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ABSTRACT
The goal of performance regression testing is to check for
performance regressions in a new version of a software sys-
tem. Performance regression testing is an important phase
in the software development process. Performance regres-
sion testing is very time consuming yet there is usually lit-
tle time assigned for it. A typical test run would output
thousands of performance counters. Testers usually have to
manually inspect these counters to identify performance re-
gressions. In this paper, we propose an approach to analyze
performance counters across test runs using a statistical pro-
cess control technique called control charts. We evaluate our
approach using historical data of a large software team as
well as an open-source software project. The results show
that our approach can accurately identify performance re-
gressions in both software systems. Feedback from practi-
tioners is very promising due to the simplicity and ease of
explanation of the results.

Categories and Subject Descriptors
D.2 [Software/Program Verification]: Statistical meth-
ods; C.4 [Performance of Systems]: Measurement tech-
niques; H.3 [Systems and Software]: Performance evalu-
ation (efficiency and effectiveness)

General Terms
Performance engineering, load testing, statistical control tech-
nique

1. INTRODUCTION
Performance regression testing is an important task in

the software engineering process. The main goal of per-
formance regression testing is to detect performance regres-
sions. A performance regression means that a new version
of a software system has worse performance than prior ver-
sions. After a development iteration of bug fixes and new
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features, code changes might degrade the software’s perfor-
mance. Hence, performance engineers must perform regres-
sion tests to make sure that the software still performs as
good as previous versions. Performance regression testing
is very important to large software systems where a large
number of field problems are performance related [19].

Performance regression testing is very time consuming yet
there is usually little time allocated for it. A typical test run
puts the software through a field-like load for an extended
period of time, during which performance counters are col-
lected. The number of counters is usually very large. One
hour of a typical test run can produce millions of samples
for hundreds of performance counters, which require a large
amount of time to analyze. Unfortunately, performance re-
gression testing is usually performed at the end of the devel-
opment cycle, right before a tight release deadline; allowing
very little time for performance engineers to conduct and
analyze the tests.

Control charts is a statistical control technique that has
been widely used in manufacturing processes [16] where
quality control is essential. A manufacturing process has in-
puts, i.e., raw materials, and output, i.e., products. Control
charts can detect deviations in the output due to variations
in the process or inputs across different manufacturing runs.
If there is a high deviation, an operator is alerted.

A software system is similar to a manufacturing process.
There are data inputs, e.g., the load inputs, and data out-
puts, e.g., the performance counters. When performance
regressions occur, the output performance counters deviate.
A control chart can potentially be applied to compare per-
formance regression tests where the process inputs are the
load, e.g., page requests on a web server, and the process
outputs are performance counters, e.g., CPU utilization or
disk IO activities. Unfortunately, control charts have two
assumptions about the data that are hard to meet in a per-
formance regression test. First, control charts assume that
the outputs, i.e., performance counters, have a uni-modal
normal distribution, since deviations are defined from the
mean of such a distribution. Second, control charts assume
that the load inputs do not vary across runs. If the inputs
are different, the counters would fluctuate according to the
inputs. Since both assumptions do not hold for performance
load tests, it seems that control charts cannot be applied to
this domain as is.

In this paper, we propose an approach that customizes
control charts to automatically detect performance regres-
sions. It addresses the two issues with the assumptions
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mentioned above. To evaluate our approach, we conduct
a case study on a large enterprise software system and an
open-source software system. Feedback from practitioners
indicates that the simplicity of our approach is a very im-
portant factor, which encourages adoption because it is easy
to communicate the results to others.

The contributions of this paper are:

• We propose an approach based on control charts to
identify performance regressions.

• We derive effective solutions to satisfy the two assump-
tions of control charts about non-varying load and nor-
mality of the performance counters.

• We show that our approach can automatically identify
performance regressions by evaluating its accuracy on
a large enterprise system and an open-source software
system.

The paper is organized as follows. In the next section, we
introduce control charts. Section 3 provides the background
on performance regression testing and the challenges in prac-
tice. Section 4 describes our control charts based approach,
which addresses the challenges. In Section 5, we present the
two case studies, which evaluate our approach. Section 6
summarizes the related work and the feedback from practi-
tioners on our approach. We conclude in Section 8.

2. CONTROL CHARTS

2.1 What Are Control Charts?
Control charts were first introduced by Shewhart [16] at

Bell Labs, formerly known as Western Electric, in the early
1920s. The goal of control charts is to automatically deter-
mine if a deviation in a process is due to common causes,
e.g., input fluctuation, or due to special causes, e.g., defects.
Control charts were originally used to monitor deviation on
telephone switches.

Control charts have since become a common tool in statis-
tical quality control. Control charts are commonly used to
detect problems in manufacturing processes where raw ma-
terials are inputs and the completed products are outputs.
We note that, despite the name, control charts is not just
a visualization technique. It is a statistical technique that
outputs a measurement index called violation ratio.

Figure 1(a) and 1(b) show two example control charts.
The x-axis represents time, e.g., minutes. The y-axis is the
process output data. For this example, we monitor the re-
sponse rate of a web server. The two solid lines are the Up-
per Control Limits (UCL) and Lower Control Limit (LCL)
in between which the dashed line in the middle is the Centre
Line (CL). Figure 1(a) is an example where a process output
is within its control limits. This should be the normal oper-
ation of the web server. Figure 1(b), on the other hand, is
an example where a process output is out-of-control. In this
case, operators should be alerted for further investigation.

