
��

��
��

�
�
��

��
	

��
�
��

�

��

�
�
��

��
	

��
�
��

��
��

�
�
��

��
	

��
�
��

��
��

�
�
��

��
	

�
�
��

��
��

�
��

��
	

�
�
��

��
��

�
�
��

��
	

�
�
��

�

��

�
�
��

��
	

�
�
��

��
��

�
�
��

��
	

�
�
��

��
��

�
�
��

��
	

��
�
��

��
��

�
��

��
	

��
�
��

��
��

�
�
��

��
	

��
�
��

�

��

�
�
��

��
	

��
�
��

��
��

�
�
��

��
	

��
�
��

��
��

�
�
��

��
	

��
�
��

��
��

�
��

��
	

��
�
��

��
��

�
�
��

��
	

��
�
��

�

��

�
�
��

��
	

��
�
��

��
��

�
�
��

��
	

��
�
��

��
��

�
�
��

��
	

�
����������
�

�

�

�

�

�

�

�

�
�
��

�
�
�
�
�
��
 !

"#
$�
 	
%
��

�
��

�
#

%
&
#$ '()�
%#����#���*%��+����,���#
����������
�#-������������ &.�/�0�&�#.�$

Figure 12: Results of applying K-Means clustering for
VWAP sample program performance data.

While it is difficult to exactly characterize the structure of
stream programs that deliver high throughput, it could be
observed from the experiments that programs with higher
number of source operators tend to produce more through-
put. Furthermore, stream programs that had higher oper-
ator density in the middle part of their data flow graphs
tend to produce less performance. One might argue that
certain topologies of sample programs are favored by certain
SPADE optimizations leading to higher performance in ex-
ecution. However, the way how the operators are grouped
during SPADE application compilation is at the discretion of
the SPADE compiler [18], hence Hirundo can help program-
mers to identify common characteristics of high performance
versions of their programs.

�
��
��
��
��
�
�
��
�

�
��
��
�	
��
�
�
��
�

�
��
��
��
��
�
�
��
�

�
��
��
��
��
��
�
��
�

�
��
��
��
	�
��
�
��
�

�
��
�	
��
��
�
�
��
�

�
��
�	
��
��
��
�
��
�

�
��
�	
��
	�
��
�
��
�

�
��
��
��
��
�
�
��
�

�
��
��
��
��
��
�
��
�

�
��
��
��
	�
��
�
��
�

�
��
��
��
��
��
�
��
�

�
��
��
��
��
��
�
�
��
�

�
��
��
��
�	
��
�
�
��
�

�
��
��
	�
��
��
�
��
�

�
��
��
	�
��
��
�
�
��
�

�
��
��
	�
�	
��
�
�
��
�

�
�	
��
��
��
�
�
��
�

�
�	
��
��
��
��
�
��
�

�
�	
��
��
	�
��
�
��
�

�
�	
��
��
��
��
�
��
�

�
�	
��
��
��
��
�
�
��
�

�
�	
��
��
�	
��
�
�
��
�

�
�	
��
	�
��
��
�
��
�

�
�	
��
	�
��
��
�
�
��
�

�
�	
��
	�
�	
��
�
�
��
�

�
��
�������
�

�

���

���

���

���

����

����

�
�
��
�
�
�
�
�
��
��
��
�

����
 ��!
�����" ��#����$"������
��
�������
��%�������������&'	(�)�&��'*�

Figure 13: Results of applying K-Means clustering for Twit-
ter sample program performance data.

