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118 00 Prague 1, Czech Republic 182 07 Prague 8, Czech Republic

{bulej,bures,keznikl,koubkova,podzimek,tuma}@d3s.mff.cuni.cz

ABSTRACT
Compared to functional unit testing, automated performance
testing is difficult, partially because correctness criteria are
more difficult to express for performance than for function-
ality. Where existing approaches rely on absolute bounds
on the execution time, we aim to express assertions on code
performance in relative, hardware-independent terms. To
this end, we introduce Stochastic Performance Logic (SPL),
which allows making statements about relative method per-
formance. Since SPL interpretation is based on statistical
tests applied to performance measurements, it allows (for a
special class of formulas) calculating the minimum probabil-
ity at which a particular SPL formula holds. We prove basic
properties of the logic and present an algorithm for SAT-
solver-guided evaluation of SPL formulas, which allows opti-
mizing the number of performance measurements that need
to be made. Finally, we propose integration of SPL formulas
with Java code using higher-level performance annotations,
for performance testing and documentation purposes.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Assertion check-
ers; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Assertions

General Terms
Algorithms, Theory
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performance testing, regression benchmarking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

1. INTRODUCTION
Closing the gap between code and documentation is an

important trend that can be found in modern software en-
gineering approaches, such as test driven development [1]
or design by contract [2]. In both cases, the project code
is imbued with additional information, capturing developer
assumptions or intended usage. Such information usually
takes the form of assertions, unit tests, or preconditions and
postconditions associated with individual methods. Besides
enhancing the documentation, this information lends itself
to automatic testing or formal verification, which can be
easily incorporated into the development process. By using
tools such as JUnit [3] or Google Test [4] for testing, and Java
Modeling Language [5] or Microsoft Verifier for Concurrent
C [6] for verification, the developers gain more freedom in
exploring design choices and evolve existing design to meet
new requirements. Should they make a mistake, an auto-
matic safety net will promply inform them of assertion or
contract violations, or newly introduced bugs.

However, the tools available today are mostly geared to-
wards functional testing. We believe there is little doubt
that similar support for performance testing – that is, being
able to express performance-related developer assumptions
or intended usage in code and test or verify them automat-
ically – would be beneficial. Yet it is, unfortunately, more
difficult to do – for multiple reasons:

• Except in special application domains, such as real-
time systems, the boundary between sufficient and in-
sufficient performance is not sharp. It is therefore more
difficult to specify conditions that should be tested.

• Performance is typically platform-dependent, but the
conditions that should be met need to be more general,
lest their utility is severely limited.1

• Performance testing can be more difficult to configure
and execute than functional testing.

In past work [7, 8, 9], we focused on the execution and eval-
uation aspects of performance testing. Here, we contribute
to the ability to specify conditions that should be tested.
1Actually, test results are also platform-dependent and
therefore of potentially limited utility. On the other hand,
the fact that a test is only testing a particular execution
on a particular platform is generally accepted, this issue is
therefore not unique to performance.
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To avoid expressing conditions in a platform-dependent
manner, we have decided to rely on relative terms – we de-
velop a special many-sorted first-order logic that allows us
to express statements about relative performance of func-
tions or methods in code. The logic, here called Stochastic
Performance Logic (SPL), is interpreted using statistical hy-
pothesis testing, which allows calculating the probability at
which a particular SPL statement holds.

Besides introducing the logic and its interpretation, we
also prove basic properties of the logic and present an al-
gorithm for SAT-solver-guided evaluation of SPL formulas,
which allows optimizing the number of performance measure-
ments that need to be made. We also propose to integrate
SPL formulas with Java code using annotations.

Among potential applications of our work, we see the pos-
sibility to document developer assumptions related to perfor-
mance – for example, when the developer implements a user
interface method with the assumption that caching a bitmap
representation of a picture is faster than decoding the pic-
ture on each draw, that assumption can be represented in
code and tested automatically. The assumptions can also be
interpreted as a contract between code and external compo-
nents and tested during integration, making the integration
process more reliable. Another useful application is an aid
in debugging, similar to traditional assertions.

The paper is structured as follows. We define the Stochas-
tic Performance Logic (SPL) in Section 2, to provide a for-
mal ground for statements about performance. To illustrate
the semantics of SPL, we introduce a natural interpretation
of the logic in Section 3, while for use with real-world perfor-
mance data, we define sample-based SPL interpretation in
Section 4. In Section 5 we discuss the issues related to statis-
tical errors when evaluating SPL formulas and show that for
a special group of practically relevant formulas, the proba-
bility of error can be bounded. The fitness of SPL for perfor-
mance comparisons is discussed and evaluated in Section 6.
For efficient evaluation of SPL formulas in performance unit
testing, we introduce a SAT-solver-guided algorithm in Sec-
tion 7, and outline the potential integration of SPL into Java
programs in Section 8. In closing, we discuss related ap-
proaches in Section 9, and conclude the paper in Section 10.

2. STOCHASTIC PERFORMANCE LOGIC
To avoid platform dependency found in statements ex-

pressing that a method completes its operation in certain
time bounds, we need to compare the performance of one
method to performance of some other method. Thus even
when the performance of both methods changes with the un-
derlying platform, the relation between the two should hold
and if it does not, it is certainly worth developer attention.

To achieve this, we formally define the performance of
a method as a random variable representing the time it
takes to execute the method with random input parame-
ters. The nature of the random input is formally represented
by workload class and method workload. The workload is
parametrized by workload parameters, which capture the di-
mensions along which the workload can be varied, e.g. array
size, matrix sparsity, numberof vertices in a graph, etc.

Definition 1. Workload class is a function L : P n →
(Ω→ I), where for a given L, P is a set of workload param-
eter values, n is the number of parameters, Ω is a sample

space, and I is a set of objects (method input arguments) in
a chosen programming language.

For later definitions we also require that there is a total
ordering over P .

Definition 2. Method workload is a random variable Lp1,...,pn

such that Lp1,...,pn = L(p1, . . . , pn) for a given workload
class L and parameters p1, . . . , pn.

Unlike conventional random variables that map observa-
tions to a real number, method workload is a random vari-
able that maps observations to object instances, which serve
as random input parameters for the method under test. If
necessary, the developer may adjust the underlying stochas-
tic process to obtain random input parameters representing
domain-specific workloads, e.g., partially sorted arrays.

To demonstrate the above concepts, let us assume we want
to measure the performance of a method S, which sorts an
array of integers. The input parameters for the sort method
S are characterized by workload class LS : N+ → (ΩS → IS).
Let us assume that the workload class LS represents an ar-
ray of random integers, with a single parameter determin-
ing the size of the array. The method workload returned
by the workload class is a random variable, whose obser-
vations are instances of random arrays of given size. For
example, method inputs in form of random arrays of size
1000 will be obtained from observations of random variable
L1000

S : ΩS → IS = LS(1000).
Note that without loss of generality, we assume in the

formalization that there is exactly one LM for a particular
method M and that M has just one input argument.

With the formal representation of a workload in place, we
now proceed to define the method performance.

Definition 3. Let M(in) be a method in a chosen pro-
gramming language and in ∈ I its input argument. Then
method performance PM : P n → (Ω→ R) is a function that
for given workload parameters p1, . . . , pn returns a random
variable, whose observations correspond to execution dura-
tion of method M with input parameters obtained from ob-
servations of Lp1,...,pn

M = LM (p1, . . . , pn), where LM is the
workload class for method M .