2.2 Construction of Control Charts
A control chart is typically built using two datasets: a

baseline dataset and a target dataset.
The baseline dataset is used to create the control limits,

i.e., LCL, CL, and UCL. In the example of Figure 1(a) and 1(b),
the baseline set would be the response time of the web server

in the previous hour, previous day, or any past operation pe-
riods. The CL is the median of all samples in the baseline
dataset during a particular period. The LCL is the lower
limit of the normal behaviour range. The UCL is the upper
limit. The LCL and the UCL can be defined in several ways.
A common choice is three standard deviations from the CL.
Another choice would be the 1th, 5th, or 10th percentiles for
the LCL and 90th, 95th, or 99th percentiles for the UCL. For
example: there are eleven response time readings of 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, and 13 milliseconds in the baseline set.
If we use the 10th and the 90th percentile as control limits,
the LCL, CL, and UCL would be 4, 8, and 12 respectively.

The target dataset is then scored against the control limits
of the baseline dataset. In Figure 1(a) and 1(b), the target
data are the crosses. Those would be the response time of
the current operating periods, e.g., the current hour or day.

The result of an analysis using control charts is the vi-
olation ratio. The violation ratio is the percentage of the
target dataset that is outside the control limits. For exam-
ple, if the LCL and the UCL is 4 and 12 respectively, and
there are ten readings of 4, 2, 6, 2, 7, 9, 11, 13, 8, and 6,
then the violation ratio is 30% (3/10). The violation ratio
represents the degree to which the current operation is out-
of-control. A threshold is chosen by the operator to indicate
when an alert should be raised. A suitable threshold must
be greater than the normally expected violation ratio. For
example, if we choose the 10th and the 90th percentile as
control limits, the expected violation ratio is 20%, because
that is the violation ratio when scoring the baseline dataset
against the control chart built using itself. So, the operator
probably wants to set a threshold of 25% or 30%.

2.3 Assumptions of Control Charts
There are two basic assumptions of control charts:
Non-varying process input. Process output usually

fluctuates with the process input. If the process input rate
increases, the violation ratio will increase and an alert will
be raised independent of how the system reacts to the fluc-
tuation input. Such alert would be a false positive because it
does not correspond to a problem. So, the first condition for
applying control charts is the stability of the process input.

Normality of process output. Process output usually
has a linear relationship with the process input. This linear
relation leads to a normal distribution of the process output
which is the main underlying statistical foundation of control
charts. However, some manufacture processes take multiple
types of input, each of which individually still output a nor-
mal distribution. However, the combination of these inputs
would have a multi-modal distribution, which is impossible
to compare using control charts.

In the following sections, we explain in details why these
assumptions are hard to meet in performance regression test-
ing. We will give examples for each assumption and propose
solutions to adapt the performance counters such that we
can apply control charts to detect performance regressions.

3. PERFORMANCE REGRESSION
TESTING

Performance regression test is a kind of load test that
aims to detect performance regressions in the new version of
a software system. A performance regression means that the
new version uses more resources or has less throughput than
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Figure 1: Example of a control chart, which detects deviation in process output.

Detect 
performance 
regression 

Apply standard load on an 
existing software version

e.g. v1.0

Apply the same the load 
on a new software version

e.g. v1.1

Regression Report
e.g. pass or failed

Baseline perf. counters
e.g. % CPU usage

Target perf. counters
e.g. % CPU usage

Figure 2: Conceptual diagram of performance regression testing.

prior versions. We note the difference between performance
regression testing and stress testing (which is not the focus
of this paper). The goal of stress testing is to benchmark
the maximum load a software system can handle. The goal
of a performance regression testing, on the other hand, is
to determine if there is a performance regression between
software versions at a normal field-like load. Figure 2 shows
a conceptual diagram of a performance regression testing
process which is very similar to other regression testing (e.g,
functional regression testing).

Apply the load. Both the existing version and the new
version are put through the same load input. The load in-
put is usually called a load profile which describes the ex-
pected workload of the system once it is operational in the
field [1]. A load profile consists of the use case scenarios
and the rate of these scenarios. For example, a commercial
website should process 100 page requests/sec. So the test
engineers would use a load generator to create 100 pages re-
quests/sec which are directed to the web server under test.
This rate is maintained for several hours or even a few days.
To mimic real life, the rate is applied using a randomizer
instead of applying it in a constant fashion.

During the test, the application is monitored to record the
execution logs and performance counters data. In our case,
we are only interested in performance counters. A load test
typically collects four main types of performance counters:

• CPU utilization: the percentage of utilized CPU per
thread (in percentage).

• Memory utilization: the used memory (in megabytes).

• Network IO: the amount of network transfer (in and
out - in megabytes).

• Disk IO: the amount of disk input and output.

Detect performance regressions. After the tests are
done, the test engineers have to analyze the performance
counters. They compare the counters of the new version
with the existing version. The runs/counters of the ex-
isting version are called the baseline runs/counters. The
runs/counters of the new version are called the target runs/
counters. If the target counters are similar to the baseline
counters, the test will pass, i.e., there is no performance
regression. Otherwise, the test engineers will alert the de-
velopers about the potential of performance regression in
the new version. For example, if the baseline run uses 40%
of CPU on average and the target run uses 39% of CPU on
average, the new version should be acceptable. However, if
the target run uses 55% of CPU on average, there is likely
a performance problem with the new version.

