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ABSTRACT
Measurement-based approaches to software performance en-
gineering apply analysis methods (e.g., statistical inference
or machine learning) on raw measurement data with the goal
to build a mathematical model describing the performance-
relevant behavior of a system under test (SUT). The main
challenge for such approaches is to find a reasonable trade-off
between minimizing the amount of necessary measurement
data used to build the model and maximizing the model’s
accuracy. Most existing methods require prior knowledge
about parameter dependencies or their models are limited to
only linear correlations. In this paper, we investigate the ap-
plicability of genetic programming (GP) to derive a mathe-
matical equation expressing the performance behavior of the
measured system (software performance curve). We system-
atically optimized the parameters of the GP algorithm to de-
rive accurate software performance curves and applied tech-
niques to prevent overfitting. We conducted an evaluation
with a representative MySQL database system. The results
clearly show that the GP algorithm outperforms other anal-
ysis techniques like inverse distance weighting (IDW) and
multivariate adaptive regression splines (MARS) in terms of
model accuracy.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.4 [Performance of Systems]; I.6.5 [Simulation and
Modeling]: Model Development

General Terms
Performance Analysis, Performance Prediction, Genetic pro-
gramming, Measurement-based

Keywords
Software Performance Engineering, Model Inference, Ma-
chine Learning, Black-box Approach
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1. INTRODUCTION
Software performance is an important quality attribute

and directly influences the total cost of ownership (TCO),
customer satisfaction and even the productivity of employ-
ees [23]. Thus, software performance is crucial in today’s
enterprise systems. Methods of software performance anal-
ysis help architects to detect bottlenecks and performance
problems and to judge different design alternatives. For this
purpose, software performance models are created to predict
the behavior of software systems. Besides analytical, model-
based and prototype-based approaches, the measurement-
based approach takes measurement data and uses analy-
sis methods, such as statistics or machine learning, to ex-
tract performance-relevant factors of the system under test
(SUT). Those measurement-based approaches do not neces-
sarily require an understanding of the system internals but
often consider the SUT as a black box. This makes them
well-suited for large enterprise systems that are historically
grown and not implemented from scratch [24]. Moreover,
they are often applied to existing systems, such as legacy
systems or services provided by third parties, for which ei-
ther no internals are known or no internals are to be mod-
eled.

The main goal of this work is to apply machine-learning
techniques in order to infer accurate performance models
based on measurement data. Those models are hereafter
referred to as software performance curves. They describe
the performance behavior of a system in dependence of the
system’s configuration and the usage profile. As mentioned
above, system performance depends on many factors, lead-
ing to a high dimensionality of the problem. This curse
of dimensionality [11] leads to sparse measurements of the
parameter space. To reduce the measurement errors and
stabilize the observed metrics, all measurements have to be
repeated sufficiently. Thus, meaningful measurement results
are very expensive and only a very limited number of mea-
surements are available for model inference. Analysis meth-
ods must find a reasonable trade-off between minimizing the
amount of necessary measurement data used to build the
model while maximizing the model’s accuracy. Besides ap-
propriate analysis methods, the process of efficiently select-
ing new measurement points is crucial for receiving accurate
performance curves. This aspect is investigated in more de-
tail in another work [28] of our research group.

Existing approaches use analysis methods such as MARS
[5], piecewise polynomial regressions [15] or genetic opti-
mization [10] to infer software performance curves. Prob-
lems of these techniques are the assumptions about the in-
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put/output parameter dependencies or the resulting model
accuracies. Genetic optimization and polynomial regression
assume predefined structures for the input/output parame-
ter dependency, expressed as mathematical equations, and
focus on optimizing the coefficients of the equation. As
this structure is not always known in practice, MARS tries
to overcome this issue by approximating the dependency
through combinations of piecewise-defined linear functions.
However, this approach has problems when approximating
functions which contain higher-order powers [11].

In this paper, we examine the ability of a machine learning
technique, genetic programming (GP), to infer software per-
formance curves. In contrast to genetic optimization, where
a structure is already fixed (e.g., linear), GP does not make
any assumptions about the input/output parameter depen-
dency and optimizes the structure of the equation simulta-
neously with the coefficients (symbolic regression). We em-
ployed the Goal/Question/Metric (GQM) approach to de-
rive a systematic plan for the optimization of the configura-
tion of the genetic algorithm. This optimization is important
when applying genetic algorithms to a certain problem do-
main (here the derivation of software performance curves).
Then, we followed a four-stepped process to answer each
question of the GQM plan. This process consists of i) the
experiment definition, ii) experiment execution, iii) experi-
ment analysis and iv) decision. The analysis step includes
the application of statistical tests (Kruskal-Wallis Rank Sum
Test and Wilcoxon Rank Sum Test) to choose the best alter-
native. To increase model accuracy and convergence speed,
we experimented with providing domain knowledge (such as
hypothesis about parameter dependencies) to the GP algo-
rithm. However, the experiments showed that using domain
knowledge has no significant influence on the resulting mod-
els. To improve the generalization of the result models, we
applied techniques to prevent overfitting.

The evaluation contains a synthetic function and repre-
sentative measurements of a MySQL database system. We
compared the models created by the GP algorithm with
those created by MARS and IDW. As training sets, we used
randomly-distributed and equidistantly-distributed subsets
of different sizes. The results for this evaluation reveal that
GP outperforms other analysis techniques like MARS and
IDW, not only in terms of the average relative error but also
the dispersion of relative errors among single predictions is
smaller. The main contributions of this paper are i) a generic
and systematic approach to optimize and apply GP to any
specific problem domain, ii) the adaption and implementa-
tion of GP to derive software performance curves, and iii) an
evaluation using a synthetic function and measurements of
a MySQL database to demonstrate the potential of the GP
approach in contrast to other analysis techniques (MARS
and IDW).

The remainder of the paper is structured as follows.
Section 2 presents an overview of related work about
measurement-based performance analysis and GP ap-
proaches. In Section 3, we provide foundations about the
Software Performance Cockpit (SoPeCo) and GP. Section
4 describes our approach to adopt GP for the derivation
of software performance curves. In Section 5, we evaluate
the approach using a synthetic function and measurement
data from a MySQL database. Our approach is discussed
in Section 6. Finally, Section 7 concludes this paper.