We can now define the Stochastic Performance Logic (SPL)
that will let us make comparative statements about method
performance under a particular method workload. To facil-
itate comparison of method performance, SPL is based on
regular arithmetics, in particular on axioms of equality and
inequality adapted for the method performance domain.

Definition 4. SPL is a many-sorted first-order logic de-
fined as follows:

• There is a set FunPe of function symbols for method
performances with arities P n → (Ω→ R) for n ∈ N+.

• There is a set FunT of function symbols for perfor-
mance observation transformation functions with arity
R→ R.

• The logic has equality and inequality relations =, ≤
for arity P × P .

• The logic has equality and inequality relations ≤p(tl,tr),
=p(tl,tr) with arity (Ω→ R)× (Ω→ R), where tl, tr ∈
FunT .
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• Quantifiers (both universal and existential) are allowed
only over finite subsets of P .

• For x, y, z ∈ P and PM , PN ∈ FunPe, the logic has
the following axioms:

x ≤ x (1)

(x ≤ y ∧ y ≤ x)↔ x = y (2)

(x ≤ y ∧ y ≤ z)→ x ≤ z (3)

For each pair tl, tr ∈ FunT such that

∀o ∈ R : tl(o) ≤ tr(o), there is an axiom

PM (x1, . . . , xm) ≤p(tl,tr) PM (x1, . . . , xm)

(4)

(PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn)∧
PN (y1, . . . , yn) ≤p(tn,tm) PM (x1, . . . , xm))↔

PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn)

(5)

Axioms (1)–(3) come from arithmetics, since workload pa-
rameters (P ) are essentially real or integer numbers. In anal-
ogy to (1)–(2), axiom (4) may be regarded as generalised re-
flexivity, and axiom (5) shows the correspondence between
=p and ≤p. An analogy of (3), i.e. transitivity, cannot be
introduced for =p and ≤p, because it does not hold for all
interpretations of SPL (see Section 4).

Note that even though we currently do not make use of
the axioms in our approach, they make the properties of the
logic more obvious (in particular the performance relations
=p and ≤p). Specifically, the lack of transitivity for perfor-
mance relations ensures that SPL formulas can only express
statements that are consistent with hypothesis testing ap-
proaches used in the SPL interpretation.

Using the logic defined above, we would like to express
assumptions about method performance in the spirit of the
following examples:

Example 1. “On arrays of 100, 500, 1000, 5000, and 10000
elements, the sorting algorithm A is at most 5% faster and
at most 5% slower than sorting algorithm B.”

∀n ∈ {100, 500, 1000, 5000, 10000} :

PA(n) ≥p(id,λx.0.95x) PB(n) ∧ PA(n) ≤p(id,λx.1.05x) PB(n)

Example 2. “On buffers of 256, 1024, 4096, 16384, and
65536 bytes, the Rijndael encryption algorithm is at least
10% faster than the Blowfish encryption algorithm and at
most 200 times slower than array copy.”

∀n ∈ {256, 1024, 4096, 16384, 65536} :

PRijndael(n) ≤p(id,λx.0.9x) PBlowfish(n)∧
PRijndael(n) ≤p(id,λx.200x) PArrayCopy(n)

For compact in-place representation of performance ob-
servation transformation functions, we use the lambda nota-
tion [10], with id as a shortcut for identity, id = λx.x.

To ensure correspondence between SPL formulas in Exam-
ples 1 and 2 and their textual description, we need to define
SPL semantics that provides the intended interpretation.

3. SPL INTERPRETATION
A natural way to compare random variables is to compare

their expected values. Since method performance is a ran-
dom variable, it is only natural to base SPL interpretation,

and particularly the interpretation of equality and inequal-
ity relations, on the expected value of method performance.
Other (valid) interpretations are possible, but for simplicity,
we first define the expected-value-based interpretation and
prove its consistency with the SPL axioms.

Each function symbol fPe ∈ FunPe is interpreted as a
method performance, i.e. an n-ary function that for input
parameter p1, . . . , pn returns a random variable Ω→ R, the
observation of which corresponds to performance observa-
tion as defined in Definition 3.

Each function symbol fT ∈ FunT is interpreted as a per-
formance observation transformation function, which is a
function R → R. In the context of equality and inequal-
ity relations between method performances, fT represents
transformation (e.g. scaling) of the observed performance –
e.g., statement “M is 2 times slower than N ” is expressed as
PM =p(id,λx.2x) PN , where fT1 = id and fT2 = λx.2x.

The relational operators ≤ and = for arity P × P are
interpreted in the classic way, based on total ordering of P .

The interpretation of the relational operators =p and ≤p

is defined as follows:

Definition 5. Let tm, tn : R→ R be performance observa-
tion transformation functions, PM and PN be method perfor-
mances, and x1, . . . , xm, y1, . . . , xn be workload parameters.
Then the relations ≤p(tm,tn), =p(tm,tn): (Ω→ R)× (Ω→ R)
are interpreted as follows:

PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn) iff

E(tm(PM (x1, . . . , xm))) ≤ E(tn(PN (y1, . . . , yn)));

PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn) iff

E(tm(PM (x1, . . . , xm))) = E(tn(PN (y1, . . . , yn))),

where E(X) denotes the expected value of the random
variable X, and tm(X) denotes a random variable derived
from X by applying function tm on each observation of X.2

At this point, it is clear that the expected-value-based
interpretation of SPL has the required semantics. However,
we have yet to show that this interpretation is consistent
with the SPL axioms.

The following lemma and theorem show that the interpre-
tation of =p and ≤p, as defined by Definition 5, is consistent
with axioms (4) and (5). The consistency with other axioms
trivially results from the assumption of total ordering on P .

Lemma 1. Let X, Y : Ω → R be random variables, and
tl, tr, tx, ty : R→ R be performance observation transforma-
tion functions. Then the following holds:

(∀o ∈ R : tl(o) ≤ tr(o))→ E(tl(X)) ≤ E(tr(X))

(E(tx(X)) ≤ E(ty(Y )) ∧ E(ty(Y )) ≤ E(tx(X)))↔
E(tx(X)) = E(ty(Y ))

2Note that the effect of the performance observation trans-
formation function on distribution parameters is potentially
complex. We assume that in practical applications, the per-
formance observation transformation functions will be lim-
ited to linear shift and scale.
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Proof. The validity of the first formula follows from the
definition of the expected value. Let f(x) be the probability
density function of random variable X. Since f(x) ≥ 0, it
holds that

E(tl(X)) =

Z ∞

−∞
tl(x)f(x)dx ≤

Z ∞

−∞
tr(x)f(x)dx = E(tr(X))

The validity of the second formula follows naturally from the
properties of total ordering on real numbers.

Note that we assumed M to be a continuous random vari-
able. The proof would be the same for a discrete random
variable, except with a sum in place of the integral.

Theorem 1. The interpretation of performance relations
≤p and =p, as given by Definition 5, is consistent with ax-
ioms (4) and (5).

Proof. The proof of the theorem naturally follows from
Lemma 1 by substituting PM (x1, . . . , xm) for X and
PN (y1, . . . , yn) for Y .

While the above interpretation illustrates the idea behind
SPL, it assumes that the expected value E(tl(X)) can be
computed. Unfortunately, this assumption hardly ever holds,
because the distribution function of X is typically unknown,
and so is the expected value. While it is possible to measure
durations of method invocations for the purpose of method
performance comparison, the type of the distribution and
its parameters remain unknown.