3.1 Challenges in Detecting Performance
Regressions

There is already good commercial support for executing
performance regression test and recording performance coun-
ters. HP has the LoadRunner software [9], which can auto-
matically simulate the work load of many network protocols.
Microsoft also has a load test tool, which can simulate load
on web sites or web services. The tool is offered as part of
the Visual Studio suite [14]. On the other hand, detecting
performance regression is usually done manually.

Challenge 1: Many performance counters to analyze.
In large software systems, e.g., Google search engine or

large web server farms, there are many components across
several machines. The total number of counters are in the
thousands with each counter being sampled at a high rate
leading to millions of data samples to analyze. Comparing
the counters to find performance regressions is very time
consuming.
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Challenge 2: Inconsistent performance counters across
test runs.

A big assumption in performance regression testing, as
conceptualized in Figure 2, is that the performance counters
will be the same if the software does not change. Thus, if
the baseline run uses X% of CPU and target run also uses
X%, then there is no change in the performance, i.e., there
are no performance regressions. On the opposite side, if
the target run uses >X% of CPU, then there is likely a
performance regression. The assumption here is that X% is
a fixed number.

In a large software system, the output performance coun-
ters might be different due to the nondeterministic nature of
the system. For example, a web server would cache the re-
cently accessed web pages to improve performance. If there
is a high burst of page requests at the beginning of a test
run, the performance of the rest of the run will be remark-
ably better than if the high burst happens at the end of the
run, because the cache would be filled faster in the former
case. Hence, five different baseline runs can yield 57%, 65%,
62%, 56%, and 60% of CPU utilization. Although all the
runs average at about 60%, it is not clear if 60% should be
the baseline to compare against when a new version of the
software is tested. If the new version’s run yields a 65%
CPU utilization, can we be certain that there is a perfor-
mance regression? After all, there is one baseline run that
uses 65% CPU.

To eliminate uncertainty, every time a new test run is
performed, the testers usually have to rerun the old version
test right after so they can compare between the two runs.
The extra run is very time consuming.

4. A CONTROL CHARTS BASED
APPROACH TO DETECT
PERFORMANCE REGRESSIONS

A good approach to detect performance regressions should
address the two aforementioned challenges from the previous
section.

Trubin et al. [18] proposed the use of control charts for
infield monitoring of software systems where performance
counters fluctuate according to the input load. Control
charts can automatically learn if the deviation is out of a
control limit, at which time, the operator can be alerted.
The use of control charts for monitoring inspires us to ex-
plore them for the study of performance counters in perfor-
mance regression tests. A control chart from the counters
of previous test runs, may be able to detect “out of control”
behaviours, i.e., deviations, in the new test run. The dif-
ficulty though is that we want to detect deviations of the
process, i.e., the software system, not the deviations of the
input, i.e., the load.

Figure 3 shows a conceptual overview of our proposed con-
trol charts based approach. For each counter, we use the
counters in all the baseline runs, i.e., the runs of prior ver-
sions, to determine the control limits for the control chart.
Then, we score the target run using those limits. The re-
sulted violation ratio is an indicator of performance regres-
sions in the new software version. If the violation ratio is
high, the chance of a regression is high as well. If the viola-
tion ratio is low, the chance of a regression is low.

An approach based on control charts would address the
two challenges of performance regression testing. Control

charts provide an automated and efficient way to use previ-
ous baseline runs to compare against a new test run without
having to perform more baseline runs (i.e., with minimal
human intervention).

However, to apply control charts to detect performance
regressions, we have to satisfy the two assumptions of con-
trol charts explained in Section 2: non-varying process input
and normality of the output. Unfortunately, these two as-
sumptions are difficult to meet if we use the performance
counters as is. Hence we propose two preprocessing steps
on the counter data before constructing the control chart.
These steps are represented as the Scale and Filter process-
ing boxes in Figure 3). In the next two subsections, we de-
scribe in detail each of the proposed solutions and evaluate
their effectiveness.

4.1 Satisfying the Non-Varying Input
Assumption

In performance regression testing (Figure 2), the same
load is applied to both the baseline and target version. For
example if the load profile specifies a rate of 5,000 requests
per hour, the load generator will aim for 5,000 requests per
hour in total using a randomizer. The randomization of the
load is essential to trigger possible race conditions and to
ensure a realistic test run. However, the randomization leads
to varying inputs throughout the different time periods of
a test run. The impact of randomization on the input load
and the output counters increases as the system becomes
more complex with many subcomponents having their own
processing threads and timers. Even in the Dell DVD Store
system [5] (see Section 5), which is a relatively small and
simple system, the load driver employs a randomizer. This
randomizer makes it impossible to get two similar test runs
with the same effective load input.

If the input load are different between runs, it is difficult
to identify performance regressions since the difference in
the counters can be caused by the different in the input load
instead of performance related changes in the code. Figure 5
shows a performance counter of two different runs coming
from two successive versions of a software system (see Sec-
tion 5 for more details). We divide the runs into eight equal
periods of time (x-axis). The y-axis shows the median of the
performance counter during that period. The red line with
round points is the baseline, which is from an earlier build.
The blue line with triangular points is the target, which is
from the new build. According to documentation, the fixes
between the two builds should not affect the performance of
the system. Hence, the performance counters should be very
similar. Yet, it turns out that they are different because of
the variation in the effective input load due to randomiza-
tion of the load. The smallest difference is 2% in the eighth
period. The highest difference is 30% in the first period. On
average, the difference is about 20%. The actual load inputs
are about 14% different between the two runs.