2. RELATED WORK
The work related to our approach can be classified in the

main categories of software performance engineering and ge-
netic programming. First, we present approaches concern-
ing measurement-based software performance analysis and
model derivation. Second, we describe relevant work in the
area of genetic programming.

The approaches in software performance engineering can
be coarsely divided (according to [29]) into model-based (see
[2] and [13] for detailed surveys) and measurement-based
approaches (e.g., [5, 14, 15, 21]). In most measurement-
based approaches, statistical inference or machine learning
techniques are applied to derive predictions based on the
measurement data. Courtois and Woodside [5] apply regres-
sion splines such as MARS to derive models and introduce
a metric to determine the accuracy of the models. This
allows to iteratively choose new measurement point using
repelling forces until a desired model accuracy is reached.
Lee et al. [15] compare polynomial regression and artificial
neural networks (ANN) and suggest methods such as hierar-
chical clustering and correlation analysis to select the most
relevant inputs. Their experiments revealed that both tech-
niques lead to models with similar accuracies but differ in
terms of their assumptions and the model transparency. A
similar result is shown by the comparison in [19]: Psichogios
et al. compared MARS with neural networks and found that
“MARS is often more accurate and always much faster than
neural networks”. For a fair comparison of GP and ANN the
latter requires similar adjustments in tuning like GP which
is beyond the scope of this work. Thus, we chose MARS
instead of ANN for the evaluation in Section 5. Sharma et
al. [21] apply a machine learning technique, namely inde-
pendent component analysis (ICA), to categorize workload
requests and to identify their resource demands using only
high-level measurement results (e.g., CPU/network usage or
overall request rate). Zheng et al. [30] employ Kalman Fil-
ter estimators to track parameters which cannot be mea-
sured directly by using easy observable data such as re-
sponse times. Kraft et al. [14] estimate service demands
by applying linear regression and the maximum likelihood
technique using only response time measurements. This ap-
proach avoids detailed instrumentations to receive samples
for service demands.

In this part, we present approaches about genetic pro-
gramming which compare different alternatives for gener-
ating constants, fitness functions, crossover operators and
preventing overfitting. We used these approaches as a ba-
sis for our optimizations of the GP algorithm. Ryan and
Keijzer [20] investigate the effects of different constant mu-
tation types in the problem domain of symbolic regression.
They state that, for symbolic regression, constant mutation
types must find a good balance between the effort needed
for the mutation and the probability of rejecting the whole
individual in future generations. Ryan and Keijzer com-
pare four different mutation types and evaluate their influ-
ence on the overall performance of the GP algorithm. Their
experiments reveal, that the decision which operator per-
forms best depends on the complexity of the problem which
should be approximated. We used this approach as a basis
and reproduced the experiments for the domain of deriving
software performance curves. Ferrucci et al. examine the
influence of different fitness functions [8] and conclude that
the choice of an appropriate fitness function is crucial as it
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leads the whole evaluation process. Our experiments also re-
veal significant differences when comparing different fitness
functions. Gustafson et al. suggest a way to improve a GP
approach for the symbolic regression domain in [9]. They
investigate the dissimilarity and diversity of the solutions
during the evolutionary process. Finally, they suggest to
prevent crossovers between parents having the same fitness
value. Their experiments showed significant improvements
after applying this improvement. However, in our experi-
ments, we saw no improvements for the adjusted crossover
operator. Panait and Luke compare six alternatives on how
to evolve robust programs with GP [18]. Robust programs
are solutions which generalize correctly from the learning
data. During their experiments, they identified three meth-
ods which perform significantly better than the others for
the domain of symbolic regression. We applied one of these
methods (random per generation) and combined it with a
cross-validation approach to prevent the effects of overfit-
ting.

3. FOUNDATIONS
This section places our work in the context of the Soft-

ware Performance Cockpit and introduces the concepts of
machine learning and genetic programming.

The Software Performance Cockpit (SoPeCo) [26, 27] is a
framework with the goal to make measurement-based soft-
ware performance engineering more practicable. Enterprise
software systems are usually quite complex and their perfor-
mance depends on a variety of influencing factors. Different
parts and layers of the system (e.g., operating system or
middleware) require detailed knowledge and mostly sepa-
rate tools for instrumentation and monitoring. The SoPeCo
handles this challenge through a plug-in-based architecture
which allows the encapsulation of domain knowledge and
implementations within adapters. Westermann et al. de-
fined three different responsibilities and tasks: The System,
Benchmark and Tool Experts develop adapters for generat-
ing load and connecting parts of the software systems such
as middleware or monitoring tools with the SoPeCo. Anal-
ysis Experts provide adapters which enable various statisti-
cal analysis of measurement results. Performance Analysts
model the test scenario using the configuration meta-model
provided by the framework. This includes aspects such as
the use of different adapters (e.g., workload driver, monitor-
ing) and providing system information where the adapters
are deployed. For further information about the SoPeCo, we
recommend [26] and [27].

When executing the configuration model created by the
Performance Analyst, the SoPeCo automatically triggers
systematic measurements and collects the reported met-
rics such as response time. A subsequent analysis adapter
derives a software performance curve [28] which describes
dependencies between system’s configuration, its workload
and the performance expressed through timing behavior,
throughput or resource utilization. A performance curve
might be realized through mathematical equations express-
ing these dependencies: Assuming that x1 and x2 are two
performance-relevant factors acting as independent variables
(inputs) and responseTime the dependent variable (out-
put). A random performance curve might then be defined

as f̂(x1, x2) = 2 ∗ x1 + 0.1 ∗ x2
2. Such curves can be derived

through statistical or machine learning techniques. Within
this work, we applied genetic programming, as a common

machine learning technique, for the derivation of software
performance curves.

Machine learning (ML) in general refers to the process
of deriving knowledge from given training data. ML tech-
niques create prediction models which estimate the outcome
for a given set of features. Depending on the training data,
ML distinguishes supervised and unsupervised learning tech-
niques. Unsupervised techniques only use the features and
no outcome variables for the training. Mostly, these tech-
niques are used to cluster data. Supervised techniques re-
quire pairs of features and outcome variables for the training.
Features have different types such as quantitative, qualita-
tive or ordered categorical. The prediction of a quantitative
output is called regression, whereas the prediction of quali-
tative output is often referred to as classification [11]. Due
to the quantitative nature of performance metrics, we focus
on regression techniques.