4. SAMPLE-BASED INTERPRETATION
To avoid the problem with unknown distribution function

and the expected value of a random variable, we turn to
sample based methods that work with parameter estimates
derived from measurements. This leads us to a sample-based
interpretation of SPL that relies solely on the observations
of random variables. Due to limited applicability of the
expected-value-based interpretation, we will only deal with
the sample-based interpretation in the rest of the paper.

The basic idea is to replace the comparison of expected
values in the interpretation of ≤p and =p by a statistical test.
Given a set of observations of method performances (i.e. ran-
dom variables), the test will allow us to determine whether
the mean values of the observed method performances are
in a particular relation (i.e., ≤p or =p).

However, to formulate the sample-based interpretation,
we first need to fix the set of observations for which the
relations will be interpreted. We therefore define an exper-
iment, denoted E , as a finite set of observations of method
performances under a particular method workload.

Definition 6. Experiment E is a collection ofOPM (p1,...,pm),

whereOPM (p1,...,pm) = {P 1
M (p1, . . . , pm), . . . , P V

M (p1, . . . , pm)}
is a set of V observations of method performance PM sub-
jected to workload Lp1,...,pm

M , and where P i
M (p1, . . . , pm) de-

notes i-th observation of performance of method M .

Having established the concept of an experiment, we can
now define the sample-based interpretation of SPL (note
that it depends on a particular experiment).

The interpretation is the same as given in Section 3, only
Definition 7 is used to assign semantics to method perfor-
mance relations.

Definition 7. Let tm, tn : R→ R be performance observa-
tion transformation functions, PM and PN be method perfor-
mances, x1, . . . , xm, y1, . . . , yn be workload parameters, and
α ∈ 〈0, 0.5〉 be a fixed significance level.

For a given experiment E , the relations ≤p(tm,tn) and
=p(tm,tn) are interpreted as follows:

• PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn) iff the null
hypothesis

H0 : E(tm(P i
M (x1, . . . , xm))) ≤ E(tn(P j

N (y1, . . . , yn)))

cannot be rejected by one-sided Welch’s t-test [11] at
significance level α based on the observations gathered
in the experiment E ;
• PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn) iff the null

hypothesis

H0 : E(tm(P i
M (x1, . . . , xm))) = E(tn(P j

N (y1, . . . , yn)))

cannot be rejected by two-sided Welch’s t-test at sig-
nificance level 2α based on the observations gathered
in the experiment E ;

where E(tm(P i
M (. . .))) and E(tn(P j

N (. . .))) denote the mean
value of performance observations transformed by function
tm or tn, respectively.

Briefly, the Welch’s t-test rejects with significance level α
the null hypothesis X = Y against the alternative hypothe-
sis X 6= Y if

˛̨
˛̨
˛̨

X − Yq
S2

X
VX

+
S2

Y
VY

˛̨
˛̨
˛̨ > tν,α/2

and rejects with significance level α the null hypothesis X ≤
Y against the alternative hypothesis X > Y if

X − Yq
S2

X
VX

+
S2

Y
VY

> tν,α

where Vi is the sample size, S2
i is the sample variance, tν,α

is the (1 − α)-quantile of the Student’s distribution with ν
levels of freedom, with ν computed as follows:

ν =

“
S2

X
VX

+
S2

Y
VY

”2

S4
X

V 2
X

(VX−1)
+

S4
Y

V 2
Y

(VY −1)

Although Welch’s t-test formally requires normal distribu-
tion of X and Y , it is robust to violations of normality due
to the Central Limit Theorem.

As in Section 3, we need to show that the sample-based
interpretation of SPL is consistent with axioms (4) and (5).

Theorem 2. The interpretation of relations ≤p, and =p,
as given by Definition 7, is consistent with axiom (4) for a
given fixed experiment E.

Proof. For sake of brevity, we will denote the sample
mean E(tl(P i

M (x1, . . . , xm))) as Xtl and the sample variance
Var(tl(P i

M (x1, . . . , xm))) as S2
tl; Xtr and S2

tr are defined in
a similar way.

Assuming ∀o ∈ R : tl(o) ≤ tr(o), we have to prove that
the null-hypothesis H0 : Xtl ≤ Xtr cannot be rejected by
the Welch’s t-test.
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Based on the formulation of the t-test, it means that the
null-hypothesis can be rejected if

Xtl −Xtrq
S2

tl
V

+
S2

tr
V

> tν,α

where V is the number of samples P i
M (x1, . . . , xm) in the

experiment E .
Since the denominator is a positive number, the whole

fraction is non-positive. However, the right hand side tν,α

is a non-negative number since we assumed that α ≤ 0.5.
This means that the inequality never holds and thus the
null-hypothesis cannot be rejected.

Theorem 3. The interpretation of relations ≤p, and =p,
as given by Definition 7, is consistent with axiom (5) for a
given fixed experiment E.

Proof. For sake of brevity, we will denote the sample
mean E(tx(P i

X(x1, . . . , xm))) as X and the sample variance
Var(tx(P i

X(x1, . . . , xm))) as S2
X ; Y and S2

Y are defined in a
similar way.

By interpreting axiom (5) according to Definition 7, we
get the following statements:

PM (x1, . . . , xm) ≤p(tm,tn) PN (y1, . . . , yn)

←→ X − Yq
S2

X
VX

+
S2

Y
VY

≤ tνX,Y ,α

PN (y1, . . . , yn) ≤p(tn,tm) PM (x1, . . . , xm)

←→ Y −Xq
S2

Y
VY

+
S2

X
VY

≤ tνY,X ,α

PM (x1, . . . , xm) =p(tm,tn) PN (y1, . . . , yn)

←→ −tνX,Y ,α ≤ X − Yq
S2

X
VX

+
S2

Y
VY

≤ tνX,Y ,α

Thus, we need to show that

X − Yq
S2

X
VX

+
S2

Y
VY

≤ tνX,Y ,α ∧ Y −Xq
S2

Y
VY

+
S2

X
VY

≤ tνY,X ,α

←→ −tνX,Y ,α ≤ X − Yq
S2

X
VX

+
S2

Y
VY

≤ tνX,Y ,α

This holds, because νX,Y = νY,X and thus

Y −Xq
S2

Y
VY

+
S2

X
VY

≤ tνY,X ,α ←→ −tνX,Y ,α ≤ X − Yq
S2

X
VX

+
S2

Y
VY

Note that, as indicated in Section 2, the transitivity (i.e.
(PX(. . .) ≤p(tx,ty) PY (. . .) ∧ PY (. . .) ≤p(ty,tz) PZ(. . .)) →
PX(. . .) ≤p(tx,tz) PZ(. . .)) does not hold for the sample-
based interpretation. This can be shown by considering the
following observations and performing single-sided tests at
significance level α = 0.05: OPX = {2, 4}, OPY = {−1, 1},
OPZ = {−4,−2}.

5. CORRECTNESS OF EVALUATION
The valuation of the relations =p and ≤p in the sample-

based interpretation of an SPL formula depends on the re-
sults of statistical tests applied to the samples of method
performance collected during an experiment. Each statisti-
cal test performed to determine the valuation of a particular
relation in the SPL formula may introduce either a Type I
(true null hypothesis rejected) or Type II (false null hypoth-
esis not rejected) error. As a consequence, the valuation of a
formula in SPL with sample-based interpretation is correct
only with some probability.