4.1.1 Proposed Solution
Our proposal is to scale the performance counter accord-

ing to the load. Under normal load and for well designed
systems, we can expect that performance counters are pro-
portionally linear to the load intensity. The higher the load,
the higher the performance counters are. Thus, the rela-
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Figure 3: Outline of our approach to detect performance regression.

tionship between counter values and the input load can be
described with the following linear equation:

c = α ∗ l + β (1)

In this equation, c is the average value of the performance
counter samples in a particular period of a run. l is the
actual input load in that period. α and β are the coefficients
of the linear model.

To minimize the effect of load differences on the counters,
we derive the following technique to scale each counter of
the target run:

• We collect the counter samples (cb) and corresponding
loads (lb) in the baseline runs. For example, in third
minute the CPU utilization is 30% when the load is
4,000 requests per minute. In the next minute, the
load increases to 4,100 so the CPU utilization increases
to 32%.

• We determine α and β by fitting counter samples, e.g.
the CPU utilization, and the corresponding load, e.g.
the number of requests per second, into the linear
model: cb = α ∗ lb + β as in (1). The baseline runs
usually have thousands of samples, which is enough to
fit the linear model.

• Using the fitted α and β, we can then scale the cor-
responding counter of the target run (ct) using the
corresponding load value (lt) as in (2).

ct = cb ∗
α ∗ lt + β

α ∗ lb + β
(2)

4.1.2 Evaluation
Evaluation Approach. The accuracy of the scaling

technique depends on the accuracy of the linear model in
(1). To evaluate the accuracy of the linear model, we need
to use the test runs of a software system. Hence, we evaluate
the accuracy on an industrial software system (see Section 5
for more information).

We run a set of controlled test runs to build the linear
model as in (1). The control runs use the same stable ver-
sion. We pick a different target load for each test. For exam-
ple, if the first three runs have actual loads of 1,000, 1,200,
and 1,000, we will aim for a load of 1,200 for the fourth run.
This choice ensures that we have enough data samples for
each load level, i.e., two runs with 1,000 and two runs with
1,200 in this example.
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Figure 4: The accuracy of the linear model in (1).
Left: The Spearman correlations between the pre-
dicted and actual performance counter values of 50
random splits. Right: The errors between the pre-
dict and actual value in percentage.

For each test run, we extract the total amount of load
l and the mean performance counter c for each period of
the runs. Then we train a linear model to determine α and
β using part of the data. Then we can test the accuracy
of the model using the rest of the data. This technique is
used commonly to evaluate linear models. A common ratio
for train and testing data is 2:1. We randomly sample two-
thirds of the periods to train the linear model. Then we use
the remaining one-third to test the model. We repeat this
process 50 times to eliminate possible sampling bias.

Results. Figure 4 shows the result of our evaluation. The
graph on the left is the box plot of the Spearman correlation
between the predicted and the actual counter values. If the
Spearman correlation nears zero, the model is a bad one.
If the Spearman correlation nears one, then the model fits
well. As we can see, all 50 random splits yield very high
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Figure 5: The performance counters of two test
runs. The difference in performance is not a perfor-
mance regression since both runs are of very similar
builds. The difference (20% average) is due to dif-
ferences in the actual load.

correlations. The graph on the right is the box plot of the
mean error between the predicted and the actual counter
values. As we can see, the errors, which are less than 2%
in most cases, are very small. These results show that the
linear model used to scale the performance counters based
on the actual load is very accurate.

Example. Figure 6 shows the performance counters of
the two runs in Figure 5 after our scaling. The counters
of the two tests are now very similar. As we can see, after
scaling, the target runs fluctuate closer to the baseline test.
The difference between the two runs is about 9% (between
2% to 15%) after scaling compared to 20% (between 2% to
30%) without scaling (Figure 5).

4.2 Satisfying the Normality of Output
Assumption

Process output is usually proportional to the input. So the
counter samples’ distribution should be a uni-modal normal
distribution (unless the load is pushed to the maximum, as
in stress testing, the counter distribution will skew to the
right).

However, the assumption here is that there is only one
kind of effective load input. If there are many kinds of in-
put, the distribution of counters would be multi-modal as
we explained in Section 2.3. Figure 9 shows the normal QQ
plot of a performance counter of a software under test (the
Enterprise system in Section 5). If the counter is uni-modal,
its samples should form a diagonal straight line. As we can
see, the upper part of the data fluctuates around a diagonal
straight line. However, the lower end does not. Unfortu-
nately, the data points at the lower end are not outliers;
they appear in all test runs of the software. As such, the
overall distribution is not uni-modal. A Shapiro-Wilk nor-
mality test on the data confirms that with p < 0.05.

Figure 7 shows a density plot of a performance counter
of two test runs of the same software under test. These
two runs come from two successive versions. The green line
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Figure 6: The scaled performance counters of two
test runs in Figure 5. We scale the performance
counter according to the load to minimize the effect
of load differences between test runs. The average
difference between the two runs is only 9% as com-
pared to 20% before scaling.

with round points is the baseline run, which is based on
an older version. The red line with triangles is the target,
which is from a new version. As we can see in the graph, the
distribution of the performance counters resembles a normal
distribution. However, the left tail of the distribution always
stays up instead of decreasing to zero.