One field of machine learning are evolutionary algorithms
(EA) which are approaches to solve optimization or search
problems. EAs use an iterative approach to approximate an
optimal solution. During each iteration (generation), the
population, consisting of a certain number of individuals,
evolves. This evolution is performed by reproducing, mutat-
ing and crossing-over individuals of the previous generation.
Each individual represents a candidate solution and has a fit-
ness value expressing the quality of the solution. The aim of
EAs is to maximize this fitness over many generations. The
main principles mentioned above and the concept of “sur-
vival of the fittest” (as described by Charles Darwin) are
copied from nature. For more information, we recommend
[4] and [7]. Genetic programming (GP) is a special appli-
cation of EA and aims at deriving computer programs or
mathematical equations. The individuals in GP are usually
represented as tree structures and recombinations are tree
operations such as randomly exchanging subtrees between
two trees [12].

4. APPROACH
In this section, we present our approach to meet the chal-

lenge of deriving accurate software performance curves from
measurements. In Section 4.1, we depict the overall idea
of applying GP for the derivation of software performance
curves and provide a simple illustrative example. In Sec-
tion 4.2, we describe the initial configuration of the GP al-
gorithm, formalize the training set and provide three def-
initions describing the model error. Next, we present all
investigated aspects to adopt the GP algorithm to the spe-
cific problem using GQM plans (Section 4.3) and describe a
generic process for the adoption of GP algorithms (Section
4.4). Finally, we provide a detailed example to show how we
applied the process to systematically fulfill all goals defined
in the GQM plan (Section 4.5).

4.1 Overview and Idea
The aim of our approach is to derive accurate software

performance curves using measurement data. Since the re-
trieval of measurement data is very expensive in terms of
time and effort, it is desirable to have an algorithm which
is capable of deriving accurate performance curves using a
small amount of data. To derive the performance curve,
we use genetic programming which does not make any as-
sumptions about the input/output parameter dependency
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Figure 1: Overview of our approach

and optimizes the structure of the equation simultaneously
with the coefficients (symbolic regression).

Figure 1 depicts the idea of our approach that applies
genetic programming to software performance engineering.
In the first step, GP is initialized with randomized data.
The initialization may be improved by domain knowledge
or prior statistic analyses. We investigated whether and
how domain knowledge can be reused to improve the con-
vergence speed and accuracy of our algorithm. However, our
experiments inducting domain knowledge did not influence
the results. Similarly, we evaluated the influence of prior
statistical analyses that serve as input for the initialization.
In our experiments, we did not observe any improvement
in terms of convergence speed or model accuracy by these
means. After the initialization, the genetic algorithm be-
gins to evolve the individuals. The evolution starts with
an evaluation of individuals by using the measurement data
(Step 2). Then, the algorithm selects and reproduces fit in-
dividuals (Step 3 and 4) and repeats steps 2-4 for a given
number of iterations (generations). Finally, the algorithm
terminates (Step 5) when a given termination criteria, such
as the desired accuracy level or runtime constraints, are ful-
filled. The result of the algorithm is a software performance
curve expressed through a mathematical equation.

Returning to the example provided in the previous section,
we illustrate the genetic programming approach. The goal of
the GP algorithm is to find the software performance curve
f̂(x1, x2), which predicts the dependent variable response-
Time using provided measurement data. Assume that the
algorithm receives results of 50 independent response time
measurements with different input configurations (values for
x1, x2). To evaluate the fitness of each individual, the al-
gorithm calculates the averaged relative error based on the
provided training data (see Section 4.2). New individuals
are created by recombining the genes (represented as trees)
of two individuals. The trees comprise operators (e.g., +,
-, *, /) serving as inner nodes and constants and variables
(here x1, x2) serving as leaves. When the evolution of indi-
viduals finishes, the algorithm returns the fittest individual
representing the software performance curve identified by
the algorithm. The exemplary individual in the center of
Figure 1 depicts one possible representation for the software
performance curve (f̂(x1, x2) = 2 ∗ x1 + 0.1 ∗ x2

2) in the
internally-used tree representation.

4.2 Background
In this section, we present the initial setting of the GP

algorithm which we used as a starting point for our opti-
mizations. We also formalize the training set and introduce
three definitions expressing the error of inferred models that
we used as fitness functions and for judging the model qual-
ity.

The idea and concepts of evolutionary algorithms (e.g.,
GP) are very intuitive and general but its configuration is
not. For example, the size of the population and amount
of generations, the selection of parent individuals, proba-
bilities for crossover and mutation, and the fitness function
highly influence the efficiency of the algorithm (in terms of
solution quality and convergence speed) and therefore must
be chosen carefully. While some rules of thumb exist on
how to set parameters for broad problem domains (e.g., in
[12]), many systematic experiments are necessary to adjust
the configuration towards a certain problem. We based the
initial settings for the configuration parameters of the GP
algorithm on the well-established suggestions by Koza [12]
about applying GP to symbolic regression. The population
had a size of M = 1024 and was evolved for G = 51 gen-
erations. The maximum tree depth was restricted during
the run to Dc = 17 and during the initialization to Di = 6.
As function set we used arithmetic operations (+,−, ∗, /).
Probabilities for the crossover operator was set to pc = 0.9
and for reproduction to pr = 0.1. As a method for parent
selection, we used the tournament selection with k = 7. In
tournament selection, a group of k individuals is randomly
selected and pair-wisely compared. The fittest individuals
of two tournaments are chosen for the crossover. We used no
structural mutation and selected inner nodes for crossovers
with a probability of pip = 0.8.

The training set with N samples for a d-dimensional prob-
lem can be formulated as an N×(d+1)-matrix T, where the
first d columns of each row represent the input parameters
and the d + 1-th column contains the corresponding target
metric (e.g., response time). Let �xi denote the transposed
vector containing columns 1 to d of the i-th row of matrix T
and thus representing the independent parameters for one
tuple of training data. The sum of absolute residuals (SAR)
based on the training set T can be used as a fitness measure
and is defined as:

SARf̂ (T) =

N∑
i=1

|f̂(�xi)− ti,d+1| . (1)

with f̂ being the prediction model, �xi the vector containing
the input parameters and ti,d+1 the corresponding target
metric.