This probability could be estimated from the probabilities
of introducing a Type I or Type II error in each test. For
Type I error, the probability equals the test significance level
and is 2α for =p and α for ≤p. For Type II error, the
probability is unknown and cannot be determined. It is
therefore impossible, in general, to calculate the probability
that the valuation of a formula is incorrect.

In some cases, for example when the valuation of a for-
mula only depends on a rejection of a particular test, an
estimate of Type I error based on the significance level can
be made. However, when interested in the error potentially
introduced by the evaluation of the whole formula, the cumu-
lative nature of errors introduced by individual tests must
be accounted for. For example, when the formula

PM (10) ≤p(id,id) PN (10) ∧ PM (50) ≤p(id,id) PN (50)

evaluates to“false”, it is possible that the first, or the second,
or both tests introduced a Type I error into the evaluation.
Conversely, when the formula evaluates to “true”, some of
the tests may have introduced a Type II error. These two
types of errors may also occur at the same time, for example
when a formula contains terms with and without negation.

To bound the probability of incorrect evaluation, we define
the set of relations needed for the formula evaluation:

Definition 8. A set of performance relations R is a set of
all tuples 〈¦, tm, tn, PM (ẋ1, . . . , ẋm), PN (ẏ1, . . . , ẏn)〉, where
¦ is either =p or ≤p and ẋi, ẏj are particular fixed workload
parameter values.

Definition 9. For a given formula F , we define the evalua-
tion skeleton as a partial function SF : R→ {True, False},
such that F can be evaluated using just the valuations given
by SF . The skeleton is minimal in the sense that no rela-
tion can be removed from SF without breaking the skeleton
property of being sufficient to evaluate formula F .

Definition 10. For a given formula F , we define STrue
F

as a set of all evaluation skeletons under which the formula
evaluates to “true”. Similarly SFalse

F is a set of all evaluation
skeletons under which the formula evaluates to “false”.

The probability that a formula has been evaluated incor-
rectly can be then estimated using the idea behind Bonfer-
roni correction [12]. For example, when a formula evaluates
to “true”, we can bound the probability P (F is “true” | F
does not hold) by summing up α (i.e. Type I error proba-
bility) or β (i.e. Type II error probability) for all tests that
may be needed for the evaluation.

Since only α is known, we can effectively bound the proba-
bility only for formulas that are evaluated solely as a result of
test rejections. For example, if the formula PM (10) ≤p(id,id)
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PN (10) ∧ PM (50) ≤p(id,id) PN (50) is “false”, we know that
this valuation was based only on test rejections.

This is formalized by the following theorem.

Theorem 4. Let F be an SPL-formula. If every evalua-
tion of formula F to “true” is based only on rejections (i.e.
∀SF ∈ STrue

F : range(SF ) = {False}), then

P (F is “true” | F does not hold) ≤
X

∀R∈RT rue
F

PS(R)

where RTrue
F =

S
SF∈ST rue

F
domain(SF ) is the set of all re-

lations that may be used for evaluating the formula to “true”,
and PS(R) is the significance level for a test, i.e. 2α for =p,
and α for ≤p.

Similarly, if every evaluation of formula F to “false” is
based only on rejections,

P (F is “false” | F holds) ≤
X

∀R∈RF alse
F

PS(R)

where RFalse
F =

S
SF∈SF alse

F
domain(SF ).

Proof. The probability P (F is “true” | F does not hold),
may be bounded by the probability that at least one of the
tests from RTrue

F gave an incorrect Type I result (the test
rejected a true null hypothesis). This probability can bound
using Boole’s inequality as:

P

0
@ [

R∈RT rue
F

Err(R)

1
A ≤

X

R∈RT rue
F

P (Err(R))

where Err(R) denotes an event “Type I error occurred in
test for R”. This inequality holds even for tests which are
not statistically independent.

The bound for the probability P (F is “false” | F holds) can
be proved in the same way.

Although Theorem 4 is only applicable to a special class of
formulas, it appears sufficient for practical use. Expressing
simple assumptions (along the lines presented in the exam-
ples) using SPL will result in formulas simple enough to
allow calculating the probability of incorrect evaluation.

Considering Examples 1 and 2, when the formula evalu-
ates to “false”, we can calculate the probability of correct
evaluation based solely on the knowledge of α. In fact, the
probability is (1− 10α) for both cases.

It is also possible to transform the formulas to similar
dual formulas for which the probability of correctness can be
determined when they evaluate to “true”. This can be done
by using strict inequalities instead of non-strict ones, which
will reverse the null hypothesis, so the underlying test will
need to reject the null hypothesis to be considered successful.
Since the strict inequality is used as a “syntactic sugar” for
the negation of the opposite non-strict inequality,

PM <p(tm,tn) PN ↔ ¬(PM ≥p(tm,tn) PN )

PM >p(tm,tn) PN ↔ ¬(PM ≤p(tm,tn) PN ),

the formula with strict inequalities can be simply converted
to the corresponding SPL formula which only uses the non-
strict inequalities.

Examples 1 and 2 can be thus rewritten to Examples 3 and
4 (we only show the first step of the conversion) as follows:

Example 3. “On arrays of 100, 500, 1000, 5000, and 10000
elements, the sorting algorithm A less than 5% faster and
less than 5% slower compared to sorting algorithm B”

∀n ∈ {100, 500, 1000, 5000, 10000} :

PA(n) >p(id,λx.0.95x) PB(n) ∧ PA(n) <p(id,λx.1.05x) PB(n)

The formula above therefore corresponds to the following
SPL formula:

∀n ∈ {100, 500, 1000, 5000, 10000} :

¬(PA(n) ≤p(id,λx.0.95x) PB(n) ∨ PA(n) ≥p(id,λx.1.05x) PB(n))

Example 4. “On buffers of 256, 1024, 4096, 16384, and
65536 bytes, the Rijndael encryption algorithm is more than
10% faster than the Blowfish encryption algorithm and less
than 200 times slower than array copy.”

∀n ∈ {256, 1024, 4096, 16384, 65536} :

PRijndael(n) <p(id,λx.0.9x) PBlowfish(n)∧
PRijndael(n) <p(id,λx.200x) PArrayCopy(n)

6. FITNESS FOR PURPOSE
Before moving on to discuss the automated evaluation of

SPL formulas, we need to answer an obvious question: for
which kind of program methods is the SPL approach suit-
able? The answer clearly depends on the choice of SPL inter-
pretation. So far, we have introduced interpretations that
are based on comparing the mean value of method perfor-
mance, i.e. the location estimator of the underlying distribu-
tion. Therefore, the SPL approach should be well-suited for
methods whose performance can be reasonably described by
a mean value, i.e. the underlying distribution is unimodal,
without heavy tails. We expect such methods to be rela-
tively small, often representing the computational kernel of
an application, handling (bulk) data transformations and
processing. We believe that for such methods, most devel-
opers will be able to intuitively understand the concept of
method performance, identify factors influencing it, and pos-
sibly express performance assumptions by comparing it (in
relative terms) to performance of other (similar) methods.

Although the mean value can be calculated even in the
case of multi-modal and heavy-tailed distributions, it does
not represent the essential characteristics of the distribution
very well. Such performance data are difficult to interpret,
and we are not confident that a developer will be able to in-
tuitively understand the performance of a method with such
complex behavior — let alone express performance assump-
tions by comparison with other methods.