When the system is under a load, the performance coun-
ters respond to the according load in a normal distribution.
However, in between periods of high load, the performance
counter is zero since there is no load input. The first point
on the density plot for both runs is about 4%. Hence, the
performance counter is at zero for about 4% of the time dur-
ing both test runs. The target run spent 5% of its time at
semi-idle state (the second point from the left on the red
curve). We discover that, when there is no load, the sys-
tem performs book keeping tasks. These tasks require only
small amounts of resources. We can consider these tasks as
a different kind a load input. These secondary tasks create
a second peak in the distribution curve, which explains the
long tail in the QQ plot of Figure 9.

Unfortunately, this is a common behaviour. For example,
on a web server, a web page would contain images. When
a web page is requested by the client, the web server has to
process and serve the page itself and the attached images.
The CPU cycles required to process an image are almost
minimal. Web pages, on the other hand, require much more
processing since there might be server side scripts on them.
Thus the distribution of the CPU utilization would be a
bi-modal distribution. The main peak would correspond
to processing the web pages. The secondary peak would
correspond to processing the images.

In the software system we study, only 16% of the studied
test runs are uni-modal. We confirm that these runs are,
in fact, normal as confirmed by Shapiro-Wilk tests (p >
0.05). The majority of the runs, which is about 84%, have
a bi-modal distribution similar to that of the target run in
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Figure 7: Density plot of two test runs.
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Figure 8: Density plot of another two different test
runs. These two runs are on a better hardware sys-
tem so the left peak is much higher than the two
runs in Figure 7.

Figure 7. In the bi-modal runs, the left peak corresponds
to the idle-time spent on book-keeping tasks. The right
peak corresponds to the actual task of handling the load.
The relative scale of the two peaks depends on how fast the
hardware is. The faster the hardware, the more time the
system idles, i.e., the left peak will be higher. The slower
the hardware, the less time the system has to idle because
it has to use more resource to process the load. The right
peak will be higher and the left peak might not be there.
The two runs shown in Figure 7 are on relatively standard
equipment. Figure 8 shows another two test runs that are
performed on better hardware configurations. As we can
see, the left peaks in the density plots are more prominent
in the runs with better hardware.

4.2.1 Proposed Solution
Our proposed solution is to filter out the counters’ samples

that correspond to the secondary task. The solution works
because performance regression testing is interested in the
performance of the system when it is under load, i.e., when
performance counters record relatively high values. Small
deviations are of no interest.

To implement the filtering solution, we derive a simple
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Figure 9: Normal QQ plot of CPU utilization coun-
ters. We show only 100 random samples of CPU
utilization from the run to improve readability.

algorithm to detect the local minima, i.e., the lowest point
between the two peaks of a bi-modal distribution. Then,
we simply remove the data points on the left of the local
minima. The algorithm is similar to a high pass filter in an
audio system. For example, after the filtering is applied, the
first three points on the target run’s density plot in Figure 7
(the red line with triangles) would become zeros.

An alternative solution is to increase the load as the server
hardware becomes more powerful. The increased load will
make sure that the system spends less time idling and more
time processing the load, thus, removing the left peak. How-
ever, artificially increase the load for the sake of normality
defeats the purpose of performance regression testing and
compromises the ability to compare new tests to old tests.

4.2.2 Evaluation
Evaluation Approach. To evaluate the effectiveness of

our filtering technique, we pick three major versions of the
software system (the Enterprise system in Section 5) that we
are most familiar with. For each run of the three versions,
we generate a QQ plot and run the Shapiro-Wilk normality
test to determine if the runs’ performance counters are nor-
mal. Then, we apply our filtering technique and check for
normality again.

Results. We first manually inspect the density plots of
each run in the three versions. About 88% of the runs have
a bi-modal distribution. About 66% do not have a normal
distribution, i.e., the Shapiro-Wilk tests on these runs re-
turn p < 0.05. If the left peak is small enough, it will pass
the normality test. After filtering, 91% of the non-normal
runs become normal. We believe this demonstrates the ef-
fectiveness of our filtering solution.

Example. Figure 10 shows the QQ plot of the same data
as in Figure 9 after our filtering solution. As we can see,
the data points are clustered more around the diagonal line.
This means that the distribution is more normal. We per-
form the Shapiro-Wilk normality test on the data to confirm.
The test confirms that the data is normal (p > 0.05). We
can now use the counter data to build a control chart.
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Figure 10: Normal QQ plot of the performance
counters after our filtering process. The data is the
same as in the QQ plot of Figure 9. After we remove
the data that corresponds to the idle-time tasks, the
distribution becomes normal.

5. CASE STUDIES
In this section, we describe the two case studies that we

conduct to evaluate the effectiveness of our control charts
based approach for detecting performance regressions.

5.1 Case Study Design
To measure the accuracy of our approach: a) We need to

pick a software system with a repository of good and bad
tests. b) For each test in the repository we use the rest
of the tests in the repository as baseline tests. We build a
control chart using these tests to create the control limits.
These control limits are, then, used to score the picked test.
c) We measure the violation ratio and determine whether
a test has passed or failed. d) We measure the precision
and recall of our approach using the following formulas by
comparing against the correct classification of a test:

precision =
|classified bad runs ∩ actual bad runs|

|classified bad runs| (3)

recall =
|classified bad runs ∩ actual bad runs|

|actual bad runs| (4)

There are three criteria that we considered in picking the
case studies. We pick two case studies that fit these criteria.
The first case study is a large and complex enterprise soft-
ware system (denoted as Enterprise system). The second
one is a small and simple open-source software (denoted as
DS2). Table 1 shows a summary of the differences between
the two case studies.