The relative error is defined as

RE(y, ŷ) =

{
| y−ŷ

y
|, if y �= 0

|y − ŷ|, otherwise
, (2)

where y is the measured value and ŷ is the predicted value.
For the case that the measured value is 0, we used the ab-
solute error as an approximation for the relative error.

We can now define the averaged relative error as

AREf̂ (T) =

∑N
i=1 RE(ti,d+1, f̂(�xi))

N
, (3)

where T, �xi, N and f̂ are defined as above.
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Part I: Parameter Optimizations
G1: Constants
G2: Fitness Function
G3: Multi-Dimensional Regression Problems
G4: Training Sets
G5: Extended Function Set
G6: Crossover
G7: Population Size and Number of Generations

Part II: Domain Knowledge
G8: Influence of One Domain Function

Part III: Overfitting
G9: Apply Efficient Technique to Prevent Overfitting

Table 1: Overview of all addressed goals

4.3 Examined Goals
In this section, we present the different aspects of the

GP algorithm which we adapted and optimized. We used
a Goal/Question/Metric plan for a systematic planning of
all experiments.

The Goal/Question/Metric (GQM) [3] is a framework for
systematic experimentation in software engineering. For this
purpose, it defines a process of answering well-defined goals
in a top-down fashion. The contribution of the framework
is twofold: It helps to derive experiments in a goal-oriented
manner and subsequently allows the systematic evaluation
and interpretation of their results in order to answer the
overall goals.

Table 1 depicts the goals we investigated within this work.
The nine goals are organized in three groups: The first group
summarizes all goals concerning parameter optimizations of
the GP algorithm. To answer the question assigned to these
goals, we used the process described in the Section 4.4. The
second part investigates the introduction of domain knowl-
edge. Overfitting, as a common problem in the machine
learning domain, is addressed in part three.

The accuracy of performance curves highly depends on
finding accurate coefficients. An appropriate generation and
mutation of constants is addressed Goal G1. Furthermore,
the fitness function is essential in genetic algorithms since
it steers the whole evolutionary process. Goal G2 addresses
the selection of an appropriate fitness function. Software
performance is influenced by factors like the system’s usage
and configuration. Hence, Goal G3 investigates the ability
of the algorithm to solve multi-dimensional regression
problems. The training data is the only information
for algorithm to build the performance models. Goal
G4 investigates the influence of necessary preprocessing
steps and the training set size. The expressiveness of the
algorithm depends on the available operators (inner nodes)
to build the models. Goal G5 was to extend the arithmetic
function set (+,−, ∗, /) with other functions such as pow

or log. The crossover operator is responsible for building
new individuals during the evolutionary process. Gustafson
et al. improved the solution quality in symbolic regression
domains by introducing constraints when picking the parent
individuals for the crossover [9]. Goal G6 applies these
algorithmic improvements to our approach. Goal G7,
being the last goal concerning the parameter optimizations,
investigates a reasonable population size and number of
generations. After the adjustment of the GP algorithm,

Execute Experiments  
(Repeat Each 100 Times) 

Analyse Results 
(Using Kruskal-Wallis and Wilcoxon) 

Decide and Answer  
(Picking the Best Alternative) 

Define Experiments 
(Different Problems & Configurations) 

Figure 2: Process to answer questions through ex-
periments

we enhanced it to use domain knowledge (Goal G8), such
as parameter dependencies that are typical for software
performance or queuing formulas. Overfitting is a common
problem in all fields of machine learning which also needs
to be addressed in our scenarios. Thus, we applied and
evaluated different techniques to prevent overfitting (G9).

4.4 Generic Process for Adoption of GP Algo-
rithms

In this section, we describe the systematic process which
we used for answering the questions derived in the GQM
plan. Even though the process is intuitive it is fundamental
to describe the decision mechanism detailed since our ad-
justments of the GP algorithm and thus one of the main
contribution of the paper are based on this process. The
process is depicted in Figure 2 and described in the follow-
ing.

Define Experiments.
The first step for answering a question about a reasonable

parameter setting is the definition of experiments. The def-
inition basically includes two parts. The first part is the se-
lection of appropriate prediction problems and training sets.
It is important, that the chosen prediction problems and
training sets are representative for real problems in the tar-
get domain for which the GP algorithm should be optimized.
The second part is the identification and implementation of
different alternative configurations for the investigated ques-
tion (e.g., different constant mutation types).

Execute Experiments.
The second step is the execution of the experiments. Since

the GP approach is non-deterministic, we had to repeat all
experiments for a sufficient number of times (n). This num-
ber is a trade-off between the execution time for the experi-
ments and stabilized results. Using an initial experiment and
the calculation of confidence bands we determined n = 100
as sufficient for our experiments. We observed that some
evolutions lead to models with very high errors. Such out-
liers are common in symbolic regression. In order, to keep
the experiment runtime to evaluate the effect of changes to
the GP algorithm in a reasonable scope, we decided to re-
move the worst 10% of each 100 runs before analysing the
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results. When the GP algorithm is applied to a real prob-
lem, it will be executed repeatedly and thus removing the
outliers during our experiments does not diesturb the re-
sults. All boxplots and statistical tests are based on the
cleaned data. Due to the non-determinsm, we implemented
the final analysis adapter such that it internally repeats the
GP algorithm for x times and only returns the model of the
best run.

Analyze Results.
The third step is the analysis of the experiment results.

For this purpose, we use statistical tests to determine if
the target metric (mostly the averaged relative error of the
models) is significantly influenced by different configuration
alternatives. The analysis results did not follow a normal
distribution (also observed in [18]) and thus we used the
Kruskal-Wallis Rank Sum Test and Wilcoxon Rank Sum
Test [6]. They either lead to the decision that significant
differences in the target metric exist or that the alternatives
do not significantly influence the target metrics.