To evaluate the fitness of SPL for performance compar-
isons, we have therefore conducted experiments with two
sets of simple methods that fall into the (loose) category of
computational kernels. One set implements two sort algo-
rithms, and the other implements various encryption algo-
rithms, including null encryption (memory copying). The
experiments correspond to the examples introduced in Sec-
tions 2 and 5.

All experiments were run on a 64-bit platform3, execut-
ing on a single core within Oracle JVM 7 on top of Fedora
Linux4, with all non-essential system services disabled. We
3Dell OptiPlex 780, Intel Core 2 Quad Q9550 CPU at 2.83
GHz, 4 GiB DDR3 RAM at 1066 MHz
4Fedora 15, Linux Kernel 2.6.40.4-5.fc15, GLIBC 2.14, JRE
1.7.0-b147
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collected the durations of individual method invocations,
with new random input generated before each invocation.
The data from the first 15000 invocations were discarded, in-
tended only to warm up the system and let the JIT compiler
optimize the code. The next 100000 invocations provided
samples of method performance for each method under test.

As per the sample-based SPL interpretation, all perfor-
mance relations are evaluated using Welch’s one-sided t-test.
Results presented below show the evaluation of SPL for-
mulas on experimental data with the underlying tests per-
formed at significance level α = 0.01.

6.1 “Similar performance” assumptions
The first set of experiments covers Examples 1 and 3, both

assuming that the performance of two methods is similar, i.e.
the performance difference is bounded.

We evaluate the SPL formula from Example 1 in two sce-
narios. In the first one, we compare (the performance of)
two different methods with an identical implementation of
the Insertion Sort algorithm, and expect the formula to eval-
uate to true. In the second case, we compare methods im-
plementing the Insertion Sort and Dual Pivot Quick Sort
algorithms, and expect the formula to evaluate to false.

n = 100 n = 500 n = 1000 n = 5000 n = 104 α = 0.01

PInsertion(n) ≥p(id,λx.0.95x) PInsertion(n)
true
∧

true

0.969 1 1 1 1
PInsertion(n) ≤p(id,λx.1.05x) PInsertion(n)
0.999 1 1 1 1

PInsertion(n) ≥p(id,λx.0.95x) PDualPivot(n)
true
∧

false

1 1 1 1 1
PInsertion(n) ≤p(id,λx.1.05x) PDualPivot(n)

0 0 0 0 0

Table 1: Test results and p-values for Example 1

The results of the experiment are shown in Table 1. For
each relation, the table presents the p-value of the t-test ap-
plied to observations of method performance under a partic-
ular workload. A performance relation will evaluate to true
if none of the tests rejects the null hypothesis. Conversely,
if any of the tests rejects the null hypothesis (p-value < α),
the relation evaluates to false. The final column combines
the evaluation of individual relations into the final result.

In both cases, the results correspond to the expectation,
but there is a problem with the true evaluation in the first
case. When an expression written in standard logic holds,
we are not used to question the result. In SPL with sample-
based interpretation (i.e. statistical testing) and this partic-
ular formulation of assumptions, we have no indication as
to how “strong” the true evaluation is — while the tests did
not reject the null hypotheses, they did not confirm them.

As a remedy, in Section 5 the formula from Example 1
was rewritten to only evaluate to true if all the tests reject
the null hypothesis. Formulated as in Example 3, it not only
provides “stronger” answers, but also enables estimating the
probability that the answer is wrong (Type I error).

The results of evaluating the modified SPL formula on
the same data are shown in Table 2. Unlike in the previous
case, a relation evaluates to true only if the null hypothesis
is rejected for all workloads. While the result of comparison
between Selection Sort and Dual Pivot Quick Sort did not
change, the formula relating the performance of two identical
implementations of Selection Sort now evaluates to false.

n = 100 n = 500 n = 1000 n = 5000 n = 104 α = 0.01

PInsertion(n) > ep(id,λx.0.95x)PInsertion(n)
false
∧

true

0.031 0 0 0 0
PInsertion(n) <p(id,λx.1.05x) PInsertion(n)
5.555e-05 0 0 0 0

PInsertion(n) >p(id,λx.0.95x) PDualPivot(n)
true
∧

false

0 0 0 0 0
PInsertion(n) <p(id,λx.1.05x) PDualPivot(n)

1 1 1 1 1

Table 2: Test results and p-values for Example 3

The p-value of the failing test indicates that a true null
hypothesis could be rejected with probability 0.031, which is
too much for α = 0.01, but would be sufficient for α = 0.05.
The test failed to reject the null hypothesis due to outliers in
the data. Unfortunately, even though they are present in all
measurements, they have bigger impact on shorter durations
measured with smaller workloads.

At this point, even though the performance assumption
had failed, the developer has obtained a more informative
result and has several options. By analysing the cause of the
failure, the developer can conclude that there is too much
interference during measurement and either relax the signif-
icance level α, avoid measurements on small workloads, im-
prove measurement accuracy [13], or filter the outliers from
the measurement.

In this particular case, if the developer chose to avoid
workloads with array of size 100, the formula would evaluate
to true at significance level α = 0.01 even if the interval for
“considered similar” difference in performance was reduced
to 1% from the current (liberal) 10%.

6.2 “Different performance” assumptions
The second set of experiments covers Examples 2 and 4,

both making statements about relative performance of three
methods.

As in the previous experiment, we first evaluate the SPL
formula from Example 2, which assumes the Rijndael encryp-
tion algorithm to be at most 200× slower than array copy,
but still at least 10% faster than the Blowfish encryption
algorithm.5

n = 28 n = 210 n = 212 n = 214 n = 216 α = 0.01

PRijndael(n) ≤p(id,λx.0.9x) PBlowfish(n)
true
∧

false

1 1 1 1 1
PRijndael(n) ≤p(id,λx.200x) PArrayCopy(n)

1 1.444e-73 0 0 1

PRijndael(n) ≤p(id,λx.275x) PArrayCopy(n)
true

1 1 1 1 1

Table 3: Test results and p-values for Example 2

The results of the experiment are shown in Table 3. As in
the experimental evaluation of Example 1, a relation evalu-
ates to true if non of the tests rejects the null hypothesis.

The first part of the formula regarding the relative perfor-
mance of the Rijndael and the Blowfish algorithms evaluates
to true. The second part, regarding the relative performance
of the Rijndael algorithm vs. array copy (null encryption),
evaluates to false, because the underlying test rejects the
null hypothesis in 3 out of 5 cases. To a developer, this

5Both algorithms operated in CBC mode, using 128-bit keys,
and the implementation used was provided by the default
(Oracle) provider of Java Cryptography Extensions.
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would mean that he either overestimated the performance
of the Rijndael encryption algorithm during formulation of
the assumption, or that the formula does not hold on this
particular platform.

Since we know that we have only guessed at the rela-
tive performance of Rijndael vs. array copy, we can use
a more conservative estimate and assume that the Rindael
algorithm is, say, at most 275× slower. Under this assump-
tion, the second part of the formula will evaluate to true
(double row at the bottom of Table 3), as will the whole
formula.