Theoretically, Tri-Op transformation can generate sample
programs with very large numbers of operators. However, we
have observed that the upper limit of such transformation is
imposed by the stream computing environment. We faced
many instance failures with d = 8 optimization runs in our
laboratory environment for applications such as regex. It
should be noted that our method is capable of exploring
the whole set of possible sample program combinations by
varying the value of d.
Use of K-Means clustering on sample program database

is a promising approach for finding performance character-
istics of sample programs. However, in the current version
of Hirundo we do not use K-Means clustering for identifying

��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��

��
�
��
��
��
��
��
��
��

��
�
��
��
��
��
��
��
��

��
�
��
��
��
��
��
��
��

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��

��
�
��
��
��
��
��
��
��

��
�
��
��
��
��
��
��
��

��
�
��
��
��
��
��
��
��

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

��
�
��
��
��
��
��
��
��
�

�	
��
������	

�

���

���

���

���

����

�
�
��
�
�
�
�
�
��
��
��
��
��
�
��
�
��
�
�	
�
�
�� ��
	��������
�!���"����
�
#��	
��
������	
�$��������������%�&�'��
�%(�

Figure 14: Results of applying K-Means clustering for regex
sample program performance data.

sample labels with high performance. Instead, we use perfor-
mance difference of sample programs in different optimiza-
tion runs. We believe this approach is capable of pointing out
specific sample programs with consistent high performance.

There are several limitations to Hirundo which we list
here. Presently Hirundo’s Program Analyzer can identify,
and transform a class of stream programs which are made
out of combinations of Source, Functor, Aggregate, Sink, and
UDOP operators (with the use of annotations). These five
types of operator blocks are sufficient to create many use-
ful real world stream applications such as the ones discussed
in this paper. However, there are other stream applications
with different BIOP types such as Join, Sort, Punctor, etc.
that we hope to integrate in to Hirundo’s program analyzer’s
grammar, and transformation logic in future.

Moreover Hirundo assumes that programmer does not man-
ually allocate node pools in his/her program (Node pool is
a SPADE language construct that allows manual allocation
of operators to specific hosts.).

14. CONCLUSION AND FURTHER WORK
In this paper we introduced a mechanism for automati-

cally transforming data flow graph of stream programs to
high performance, optimized versions. In achieving our aim,
we introduced the notions of Tri-Operator transformation,
transformation blocks, and operator block fusion for stream
program transformation. Based on these concepts we de-
veloped Hirundo, a Python based performance optimization
application for SPADE programs.

By setting d = 4, Hirundo created at least 25 sample pro-
grams with different performance levels for the input appli-
cations. Larger depth values produce even more sample pro-
grams. Therefore, we came to conclusion that Tri-Operator
transformation is able to produce sufficiently large number
of programs with variety of performance levels. The sec-
ond conclusion we arrived at is that our approach is able to
produce SPADE programs with consistent high throughput
gains. We demonstrated this by optimizing three real world
stream applications using Hirundo. Furthermore, the perfor-
mance prediction mechanism we introduce showed its effec-
tiveness by identifying a high performance sample program
for a completely new application without exploring the whole
sample program space. Another conclusion we arrived at is
that having large number of source operators is likely to pro-
duce more throughput. Relatively high operator density in
the middle regions of a data stream graph may produce less

345

performance, hence stream programmers should avoid cre-
ating such programs. These two conclusions are supported
by the observations made using K-Means clustering.
We plan to study different techniques for improving the

performance prediction of Hirundo. We hope to improve the
program structure analyzer and the program generator mod-
ules of Hirundo in future to support different other stream
operator categories. We have begun to replace manual anno-
tation mechanism by an automated procedure. We plan to
do an in depth study on the performance characteristics of
transformation blocks used in Hirundo’s Program Generator
module. We hope to improve Hirundo to identify important
semantics of input programs, and incorporate those during
its performance optimization process.

15. ACKNOWLEDGMENTS
This research was supported by the Japan Science and

Technology Agency’s CREST project titled “Development
of System Software Technologies for post-Peta Scale High
Performance Computing”.

16. REFERENCES
[1] R. Ahmed and et al. Cost-based query transformation

in oracle. VLDB ’06, pages 1026–1036, 2006.

[2] A. W. Appel. Modern compiler implementation in

Java. Cambridge University Press, 2002.

[3] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: semantic foundations and query
execution. The VLDB Journal, 15:121–142, June 2006.

[4] S. Babu. Towards automatic optimization of
mapreduce programs. SoCC ’10, pages 137–142, 2010.