Which performance counters should be analyzed?
In the Enterprise system, the focus of the performance re-
gression tests is to keep the CPU utilization low because the
engineers already know that CPU is the most performance
sensitive resource. On the other hand, the DS2 system is
new. We do not know much about its performance charac-
teristic. Thus, we have to analyze all performance counters.

Table 1: Properties of the two case studies
Factor Enterprise DS2
Functionality Telecommu-

nication
E-
Commerce

Vendor’s business model Commercial Open-source
Size Large Small
Complexity Complex Simple

Known counter to ana-
lyze

Yes, use
CPU

No, use all

Determining kinds of
performance

Unknown Known

Source of performance re-
gression

Real Injection

What kind of performance regression problems can
we detect? In the Enterprise system, the testers’ classifica-
tion of the test results is available. Hence, we can calculate
the precision and recall of our approach on real-life perfor-
mance problems. However, we do not know what kind of
performance regression problems our approach can detect
since we cannot access the code. On the other hand, we
have the code for DS2. Thus, we inject performance prob-
lems, which are well known in practice [8], into the code of
DS2 and run our own test runs.

What is the threshold for the violation ratio? For
the enterprise system, we study the impact of different vio-
lation ratios. For the DS2 system, we show an automated
technique to determine the threshold. The technique can be
used for the enterprise system as well.

5.2 Case study 1: Enterprise system
The system is a typical multiple-tier server client archi-

tecture. The performance engineers perform performance
regression tests at the end of each development iteration.
The tests that we use in this study exercise load on multiple
subsystems residing on different servers. The behaviour of
the subsystems and the hardware servers is recorded during
the test run. The test engineers then analyze the perfor-
mance counters. After the runs are analyzed, they are saved
to a repository so test engineers can compare future test
runs with these runs.

We pick a few versions of the software that we are most
familiar with for our case study. There are about 110 runs in
total. These runs include past passed runs without perfor-
mance regressions and failed runs with performance regres-
sions. We note that we also used this dataset to evaluate
the effectiveness of the scale and the filter processing in Sec-
tion 4.1 and Section 4.2.

5.2.1 Evaluation Approach
We first establish the baseline for our comparison. We do

this with the help of the engineers. For each test run, we ask
the engineers to determine if the run contains performance
regressions, i.e., it is a bad run, or not, i.e., it is a good run.
We used the engineers’ evaluation instead of ours because
we lack domain knowledge and may be biased.

We compare our classifications with the engineers’ classifi-
cation and report the accuracy. However, we need to decide
on a threshold, t, such that if the violation ratio Vx > t, run
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Figure 11: The accuracy of our automated approach
compared the engineers’ evaluation in the Enter-
prise case study.

x is marked as bad. For this study we explore a range of
values for t, to understand the sensitivity of our approach
to the choice of t.

5.2.2 Results
Figure 11 shows the precision, recall, and F-measure of

our approach. The threshold increases from left to right.
We hide the actual threshold values for confidentiality rea-
sons. When the threshold increases, our classifier marks
more runs as bad, in which case the precision (blue with
circles) will increase but the recall (red with triangles) will
decrease. The f-measure (brown with pluses) is maximized
when both the precision and recall are at the optimum bal-
ance. The higher the f-measure, the better the accuracy.
The f-measure is highest when the precision is 75% preci-
sion and the recall is 100%.�
�

�
�

Our approach can identify test runs having perfor-
mance regressions with 75% precision and 100% recall
in a real software project.

5.3 Case study 2: Dell DVD store
The Dell DVD store (DS2) is an open-source three-tier

web application [5] that simulates an electronic commerce
system. DS2 is typically used to benchmark new hardware
system installations. We inject performance regressions into
the DS2 code. Using the original code, we can produce good
runs. Using the injected code, we can produce bad runs.

We set up DS2 in a lab environment and perform our own
tests. The lab setup includes three Pentium III servers run-
ning Windows XP and Windows 2008 with 512MB of RAM.
The first machine is the MySQL 5.5 database server [15],
the second machine the Apache Tomcat web application
server [17]. The third machine is used to run the load
driver. All test runs use the same configuration as in Ta-
ble 2. During each run, all performance counters associated
with the Apache Tomcat and MySQL database processes
are recorded.

Table 2: Dell DVD store configuration
Property Value
Database size Medium (1GB)
Number of threads 50
Ramp rate 25
Warm up time 1 minutes
Run duration 60 minutes
Customer think time 0 seconds
Percentage of new customers 20%
Average number of searches per order 3
Average number of items returned in
each search

5

Average number of items purchased per
order

5

Table 3: Common inefficient programming scenarios
Scenario Good Bad
Query
limit

Limit the number of
rows returned by the
database to what will
be displayed

Get everything then
filter on the web
server

System
print

Remove unnecessary
debug log printouts

Leave debug log
printouts in the code

DB con-
nection

Reuse database con-
nections when possi-
ble

Create new connec-
tions for every query

Key in-
dex

Create database
index for frequently
used queries

Forget to create index
for frequently used
queries

Text in-
dex

Create full-text index
for text columns

Forget to create full-
text index for text
columns

5.3.1 Evaluation Approach
Create data. We perform the baseline runs with the

original code from Dell. We note, though, that one par-
ticular database connection was not closed properly in the
original code. So we fix this bug before running the tests.
Then, we perform the bad runs with injected problems. In
each of these bad runs, we modify the JSP code to simulate
common inefficient programming mistakes that are commit-
ted by junior developers [8]. Table 3 shows the scenarios we
simulate. Each of these scenarios would cause a performance
regression in a test run.