However, like in the previous experiment, we have no in-
dication as to “how true” is the true the formula evaluates
to. Again, as a remedy, we rewrite the formula as per Ex-
ample 4, to obtain a variant that will only evaluate to true
if all the tests reject the null hypothesis.

n = 28 n = 210 n = 212 n = 214 n = 216 α = 0.01

PRijndael(n) <p(id,λx.0.9x) PBlowfish(n)
true
∧

true

0 0 0 0 0
PRijndael(n) <p(id,λx.275x) PArrayCopy(n)

0 0 1.988e-52 0 0

Table 4: Test results and p-values for Example 4

The results of evaluating the modified SPL formula on the
same data are shown in Table 4. Again, like in the experi-
mental evaluation of Example 3, a relation evaluates to true
only if the null hypothesis is rejected for all workloads.

Since we have only tested the more conservative assump-
tion regarding the relative performance of the Rijndael algo-
rithm and array copy, the entire formula evaluates to true.
Unlike in the previous case though, we know that the result-
ing true is “fairly strong”, because only one of the tests had
non-zero p-value, and even that was practically zero.

7. EFFICIENT FORMULA EVALUATION
While writing SPL formulas is relatively easy, evaluating

them requires collecting significant amount of performance
data. In many cases, evaluating a single performance re-
lation or a single test may decide the value of the whole
formula, rendering other tests and relations irrelevant, and
time put into collecting performance data wasted.

To enable efficient evaluation of SPL formulas in auto-
mated performance testing, we have applied the idea of
SMT-solving [14, 15, 16] to solving SPL formulas. The ba-
sic idea is to solve the propositional part of a formula using
a regular SAT solver, and delegate the non-propositional
predicates to a specialized decision procedure. In case of
SPL, the decision procedure is responsible for collecting per-
formance data and applying the statistical tests to evaluate
performance predicates. This approach allows to only collect
performance data demanded by the solving algorithm and
avoid measurements for predicates that do not influence the
value of a formula.

Before describing the actual SPL-evaluation algorithm, we
first need to define the concepts of a propositional skeleton
and satisfiability-irrelevant variable set :

Definition 11. For a quantifier-free SPL formula F we de-
fine its propositional skeleton as a propositional-logic for-
mula FS , where each occurrence of a performance-relation
predicate (i.e., PM (ẋ1, . . . , ẋm) ≤p(tn,tm) PN (ẏ1, . . . , ẏn) or
PM (ẋ1, . . . , ẋm) =p(tn,tm) PN (ẏ1, . . . , ẏn)) is replaced by a

variable WPM (ẋ1,...,ẋm)≤p(tn,tm)PN (ẏ1,...,ẏn),

WPM (ẋ1,...,ẋm)=p(tn,tm)PN (ẏ1,...,ẏn) respectively.

Note that since SPL only allows quantifiers over finite
subsets of P , any SPL formula can be transformed to a
quantifier-free SPL formula by expanding all quantifiers into
finite conjuction (universal) or finite disjunction (existen-
tial).

The unsatisfiability of a propositional skeleton implies un-
satisfiability of the associated SPL formula (the opposite
does not hold). Additionally, the satisfiability of an SPL
formula implies satisfiability of its propositional skeleton.

Definition 12. Having a propositional formula F and its
satisfying partial valuation6 VP , then a satisfiability-irrelevant
set RSI is a subset of all propositional variables of F such
that all the possible valuations of RSI combined with VP

yield a satisfying valuation of F .

SPL-solving algorithm. For a given formula, the algo-
rithm uses a SAT solver to obtain a valuation of its proposi-
tional skeleton and checks the feasibility of the skeleton val-
uation by evaluating the associated performance predicates.
If the skeleton valuation is infeasible (i.e., the valuation of a
performance predicate given by the decision procedure dif-
fers from the valuation of the associated skeleton variable),
another valuation is obtained from the SAT solver. The
results of the decision procedure are stored and taken into
account in subsequent runs of the SAT solver, thus elimi-
nating the infeasible valuations and “locking” the matching
valuations. This is repeated either until the valuation of all
performance predicates is validated, or until the skeleton, in
combination with the stored results, becomes unsatisfiable.

In contrast to SMT-solving, the aim of SPL-solving is to
(preferably) only evaluate performance predicates necessary
for deciding the satisfiability of a formula (recall evalua-
tion skeleton from Definition 9). Therefore, while check-
ing the feasibility of a skeleton valuation, we identify the
satisfiability-irrelevant set with respect to this valuation and
consider only the relevant variables. This allows us to skip
evaluation of a (potentially large) number of performance
predicates. The satisfiability-irrelevant set is constructed in-
crementally. Before running the decision procedure for a
particular skeleton variable, the variable is tested for inclu-
sion in the current version of the satisfiability-irrelevant set.
However, since the decision procedure can reject the current
skeleton valuation, it is necessary to rebuild this set accord-
ingly.

An outline of the SPL-solving algorithm is shown in Fig-
ure 1. Before going into detail, we first describe the notation.
For a given SPL formula F , the MakeSkeleton function re-
turns its propositional skeleton FS and the set of all propo-
sitional variables substituted for performance predicates R.
RU is the set of all variables from R that have not yet
been evaluated by the decision procedure and their valua-
tions are thus undecided. RSI is a satisfiability-irrelevant
subset of variables from FS . VP is a partial valuation of
FS enforcing the results of the previous decision-procedure
runs. The SolveSAT function provides a temporary valua-
tion Vtemp of FS , based on the partial valuation VP . The
tuple (var, val) denotes a variable from R and its valuation

6A satisfying partial valuation is a partial valuation that can
be extended to a complete satisfying valuation.
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in Vtemp. For a variable var, the IsSatIr function decides
whether RSI ∪ {var} is satisfiability-irrelevant for formula
FS and partial valuation VSIP . MeasureAndTest is the de-
cision procedure for performance predicates (as described in
Section 4), and m is the result of the procedure (i.e., true or
false).

1: FS , R←MakeSkeleton(F )
2: RU ← R, RSI ← ∅, VP ← ∅
3: Vtemp ← SolveSAT (FS , VP )
4: if Vtemp = false then
5: return false
6: end if
7: for all (var, val) ∈ Vtemp ∩RU do
8: VSIP ← Vtemp \ ({var} ∪RSI)
9: if IsSatIr(var, FS , VSIP , RSI) then

10: RU ← RU \ {var}
11: RSI ← RSI ∪ {var}
12: else
13: m←MeasureAndTest(var)
14: VP ← VP ∪ {(var, m)}
15: RU ← RU \ {var}
16: if val 6= m then
17: RU ← RU ∪RSI , RSI ← ∅
18: goto line 3
19: end if
20: end if
21: end for
22: return true

Figure 1: SPL-solving algorithm

After the propositional skeleton FS is created and the in-
volved sets RU , RSI , as well as the partial valuation VP are
initialized (lines 1-2), a satisfying valuation of FS combined
with VP is obtained from the SAT solver (line 3). If the SAT
solver indicates that FS combined with VP is unsatisfiable,
the algorithm returns “false” (lines 4-6), because it implies
that the original SPL formula is unsatisfiable with respect
to measurements dictating VP . Otherwise, the algorithm se-
quentially processes valuations of all variables which were
not yet checked by the decision procedure (line 7). Each
variable is first tested for membership in the current version
of RSI with respect to the current skeleton valuation Vtemp

(lines 8-9). If the variable can be added into RSI , then it
is added (lines 10-11). Otherwise, it is necessary to call the
decision procedure MeasureAndTest (line 13). The result
of the decision procedure is added to VP to be enforced in
the subsequent SAT solver runs (line 14). If the stored result
conforms to the current skeleton valuation Vtemp, the next
variable is processed. Otherwise Vtemp is infeasible with re-
spect to the measurements and a new skeleton valuation has
to be obtained from the SAT solver (lines 16-19). The new
valuation also invalidates the current RSI (line 17).