Decide and Answer.
The last step is the decision for one of the questioned alter-

natives based on the results of the statistical tests. After we
answered one question, we picked the next from the GQM
plan presented in the section above. We neglected mutual
dependencies between configuration parameters of the GP
algorithm and sequentially answered the questions.

We suggest this four-stepped process in combination with
a GQM plan as a reasonable approach for optimizing the
parameters of genetic programming algorithms in order to
apply GP to a specific problem domain.

4.5 Detailed Investigation of One Question
In this section, we illustrate the process shown in Figure

2. We focus on Goal G1, which addresses the generation of
constants. We derived five questions concerning the constant
types, the ranges and their mutation types and probabilities:

• Q1: Which mutation type is the best for integer con-
stants?

• Q2: Which mutation type is the best for float con-
stants?

• Q3: How does the combination of both constant types
(integer and float) perform?

• Q4: What is the optimal mutation rate?

• Q5: Are the constant intervals sufficient to generate
big constants?

In the following, we address the first question of the list
above to present the application of the process comprising
experiment definition, experiment execution, result analysis
and decision.

Concerning constant mutation, Koza [12] assumes that
new constants are created during the evolution as combina-
tions of other existing constants and functions. Thus, no
mutation was considered, and all constant values remained
unchanged after their initialization during the whole evolu-
tionary process. Ryan and Keijzer on the other hand investi-
gated the influence of different constant mutation types [20]
(see Section 2). We based the three investigated mutation
types on the ideas of Ryan and Keijzer.

Formula

f0(x0) = 12 ∗ x0

f1(x0) = −41 ∗ x0

f2(x0) = 24 ∗ x0 + 3
f3(x0) = 54 ∗ x2

0 − 34 ∗ x0 + 7
f4(x0) =

53
97

∗ x2
0

Table 2: One-dimensional problems with focus on
integer coefficients

Constant value 

Constant value 

Constant value 

Probability 
for the new 
value 

Interval 
for valid 
constants 

Current 
value 

Uniform 

Local 

Gauss 

Figure 3: Investigated alternatives for the mutation
of constants

4.5.1 Definition of Experiments
The experiment definition (see Section 4.4) includes the

identification of representative problems and of different al-
ternatives.

Problems.
We used the five problems listed in Table 2 for running

this experiment. All of them have one independent param-
eter and contain only integer constants as coefficients. We
intentionally used simple structures which we assumed likely
to be found in early generations. This would mean, that the
GP algorithm only has to find the correct coefficient, since
the structure is already found. The training sets for each
Problem k of Table 2 consist of 150 samples with the in-
put parameters X = (0, 1, . . . , 149)T . The i-th row of the
150× 2-matrix Tk had the form (xi, fk(xi)). The fact that
the training data is distributed equidistantly over an inter-
val (here [0,149]) is a realistic assumption, since systems are
often measured in such a systematic way. We also consider
the simple linear or quadratic structure of the problems as
representative and common for dependencies in performance
analysis.

Alternatives.
We compared four different alternatives against each

other: no mutation (N), uniform mutation (U), local mu-
tation (L) and Gaussian mutation (G). Figure 3 depicts all
mutation types. The gray line illustrates the probability for
a value after the mutation and the bold dashed line repre-
sents the constant value before the mutation. The uniform
mutation generates a new random number with equal prob-
abilities in the entire interval, independently of the current
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Figure 4: Boxplot with the model accuracies of
Problem f3

constant value. The local mutation increases or decreases
the current value (each with a probability of p = 0.5) us-
ing a fixed delta. The Gaussian mutation uses a Gaussian
distribution as probability density function with the current
constant value as mean value. For all alternatives, we used
an interval for valid constants of [−100, 100] and a probabil-
ity for the constant mutations of pcm = 0.75.

The number of alternatives (4) and problems (5) leads to a
total number of 20 experiments. To get stabilized results, we
repeated each experiment for 100 times (see Section 4.4) and
thus issued 2000 independent evolutions for this experiment.

4.5.2 Analyzing the Results
In this section, we present our analysis of the results for

this set of experiments and finally answer Question Q1. We
used two metrics for the analysis: The averaged relative
error (see Section 4.2) on the training data to express the
quality of each solution and the generation at which a perfect
fit was found as an indicator for the convergence speed.

For problems f0, f1 and f2 nearly every run of all four al-
ternatives generated the exact model leading to an averaged
relative error of 0. The experiment runs for f3 and f4 lead
to more variation in the model accuracies. Figure 4 shows a
boxplot with the averaged relative errors for problem f3 for
all 90 runs (due to the outlier removal mentioned in Section
4.4). We omitted all values above the upper whisker in all
boxplots to improve the illustration. The uniform (U) and
local (L) mutation perform quiet similar, whereas no muta-
tion (N) seems to perform slightly worse by having a median
of 0.43% compared to 0.10% for uniform and 0.12% for lo-
cal mutation. The Gaussian (G) mutation tends to perform
best by having the lowest variance and the lowest median
(0.03%).

To identify the best alternative, we merged the models of
the 90 runs for each of the five problems. This lead to 450
models per alternative. We applied the Kruskal-Wallis Rank
Sum test to identify if the differences among all four distri-
butions are significant. The null hypothesis states that no
differences among all tested groups exist. The test returned

Accuracy Generation
Test p-value p-value

All (Kruskal-Wallis) 0.0007* 0.0012*
L-G (Wilcoxon) 0.6862 0.6111
N-G (Wilcoxon) 0.0022* 0.0022*
U-G (Wilcoxon) 0.0015* 0.0022*
N-L (Wilcoxon) 0.0086* 0.0109*
U-L (Wilcoxon) 0.0054* 0.0119*
U-N (Wilcoxon) 0.9841 0.9936

Table 3: Results of applied significance tests

N U L G

0
10

20
30

40
50

Alternatives

G
en

er
at

io
n

Figure 5: Boxplot with merged generations of Prob-
lems 0 to 4

a p-value of 0.0007 (see Table 3) implying significant differ-
ences between the groups. To identify between which groups
the differences exist, we pair wisely applied the Wilcoxon
test. The results are denoted in the column “Accuracy” of
Table 3. The asterisk besides the value implies significant
differences based on a significance level of α = 0.05. This
means, that local (L) and Gaussian (G) mutation perform
significantly better than uniform (U) and no (N) mutation.
Within both groups (L/G and U/N), no significant differ-
ences are testified.