Procedure. We derive a procedure that use control charts
to decide if a test run has performance regressions given the
good baseline runs. The input of this procedure would be
the counters of the new test runs and the counters of the
baseline runs.

• Step 1 - Determining violation ratio thresholds
for each counter: In this step, we only use the base-
line runs to determine a suitable threshold for each
counter. For each counter and for each baseline run,
we create a control chart using the that run as a tar-
get test and the remaining runs as baseline. Then we
measure the violation ratio of that counter on that run.
We define the threshold for that counter as the maxi-
mum violation ratio for all baseline runs. For example,
we have five baseline runs. The violation ratios of the
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Table 4: Target run: System print, Baseline: Good
runs 1, 2, 3, 4, and 5
Counter Threshold Violation

Ratio
MySQL IO read bytes/s 8.3% 9.7%
Tomcat pool paged bytes 19.4% 83.3%
Tomcat IO data bytes/s 9.7% 98.6%
Tomcat IO write bytes/s 9.7% 98.6%
Tomcat IO data operations/s 8.3% 100%
Tomcat IO write operations/s 8.3% 100%

Tomcat’s page faults per second counter of each run
are 2.5%, 4.2%, 1.4%, 4.2%, and 12.5%. The thresh-
old of the page faults counter of this baseline set is
12.5%.

• Step 2 - Identifying out-of-control counters: For
each counter in the target test run, we calculate the vi-
olation ratio on the control chart built from the same
counter in the baseline runs. If the violation ratio is
higher than the threshold in Step 1, we record the
counter and the violation ratio. For example, if the
Tomcat’s page faults per second counter’s violation ra-
tio is greater than 12.5%, we consider the page faults
counter as out-of-control. We present the counters or-
dered in the amount of violation relative to the thresh-
old.

The result of the procedure for each target run on a set
of baseline runs is a list of out-of-control counters and the
corresponding violation ratio. For example, Table 4 shows
the result of the analysis where the target is one run with
the system print problem (see Table 3) using five good runs
as baseline. The first column is the counter name. The
next column is the threshold. For example, the threshold
for MySQL IO read bytes/s is 8.3% which means that the
highest violation ratios among the five good runs is 8.3%.
The last column is the violation ratio. As we can see, since
the Tomcat process has to write more to the disk in the
bad run, the top four out-of-control counters are Tomcat IO
related.

5.3.2 Results
Table 5 shows the results of our test runs with the five

inefficient programming scenarios as described in Table 3.
We performed ten good runs and three runs for each sce-
nario. Due to space constraints, we show the number of
out-of-control counters and the average violation ratio for
five good runs and one run for each scenario. We note that
for the DS2 system, most of the performance counters are
already normally distributed. So only scaling, as described
in Section 4.1 is required.

As we can see from the first five rows of Table 5, when we
use one of the good runs as the target against other good
runs as baseline, the number of out-of-control counters and
the average violation ratios are low. Two out of the five
runs do not have any out-of-control counters. The other
three runs have average violation ratios of 13.15%, 13.6%,
and 27.7%. Since we pick the 5th and 95th percentiles as the
lower and upper limits, a 10% violation is expected for any
counter. Thus 13% violation ratio is considered low.

The bottom five rows of Table 5 show the results for the

Table 5: Analysis results for Dell DVD Store
Target
run

Baseline runs # out-of-
control
counters

Average
violation
ratio

GO 1 GO 2, 3, 4, 5 2 13.15%
GO 2 GO 1, 3, 4, 5 0 NA
GO 3 GO 1, 2, 4, 5 3 27.7%
GO 4 GO 1, 2, 3, 5 5 13.6%
GO 5 GO 1, 2, 3, 4 0 NA

QL GO 1, 2, 3, 4, 5 14 81.2%
SP GO 1, 2, 3, 4, 5 6 81.7%
DC GO 1, 2, 3, 4, 5 2 12.5%
KI GO 1, 2, 3, 4, 5 2 100%
TI GO 1, 2, 3, 4, 5 17 71.2%

GO - Good, QL - Query limit, SP - System print, DC - DB
connection, KI - Key index, TI - Text index (See Table 3 for
description of the problematic test runs)

problematic runs using the good runs as baseline. The num-
ber of out-of-control counters and the average violation ra-
tios are high except for the DB connection scenario (DC).
In summary, our proposed approach can detect performance
regressions in four out of the five scenarios.

We later find that, for the DC scenario, the new version of
the MySQL client library has optimizations that automat-
ically reuse existing connections instead of creating extra
connections. So even though we injected extra connections
to the JSP code, no new connection is created to the MySQL
server. This false negative case further validates the accu-
racy of our approach.

�
�

�
�

Our approach can identify four out of five common
inefficient programming scenarios.