Correctness of the SPL-solving algorithm. The cor-
rectness of the algorithm results from the fact that the al-
gorithm returns “false” only if the propositional skeleton it-
self is unsatisfiable or if enforcing the measurement-based
valuations makes it unsatisfiable. Moreover, the algorithm
returns “true” only in cases where the partial measurement-
based valuation is satisfying and all the other variables form

a satisfiability-irrelevant set (including the case of empty
partial valuation when the formula is a tautology).

Identification of a satisfiability-irrelevant set. Dur-
ing SPL-solving, the variables are sequentially tested for
membership in the (incrementally constructed) satisfiability-
irrelevant set. For this, we provide a simple algorithm trans-
forming the problem of deciding whether a given set is satisfiability-
irrelevant to a formula-satisfiability problem, subsequently
solved by a SAT solver. In fact, the resulting SAT formula
mimics the Definition 12.

For a formula F , its partial valuation VP , and the tested
(potentially satisfiability-irrelevant) set RSI the transforma-
tion yields the following auxiliary formula (let VT and VF

represent the positively and negatively valuated variables of
VP , respectively, and r1 . . . rn be the elements of RSI):

(∧∀x∈VT x) ∧ (∧∀y∈VF ¬y) ∧
F [r1 7→ false, r2 7→ false, . . . rn 7→ false] ∧
F [r1 7→ true, r2 7→ false, . . . rn 7→ false] ∧
F [r1 7→ false, r2 7→ true, . . . rn 7→ false] ∧

...
F [r1 7→ true, r2 7→ true, . . . rn 7→ true]

where F [r1 7→ val1, . . . , rn 7→ valn] denotes a formula de-
rived from F by substituting all occurrences of r1, . . . , rn by
the associated boolean constants val1, . . . , valn.

The first line of the auxiliary formula enforces the given
partial valuation VP , while the remaining lines capture all
possible valuations of RSI .

Decision procedure for performance predicates. Un-
der the sample-based SPL interpretation (Section 4), the de-
cision procedure evaluates performance predicates via statis-
tical testing. For this it first effects collection of performance
data from experiments in which the methods under test (two
sides of a performance relation) are subjected to workload
according to given performance parameters. The statistical
test is applied to the performance data and the result of the
test is returned as the result of the decision procedure.

7.1 Algorithm discussion
The above SPL-solving algorithm heuristically optimizes

the number of evaluated performance predicates (and thus
the number of performance measurements). This is impor-
tant, since SPL formulas may have non-trivial Boolean struc-
ture, containing arbitrary combination of conjunctions and
disjunctions. For example, if a method M uses two imple-
mentations A and B of a library function (selected according
to environment settings), we may want to express that per-
formance of M depends on performance of either A or B.
This could be expressed by a formula similar to the follow-
ing disjunction:
`
PM (ṅ) ≥p(id,λx.cA1x) PA(ṅ) ∧ PM (ṅ) ≤p(id,λx.cA2x) PA(ṅ)

´

∨
`
PM (ṅ) ≥p(id,λx.cB1x) PB(ṅ) ∧ PM (ṅ) ≤p(id,λx.cB2x) PB(ṅ)

´

where the coefficients cA1, cA2, cB1, and cB2 capture the
level of dependency. Disjunctions will be also introduced
when using implication or equivalence.

The results of the heuristic depend on the skeleton valua-
tion given by the SAT solver and the order in which the pred-
icates are evaluated. However, the heuristic can be further
improved, especially by exploiting the fact that the cost of

319



evaluation of performance predicates can differ depending on
the methods under test and workload parameters — mainly
because collection of performance data will take different
time. For example, evaluating a predicate comparing sort-
ing algorithms will be significantly faster for arrays of size
100 than arrays of size 10000. This leads to a slight modifi-
cation of the initial problem — each performance predicate
in an SPL formula F can be assigned a cost of its evaluation.
While solving the propositional skeleton of F , identification
of a satisfiability-irrelevant set containing expensive predi-
cates may greatly reduce the run-time of the SPL-solving
algorithm, since the most expensive performance predicates
might not need to be evaluated.

This could be addressed by employing a SAT solver that
provides the satisfiability-irrelevant set as a part of the sat-
isfying valuation, and is able to return an optimal valuation
with respect to a given valuation-cost function. For such a
SAT solver, a cost function assigning to each positively or
negatively-valuated skeleton variable the evaluation cost of
the associated performance predicate, while assigning 0 to all
the variables in the satisfiability-irrelevant set, would yield
the desired valuation. Although optimizing SAT solvers do
exist (for example MiniSAT [17]), the problem of returning
a satisfiability-irrelevant set as a part of the result has not
yet been satisfactorily addressed. Nevertheless, even the us-
age of a minimizing SAT solver does no guarantee the least
total cost of the evaluated performance predicates, which
provides room for futher investigation.

8. INTEGRATION WITH JAVA
We aim to use SPL in a setting similar to unit testing with

JUnit or similar framework. A developer wishing to cap-
ture and periodically test performance assumptions should
be able to do so by performing steps similar to writing unit
tests. Specifically, we target the following use-cases. (UC1)
The author of a method makes an assumption about its per-
formance and wants to capture this assumption along with
the method definition (i.e., provided nonfunctional prop-
erty). (UC2) In code using another method, the author of
the code makes an assumption about the performance of the
used method and wants to capture this assumption along
with the code (i.e., required nonfunctional property). (UC3)
A third-party developer/tester has additional performance
assumptions to those captured in the code; it is therefore
necessary to capture and test these assumptions separately.

For the scenario denoted as UC1, we propose encoding
SPL formulas using Java annotations. Based on these an-
notation, automated performance testing software can carry
out measurements needed by the algorithm presented in Sec-
tion 7 to evaluate the SPL formula. The @SPL annotation
can be used to specify a set of SPL formulas for each method.

A simple application of the @SPL annotation is shown in
Figure 2. In this case, the SPL formula requires that the
execution time of the annotated method (referenced by the
SELF keyword) be lower or equal to the execution time of
method g() in class Y for two different types of input. The
variable n in the SPL formula is used as a parameter for an
implicit input generator7 related to the annotated method.

7Input generators are instances of Iterable<Object[]> that
provide sequences of method inputs for performance mea-
surements.

In straightforward cases like this one, input generators can
be located using a naming conventions.

@SPL(formula = "for n {1,2} SELF(n) <= Y.g(n)")

int method(int[] parameter) { /* ... */ }

Figure 2: A simple application of @SPL.

Figure 3 illustrates how a custom input generator can be
used (and reused). When an input generator is specified
explicitly, the SPL evaluation framework will use the custom
generator instead of the default one and use the supplied
parameters to configure it. Each method can have multiple
input generators.

@SPL(

generators = "org.gen.Generator(parameter)",

formula = "for n {1,2} SELF(n) <= Y.g(n)"

)

Figure 3: Defining a shared custom generator.