The absolute differences in accuracy were quite small
among all four alternatives. The medians of the merged ac-
curacies for all alternatives are 0% and the largest difference
of the third quartils is between N (0.183%) and G (0.000%).
We further investigated the convergence speed, i.e., the gen-
eration at which the exact model was found. Figure 5 shows
the boxplot containing the generations at which the exact
models were found for each of the alternatives.

Local (L) and Gaussian (G) mutation perform similar and
their medians are 15 (L) and 14.5 (G). The medians of uni-
form (U) and no (N) mutation are 24 (U) and 22 (N). The
p-value of 0.0012 received by the Kruskal-Wallis test indi-
cates that the null hypothesis can be rejected, meaning that
significant differences among the alternatives exist. Thus,
we performed a subsequent Wilcoxon test pair wisely for
each alternative. The results of this test are depicted in the
“Generation” column of Table 3. Again, an asterisk besides
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the p-value indicates an significant difference between the
distributions on a significance level of α = 0.05. The test
reveals that Gaussian (G) and local (L) mutation has a sig-
nificantly positive effect on the convergence speed compared
to no mutation (N) and uniform mutation (U).

This analysis allowed us to answer the initial question,
which mutation type performs best for integer constants.
The statistical tests left us the choice between local (L) and
Gaussian (G) mutation and we decided to use the Gaussian
mutation (G) due to the better tendencies in accuracy (see
Figure 4) and convergence speed (see Figure 5). We applied
the same procedure to the remaining questions of all goals.
In the next section, we briefly present the results for all
goals.

4.6 Results of the Optimization and Final GP
Settings

We conclude this section about the adaption of the GP
algorithm with a summary of all results for each of the goals
presented in Section 4.3.

Goal 1 addresses the constant mutation and our exper-
iments reveal that the use of integer and float constants
having the intervals [-100,100] and [0,1] is sufficient. The
Gaussian mutation is applied to both constant types with a
probability of pcm = 0.75. A final experiment shows that
this configuration is sufficient to generate constants with
the desired accuracy. Goal 2 investigates the influence of
different fitness functions and the experiments indicate that
the use of relative errors leads to a faster convergence than
using absolute residuals. Goal 3 investigates the ability of
the GP algorithm to solve multi-dimensional problems. The
experiment results show that simple problems such as lin-
ear combinations can be approximated accurately even if
the dimensionality is high (up to 10 dimensions). Goal 4
addresses preprocessing of the training data. Correspond-
ing experiments reveal that averaging measurement data
with same input configurations (results of repeated measure-
ments) leads to better results and to faster execution times.
An appropriate size of the training set highly depends on the
complexity of the underlying problem. It is crucial that the
training set contains enough data to represent the problem
otherwise the algorithm cannot build reasonable prediction
models. Finding an appropriate function set is addressed
in Goal 5. Based on our experiments, we decided to use
two different function sets during independent runs of the
algorithm: The “Basic” function set contains the arithmetic
functions (+,−, ∗, /). The“Extended” function set addition-
ally contains the exp, power, log and hinge function. Driven
by the work of Gustafson et al. [9], we investigated in Goal
6 the proposed algorithmic improvement of the parent selec-
tion process. However, the experiment reveals no significant
improvement compared to tournament selection with k = 7.
Goal 7 addresses the choice of an appropriate population
size and a reasonable number of generations. Based on the
experiments, we decided to evolve 2048 individuals for 102
generations per evolution.

Goal 8 investigates the influence of domain knowledge,
but corresponding experiments indicate that the use of
domain knowledge neither significantly influences the
accuracy of the results nor convergence speed. Goal 9
copes with the problem of overfitting. The experiments
persuades us to use a combination of two techniques: The
first is a cross-validation which selects the best-of-run

individual among all best-of-generation individuals based
on a separate test set. The second technique uses only a
subset of the available training data. The subset is changed
randomly for each generation (see [18]). Experiments show
that using these two techniques reduces the overfitting
problem sufficiently for our purposes.

5. EVALUATION
In this section, we compare the accuracy of the models

inferred by our GP algorithm with models derived by other
analysis techniques. We start with applying the algorithms
to a simple and synthetic function which allows the visu-
alization of the results. The second and main part of the
evaluation describes the application of the algorithm to real
measurements of a MySQL database.

We automated the evaluation using the SoPeCo (see Sec-
tion 3). As competitive analysis techniques, we used inverse
distance weighting (IDW) and multivariate adaptive regres-
sion splines (MARS). As explained in Section 2, we used
MARS instead of neural networks, since ANNs and other
machine learning techniques would require similar adjust-
ments as the GP algorithm which was beyond the scope of
this work.

All analysis techniques are implemented as analysis
adapter for the SoPeCo. In the following, we present all
three techniques and explain the configuration parameters
of the adapters besides the configuration of dependent and
independent parameters.

IDW is a multivariate interpolation technique. Interpo-
lation techniques estimate the value of unknown points as
a combination of existing points. IDW uses a weight func-
tion for this combination, where the weight for each existing
point is inverse to the distance between that point and the
estimated point. IDW uses all surrounding points for the
interpolation, meaning that all known points influence the
estimation, but closer points with higher effects (see [22]).
The IDW adapter has two additional configuration param-
eters: A strategy for calculating the distance between two
points and an exponent for the distance metric to express
their influence. We used the Euclidean norm as distance and
a weight exponent of 2.

MARS is a non-parametric regression technique that cre-
ates models by combining piecewise linear basis functions.
The algorithm creates the prediction model in two steps:
First, it iteratively builds a model by combining the exist-
ing model with new basis functions. The second step uses
backward deletion to prune the model. This reduces the
model complexity and avoids an overfitting of the model
(see [11]). The MARS analysis adapter does not implement
the algorithm itself, but delegates the call to a corresponding
module of the statistic tool R [1].