6. RELATED WORK
To the best of our knowledge, there are only three other

approaches that aim to detect regressions in a load test.
Foo et al. [7, 6] detect the change in behaviour among the
performance counters using association rules. If the differ-
ences are higher than a threshold, the run is marked as a
bad run for further analysis. Malik et al. [13] use a fac-
tor analysis technique called principal component analysis
to transform all the counters into a small set of more dis-
tinct vectors. Then, they compare the pairwise correlations
between the vectors in the new run with those of the base-
line run. They were able to identify possible problems in
the new run. Other approaches analyze the execution logs.
For example, Jiang et al. [11, 12] introduced approaches to
automatically detect anomalies in performance load tests by
detecting out-of-order sequences in the software’s execution
logs produced during a test run. If the frequency of the out-
of-order sequences is higher in a test run, the run is marked
as bad.

Our evaluation shows that the accuracy of control charts
based approach is comparable to previous studies that also
automatically verify load tests. Foo et al. [7]’s associa-
tion rules approach, which also uses performance counters,
achieved 75% to 100% precision and 52% to 67% recall.
Jiang et al. [11]’s approach, which uses execution logs,
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Table 6: Practitioners’ feedback on the three ap-
proaches
Approach Strength Weakness
Foo et
al. [7]

Provide support for
root cause analysis
of bad runs

Complicated to ex-
plain

Malik et
al. [13]

Compresses coun-
ters into a small
number of impor-
tant indices

Complicated to com-
municate findings due
to the use of com-
pressed counters

Control
charts

Simple and easy to
communicate

No support for root
cause analysis

achieved around 77% precision. Our approach reaches com-
parable precision (75%) and recall (100%) on the Enterprise
system. However, it is probably not wise to compare pre-
cision and recall across studies since the study settings and
the evaluation methods are different.

There are also other approaches to detect anomalies dur-
ing performance motoring of production systems. Many of
these techniques could be modified to detect performance
regressions. However, such work has not been done to date.
For example, Cohen et al. [4] proposed the use of a su-
pervised machine learning technique called Tree-Augmented
Bayesian Networks to identify combinations of related met-
rics that are highly correlated with faults. This technique
might be able to identify counters that are highly corre-
lated with bad runs. Jiang et al. [10] used Normalized Mu-
tual Information to cluster correlated metrics. Then, they
used the Wilcoxon Rank-Sum test on the metrics to identify
faulty components. This approach can be used to identify
problematic subsystems during a load test. Chen et al. [2]
also suggest an approach that analyzes the execution logs
to identify problematic subsystems. Cherkasova et al. [3]
develop regression-based transaction models from the coun-
ters. Then they use the model to identify runtime problems.

7. FEEDBACK FROM PRACTITIONERS
To better understand the differences and similarities be-

tween our, Foo et al. [7]’s, and Malik et al. [13]’s approach.
We sought feedback from performance engineers who have
used all three approaches.

The feedback is summarized in Table 6. In general, the
strength of our approach compared to the other two ap-
proaches is the simplicity and intuitiveness. Control charts
quantify the performance quality of a software into a mea-
surable and easy to explain quantity, i.e., the violation ratio.
Thus performance engineers can easily communicate the test
results with others. It is much harder to convince the devel-
opers that some statistical model determined the failure of
a test than to say that some counters have many more vio-
lations than before. Because of that, practitioners felt that
our control charts approach has a high chance of adoption
in practice.

The practitioners noted that a weakness of our approach
is that it does not provide support for root cause analysis
of the performance regressions. Foo et al. [7], through their
association rules, can give a probable cause to the perfor-
mance regressions. With that feedback, we are currently
investigating the relationship between different performance

counters when a performance regression occurs. We con-
jecture that we can also use control charts to support root
cause analysis.

The practitioners also noted that our approach to scale
the load using a linear model might not work for systems
with complex queuing. Instead, it might be worthwhile ex-
ploring the use of Queuing Network models to do the scaling
for such systems. We are currently trying to find a software
system that would exhibit such a queuing profile to better
understand the negative impact of such a profile on our as-
sumptions about the linear relation between load inputs and
load outputs.

8. CONCLUSION
In this study, we propose an approach that uses control

charts to automated detect performance regressions in soft-
ware system. We suggest two techniques that overcome the
two challenges of using control charts. We evaluate our ap-
proach using test runs of a large commercial software system
and an open-source software system.

The results in both case studies are promising. The classi-
fication by our automated approach can achieve about 75%
precision and 100% recall compared to the real evaluation
in the Enterprise system. On the DS2 system, we can cor-
rectly identify four out of the five inefficient programming
scenarios. This is especially good considered that the other
scenario is actually a false negative.

We believe that our results warrant further studies to
apply statistical process control techniques such as control
charts, into software testing. For instance, the scaling tech-
nique that we suggested in Section 4.1 might not be suitable
for other software systems where performance counters are
not linearly proportional to the load. Similarly, the filter-
ing technique in Section 4.2 might not be suitable for other
software system where the secondary load should also be
considered. Different scaling and filtering techniques should
be derived for such cases.

Statistical process control has been used in many fields
such as business and manufacturing. Hence, researchers in
those fields already have a broad and solid knowledge on
how to leverage these techniques in their operation. If we
can leverage these statistical process control techniques into
software testing we might be able to reduce the cost of run-
ning and analyzing tests and improve software quality over-
all.
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