[5] C. Ballard and et al. IBM Infosphere Streams:

Harnessing Data in Motion. IBM, 2010.

[6] P. Banerjee and et al. The paradigm compiler for
distributed-memory multicomputers. Computer,
28:37–47, Oct 1995.

[7] S. Bellamkonda and et al. Enhanced subquery
optimizations in oracle. Proc. VLDB Endow.,
2:1366–1377, August 2009.

[8] B. Chapman, H. Herbeck, and H. Zima. Automatic
support for data distribution. In DMCC, pages 51 –58,
May 1991.

[9] D. Cook. Gold parsing system. URL:
http://www.goldparser.org/, Dec. 2011.

[10] M. Dayarathna, S. Takeno, and T. Suzumura. A
performance study on operator-based stream
processing systems. In IEEE IISWC, 2011.

[11] B. Gedik, H. Andrade, and K.-L. Wu. A code
generation approach to optimizing high-performance
distributed data stream processing. In CIKM ’09,
pages 847–856, 2009.

[12] B. Gedik and et al. Spade: the system s declarative
stream processing engine. In SIGMOD ’08, pages
1123–1134, 2008.

[13] M. Hall and et al. Loop transformation recipes for
code generation and auto-tuning. In Languages and

Compilers for Parallel Computing, pages 50–64. 2010.

[14] H. Herodotou and et al. Query optimization
techniques for partitioned tables. SIGMOD ’11, pages
49–60, 2011.

[15] M. Hirzel and et al. Spl stream processing language
specification. Nov 2009.

[16] IBM. Ibm infosphere streams version 1.2:
Programming model and language reference. Feb 2010.

[17] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans.
SIGMOD ’98, pages 106–117, 1998.

[18] R. Khandekar and et al. Cola: Optimizing stream
processing applications via graph partitioning. In
Middleware 2009, pages 308–327. 2009.

[19] C. S. Liew and et al. Towards optimising distributed
data streaming graphs using parallel streams. In
HPDC ’10, pages 725–736, 2010.

[20] S. Marsland. Machine Learning : An Algorithmic

Perspective. Chapman & Hall/CRC, 2009.

[21] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In KDCloud

2010, December 2010.

[22] D. Palermo, E. Hodges, and P. Banerjee. Compiler
optimization of dynamic data distributions for
distributed-memory multicomputers. In Compiler

Optimizations for Scalable Parallel Systems, volume
1808, pages 445–484. 2001.

[23] J. Qin and et al. A novel graph based approach for
automatic composition of high quality grid workflows.
In HPDC ’09, pages 167–176, 2009.

[24] R. Rea and K. Mamidipaka. Ibm infosphere streams:
Enabling complex analytics with ultra-low latencies on
data in motion. May 2009.

[25] Scipy. Scientific tools for python. URL:
http://www.scipy.org/, 2011.

[26] S. Sodhi, J. Subhlok, and Q. Xu. Performance
prediction with skeletons. Cluster Computing,
11:151–165, 2008.

[27] T. Suzumura, T. Yasue, and T. Onodera. Scalable
performance of system s for extract-transform-load
processing. In SYSTOR ’10, pages 7:1–7:14, 2010.

[28] Z. Wang and M. F. O’Boyle. Partitioning streaming
parallelism for multi-cores: a machine learning based
approach. In PACT ’10, pages 307–318, 2010.

[29] G. Yaikhom and et al. Federated enactment of
workflow patterns. In Euro-Par 2010 - Parallel

Processing, volume 6271, pages 317–328. 2010.

[30] L. T. Yang, X. Ma, and F. Mueller. Cross-platform
performance prediction of parallel applications using
partial execution. In SC ’05, Washington, DC, USA,
2005.

[31] D. F. Yuan Yu, Michael Isard and M. Budiu.
Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language.
OSDI ’08, pages 1–14, 2008.

[32] X. J. Zhang and et al. Workload characterization for
operator-based distributed stream processing
applications. In DEBS ’10, pages 235–247, 2010.

346