An advanced scenario with multiple generators is shown
in Figure 4. Three different generators (with identifiers
gen[1-3]) are defined and can be referenced within formula.
The various forms of generator names provide the testing
framework with information on creating generator instances.

@SPL(

generators = {

"gen1:gen.Gen1(parameter)",

"gen2:gen.Gen2#factory(arg)",

"gen3:gen.Gen3(parameter)#fact(arg)"

},

methods = {

"methodX:pkg.AClass(parameter)#methodX",

"methodY:pkg.JustStatic#methodY"

},

formula =

"for j {1,2} k {1,2}" +

"SELF[gen1](j) >= methodX[gen2](j) &" +

"methodY[gen3](j,k) <=(x.10x,id)" +

"SELF[gen3](j,k)"

)

Figure 4: A complex @SPL annotation example.

The example in Figure 4 also includes method references.
When referencing non-static methods in other classes, these
classes have to be instantiated first, which is the main pur-
pose of the method parameter. Aliases defined in methods

can be used instead of the fully qualified method names in
formula.

As far as UC1 is concerned, performance annotations can
be evaluated by a standalone SPL evaluation tool, which au-
tomatically evaluates all SPL-annotated methods in a given
class or set of classes. UC2 can be addressed by taking an
approach similar to UC1, i.e., by introducing SPL-annotated
wrappers of the respective methods.
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To address UC3, as well as complex cases of UC1 and UC2
(beyond the expressive power of annotations), we envision
using an API inspired by JUnit, as shown in Figure 5.

void assertSPLOfMethod(

Method method,

Map<String, Entry<Object, Method>> methods,

Map<String, InputGenerator> generators

);

void assertSPLFormula(

String formula,

Method method

);

void assertSPLFormula(

String formula,

Map<String, Entry<Object, Method>> methods,

Map<String, InputGenerator> generators

);

Figure 5: SPL API based on JUnit.

The assertSPLOfMethod() method addresses the complex
cases of UC1 and UC2 by evaluating the @SPL annotation of
method in combination with the methods and generators pa-
rameters, which allows overriding the original method and
generator definitions, and using locally initialized generators
and method references. The assertSPLFormula() method
family covers UC3, where the first version of assertSPL-

Formula() evaluates the supplied SPL formula using method
and generator references obtained from the @SPL annotation
of method and the second version uses explicitly provided
methods and generators for the evaluation.

9. RELATED WORK
Current performance specification methods focus on anal-

ysis of previously-measured or run-time performance data
(with the goal to verify given performance assertions). In
contrast, SPL is targeting repetitive performance testing by
first stating a performance assertion and then using the SPL-
solving algorithm to obtain the measurements needed to de-
cide satisfiability of the assertions. The following related
performance-specification methods share this property.

PSpec [18] is a language for expressing performance as-
sertions which targets similar goals – regression testing and
code documentation. It uses absolute performance metrics
(e.g., execution time) to capture the expected performance,
which makes the formulas either non-portable, or too liberal.
The performance data is collected from application logs.

PIP [19] is a similar approach exploiting declarative per-
formance expectations with the goal of debugging behav-
ior and performance of distributed systems. In contrast to
SPL, PIP includes description of system behavior and the
expected performance is declared with respect to such behav-
ioral specification. Similar to PSpec, PIP uses application
logs to obtain performance measurements and uses absolute
performance metrics (such as CPU time, message latency)
in performance expectations.

Performance assertions based on the PA language are in-
troduced in [20]. Similar to our approach, the assertions are
part of the source code. The assertions are checked at run-

time and support local behavior adaptations based on the
results. However, the method is not suitable for automated
performance testing. The PA language provides access to
various performance metrics (both absolute and relative) as
well as key features of the architecture and user parameters.

Complementary to our method, in [21] the system-level
performance expectations are descibed imperatively, using
programmatic tests of globally measured performance data.
The measurements are performed at run-time via injected
probes and the data is analyzed continuously.

Similarly, [22] employs the A language to express valida-
tion programs concerning both business logic and perfor-
mance characteristics (balanced CPU load) of Internet ser-
vices. The method focuses mainly on run-time validation of
operator actions and static configuration.

JUnitPerf 8 is an extension to the JUnit [3] framework,
based on ideas from [18], It provides accurate time mea-
surements and tests in the scope of a unit test. Similar
to SPL, JUnitPerf targets automated performance testing
while stressing simple usage scenarios. However, the perfor-
mance assertions are not portable.

While we do not address the creation of SPL assertions in
this work, there are also methods concerning specification
of performance requirements at design-time. A process for
constructing a performance-annotation model for UML is
described in [23], with annotations based on the UML Pro-
file for Schedulability, Performance, and Time specification.
Such UML models can be then transformed to performance-
analysis models based for example on Petri Nets [24].

An evolutionary methodology for performance-requirements
specification is presented in [25]. It is based on refinement
of the performance requirements during development. Fur-
ther approaches for performance assessment and modeling
in context of software architecture are compared in [26].

An important part of this work is the SPL-solving algo-
rithm based on the idea of SMT-solving. Similar to clas-
sic SMT-solving techniques [14, 15], employed for exam-
ple in Z3 [16], our approach uses a SAT solver for solv-
ing the propositional skeleton of the input formula. How-
ever, since the SPL-solving algorithm determines the mea-
surements needed for deciding a given performance asser-
tion, the number of evaluated performance predicates can
be optimized by identifying a satisfiability-irrelevant set of
propositional variables. This is not supported by the state-
of-the-art SMT solvers, since there is no need to optimize
the number of invocations of the underlying predicate-logic
decision procedure.

10. CONCLUSION AND FUTURE WORK
Performance assertions and their analysis is an extensively-

studied topic, yet so far in most cases, the assertions can
be only expressed in absolute terms. Our goal is to en-
able the developer to express performance assumptions in
simple, intuitive terms. To this end, we have introduced
a novel method for describing performance assertions using
Stochastic Performance Logic (SPL), which allows making
statements about relative method performance in a platform
independent way. Developer input is required in matters
such as choosing the workload sizes relevant for the assump-
tion, but providing such input appears to be more intuitive
than having to guess the duration of method execution.

8http://clarkware.com/software/JUnitPerf.html

321



Our approach relies on statistical testing, and unless dif-
ferent interpretation is defined, it is well suited for a specific
class of methods (computational and data transformation
kernels) with simple behavior (performance-wise). The per-
formance of such methods can be represented by an uni-
modal distribution of execution times for a given workload,
and for which comparisons between location parameters such
as mean value make sense. To facilitate efficient evaluation
of SPL formulas in automated testing, we have presented an
SPL solving algorithm that will drive the execution of exper-
iments to collect performance data required to evaluate an
SPL formula, possibly avoiding unnecessary measurements.
To stress the practical impact of our approach, we have pre-
sented a set of annotations for the Java language that enable
initial integration of SPL formulas with code.

We believe that these three components (the logic, the
solving algorithm, and the annotation) provide a solid foun-
dation for automated performance testing. Even though the
foundations are solid, there is still a lot of room for improve-
ment. In case of SPL, new theorems and axioms may be
introduced, not only to show more complex properties of
the logic, but also to guide the SAT solver in its search for
satisfying valuations of SPL formulas. The SPL solving algo-
rithm itself can be improved, provided a suitable optimizing
SAT-solver can be found or developed. Finally, integration
with code can be simplified by introducing more high-level
annotations that will cover typical situations without the
need to resorting to low-level SPL formulas.
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