The GP analysis adapter implements the GP algorithm
as presented in this work. The implementation is based on
the ECJ framework [16]. The user must configure the func-
tion sets (“Basic”and/or“Extended’) as described in Section
4.6. We used both function sets for this evaluation scenario.
Since the GP algorithm is non-deterministic, the adapter
implements an internal loop which repeats the evolution for
a configurable number of times for each function set. After
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Figure 6: Model accuracies of the one-dimensional
synthetic function

all iterations, the adapter returns the best model based on
the accuracy on internal test sets. We configured 5 itera-
tions and thus one call of the adapter leads to 10 evolutions:
5 with the “Basic” function set and 5 with the “Extended”
function set. Despite this mechanism, the results of the
adapter are still non-deterministic. Thus, we called the GP
analysis adapter 10 times for this evaluation.

In the following, we present the results of our twofold
evaluation. The first part is based on a synthetic function
and the second part uses realistic measurement results of a
MySQL database system.

5.1 Synthetic Function
To illustrate the results of GP, IDW and MARS, we ap-

plied the different techniques to a synthetic function with
only one independent parameter (one-dimensional). The
target function is piece wisely defined as:

f(x) =

⎧⎪⎨
⎪⎩
x, if x ≤ 45,

45, if 45 < x ≤ 55,

0.1 ∗ (x− 55)2 + 45, if x > 55.

(4)

The function is linear in the first part, constant in the middle
part and quadratic in the last part. The training set for all
three techniques contains 21 equally-distributed points with
a distance of Δx = 5.

We used the averaged relative error (see Equation 3) as a
metric to compare the three techniques. The averaged rela-
tive error is based on a validation set containing every value
for x in the interval [0, 100] with a step width of Δx = 0.1
and the corresponding f(x). This leads to a total validation
set size of 1001.

Figure 6 depicts the averaged relative errors of the results
derived by the three different analysis techniques. We used
a boxplot to illustrate the results from all 10 runs of the
GP adapter. The results ranged from 1.20% up to 4.66%,
with a median value of 3.72%. IDW lead to a model with
6.32% averaged relative error and MARS to a model with
22.66%. The worst model returned by the GP adapter is
still 1.66% better than the result of IDW and 18% better
than the MARS model.

Figure 7 shows the resulting functions of the IDW and
MARS analysis and one result of the 10 GP runs. The
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Figure 7: One-dimensional synthetic function illus-
trating the results of IDW, MARS and GP

circles illustrate the training set containing 21 points. The
dotted line represents the MARS result, which is composed
of three linear functions. The first linear function perfectly
fits the target function, whereas the second part approxi-
mates the constant part and the third the polynomial part.
The dashed line shows the IDW result and the principle
of IDW. Since IDW is an interpolation technique, every
point of the training is intersected. The solid line depicts
the third-best result of the GP analysis with an averaged
relative error of 1.62%. This result is composed of 5 linear
functions: One represents the linear part and one the
constant part. The other three functions approximates the
polynomial part of the target function.

5.2 Case Study: MySQL Database
In this part of the evaluation, we used measurements of a

MySQL 5.5 [17] database to derive a software performance
curve which describes the response times for different query
types. We start the section with explaining the experiment
setup for retrieving the measurements. Next, we explain
two sampling methods (equidistant and random) which were
used to retrieve points for the training set. Finally, we
present and discuss the results of all three analysis tech-
niques.

The MySQL 5.5 database was deployed on a machine hav-
ing an Intel Core 2 Duo Processor with 2 × 2GHz, 2GB
RAM and a SATA hard disk with 5400RPM and 8MB buffer
(Hitachi-Travelstar). The database was accessed via LAN
from a remote machine. The Software Performance Cockpit
was used to automate the measurements. To receive sta-
ble results, each query was repeated for 50 times and the
arithmetic average was used as training data.

The target metric is the response time and the input pa-
rameters were restricted to six parameters expressing the
query type, the queue length and the queue structure. The
first parameter (AccessType) differentiates between reading
access (Read) and writing access (Update). The table size
is fixed to 100,000 rows in this evaluation scenario. The
second parameter (NumberOfRequestedLines) defines how
many rows are accessed and is set to 1 (12,000) to approx-
imate small (large) requests. The remaining four parame-
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Figure 8: Model accuracies when using different
analysis methods and training sets

ters (NumRead_1, NumRead_12000, NumUpdate_1 and NumUp-

date_12000) describe the queue length and structure of the
database. The value for each parameter indicates how many
threads of the corresponding query type (Read/Update
1/12,000 lines) are currently in the queue. The domain for
these parameters was defined by the interval [0,10]. The
queue length can be derived by totaling all four parameters
and was restricted to 10 in this scenario. The semantics of
the parameters also imply that the thread counter for the
current target query type must be larger than zero. For ex-
ample, if we observe a small read job, NumRead 1 must be
larger than zero.

These parameter and domain definitions and the con-
straints, lead to 2,860 valid parameter combinations for this
scenario. We measured all 2,860 points of the parameter
space and used a subset as training set. The complete set
was used as validation set to calculate the averaged relative
error for all derived models. We used two different sampling
types: random and equidistant. The former one randomly
picks points among all valid points and adds them to the
training set. These training sets were sampled once and then
used as basis for all analysis techniques. The latter technique
systematically creates all valid parameter combinations by
varying all parameters using a minimum, maximum and a
step width. This technique results in an equidistant distri-
bution of points in the parameter space. We created three
random training sets containing 20% (572 tuples), 10% (280
tuples) and 4% (120 tuples) of all 2,860 measurements and
two equidistant training sets using a step width of s = 2
and s = 3 for all thread parameters, leading to 280 and 64
tuples.

Figure 8 depicts the model accuracies for different anal-
ysis methods and training sets. IDW returned the worst
results with model accuracies between 57% and 84%. As
expectd, the accuracy increases, when increasing the size
of the training set. Surprisingly, it appears that randomly-
sampled training sets lead to better model accuracies than
equidistantly-sampled training sets (compare columns“10%”
and “s=2” of Figure 8). The accuracies of the MARS results
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Figure 9: Relative errors of predictions for all
points in the validation set using the 4% randomly-
distributed training set

are between IDW and GP and vary between 28% and 53%.
The MARS results are also proportional to the training set
size and random sampling performs better than equidistant
sampling (“10%”and“s=2”). It is noticeable that the “s=3”-
training set with 64 tuples leads to a better model than the
4%-training set with 120 tuples. The boxplots for GP rep-
resent the results of 10 independent runs of this analysis
method (not to be mixed up with the internal repeats to re-
ceive one result). The models created with GP outperform
the IDW and MARS models in most cases (except 2 models
with the “s=3”-training set).

The GP analysis appears to be more stable towards the
training set size. The medians of the model accuracies for
all 10 runs vary between 14% and 21% for all training sets
(except the “s=3”-training set with a median of 34%). The
errors among all 10 calls using the same training set vary
up to 10% for the randomly-sampled training sets. Due to
the almost constant model accuracies, independent of the
training set size (compare columns “20%”, “10%” and “4%”
of Figure 8), we assume that the remaining model errors
are caused by measurement errors and are representing the
noise and error in the training data. Higher accuracies are
not desirable in this scenario as they would result in over
fitting.

We compare the models created using the 4% randomly-
distributed training set in more detail: The MARS model
has an averaged relative error of 52.3% and IDW of 70.0%.
The averaged relative error for all 10 GP models are be-
tween 14.0% and 23.0%. Besides the averaged relative er-
ror of a software performance curve, other metrics such as
the variance of the relative errors among all predictions are
meaningful. Instead of using the variance, we used a box-
plot to visualize the quality for single predictions. Figure 9
depicts the relative errors for predictions of all points in
the validation set. The model marked with “GP” is the
median model (based on the averaged relative error for all
predictions) among all 10 models created for this evalua-
tion. The dispersion of the GP model is the lowest and 75%
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Figure 10: Differences of model accuracies between
initial and optimized GP algorithm

of all predictions have a relative error smaller than 22.1%.
The worst prediction has a relative error of 226.2%. For
MARS (IDW), 75% of all predictions have relative errors
below 40.7% (92.5%) and the error of the worst prediction
is 1723% (706.7%).

5.3 Impact of the GP Optimization
In this section, we use the experiment setting described

above to validate the influence of all parameter optimiza-
tions for the GP algorithm and all applied techniques to
prevent overfitting. For this purpose, we built models using
the GP algorithm without any techniques to prevent overfit-
ting and the initial parameter settings (51 generations with
a population size of 1024; no constant mutation; only arith-
metic functions). Due to the non-determinism, we repeated
the execution 10 times with the unmodified GP algorithm
(“GP-Old”) using the 10% and 4% training set.

Figure 10 depicts the results. The optimized GP algo-
rithm, including the techniques to prevent overfitting, leads
to more accurate models. The median runs have a differ-
ence of 12.6% (for the 10% training set) and 11.9% (for the
4% training set). This result shows, that the effort we put
in optimizing the GP algorithm was justified. All optimiza-
tions, including the techniques to prevent overfitting, caused
improvements of the derived software performance curves of
about 12%.

6. DISCUSSION
The evaluation shows, that the models derived by GP are

more accurate than the models created by MARS and IDW.
The results also reveal that the algorithm performs well with
only a few number of measurement samples. We integrated
techniques to reduce the undesired effect of overfitting. The
symbolic regression approach does not only find coefficients
but simultaneously finds a structure for the model. Hence,
the approach does not take any assumptions about the de-
pendencies between the input and output parameters such
as linearity in linear regression. The algorithm is capable of
finding complex dependencies and might perform automatic
parameter selection by using only variables which highly
contribute to the model quality in terms of the fitness value.
The experiments performed in the third goal (G3) reveal

that the algorithm also performs well for high-dimensional
problems (tested up to ten dimensions).

The analysis method is, by nature, non-deterministic.
Thus, it is necessary to repeat the analysis several times and
finally select the best performance curve (based on a test
set). To minimize this limitation, we integrated this loop
including the selection step in our analysis adapter for the
Software Performance Cockpit. The number of iterations
can be configured by the user depending on the available
time for the analysis step. However, the repeated execution
of our algorithm leads to longer execution times compared to
MARS and IDW. Another limitation of our approach is that
the resulting formulas, representing the performance curve,
are very complex and thus are not immediately comprehen-
sible for the Performance Analyst. To overcome this lack of
transparency, the Performance Analyst might simplify the
resulting formula using tools such as MATLAB [25] in order
to further analyze and interpret the formula manually.

7. CONCLUSION
In this paper, we examined the use of genetic program-

ming as analysis method for deriving software performance
curves. The concepts of evolutionary algorithms are very
intuitive, but the adoption to a specific problem is not. We
employed the GQM approach to systematically derive exper-
iments for the optimization of the GP parameters. These
optimizations include aspects such as constant mutations,
population size and number of generations, function sets and
techniques to prevent overfitting. In a final evaluation, we
show that the optimized GP algorithm outperforms MARS
and IDW in terms of model accuracy. A comparison of the
optimized GP algorithm with the initial GP algorithm re-
veals an increase in the model accuracy of around 12%.

Our GP approach can be used by Performance Analysts
to derive more accurate software performance curves. The
complexity of the approach is hidden in an analysis adapter
for the SoPeCo and thus the approach is easy-to-use just
by configuration. We do not claim the GP approach fits for
all analysis scenarios. Moreover, we see the approach as an
additional analysis method which has its advantages in its
flexibility. E.g., if a linear dependency between the parame-
ters is known, MARS or a simple linear regression might be
more appropriate. But especially if no parameter dependen-
cies are known the GP approach might be an appropriate
analysis method.

In our future work, we plan to apply this GP analysis also
as a method to estimate parameter-dependent resource de-
mands. Concerning the evaluation, we are currently work-
ing on a larger set of case studies comprising of standard
benchmarks (e.g., SPECjvm2008) and SAP internal appli-
cations where we additionally compare multiple inference
techniques such as CART and Kriging. Furthermore, more
research is necessary to automatically identify the most in-
fluencing factors on the performance in order to reduce the
number of measurements and to handle the curse of dimen-
sionality. Concerning a further optimization of the GP al-
gorithm, it is necessary to investigate the mutual dependen-
cies between algorithm parameters (e.g., between mutation
rate and number of generations). Additional improvements
might be achieved by experimenting with other techniques
to prevent overfitting and evaluate their efficiency using syn-
thetic and realistic data.
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