
Automatic NUMA Characterization using Cbench∗

Ryan Braithwaite
Los Alamos National

Laboratory
Los Alamos, NM, USA
rkbrait@lanl.gov

Wu-chun Feng
Dept. of Computer Science

Virginia Tech
Blacksburg, VA, USA
feng@cs.vt.edu

Patrick McCormick
Los Alamos National

Laboratory
Los Alamos, NM, USA

pat@lanl.gov

ABSTRACT
Clusters of seemingly homogeneous compute nodes are increas-
ingly heterogeneous within each node due to replication and dis-
tribution of node-level subsystems. This intra-node heterogene-
ity can adversely affect program execution performance by inflict-
ing additional data-access costs when accessing non-local data. In
this work-in-progress paper, we present extensions to the Cbench
Scalable Testing Framework for analyzing main memory and PCIe
data-access performance in modern NUMA architectures. The in-
formation provided by this tool will be of use for task scheduling,
performance modeling, and evaluation of NUMA systems.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures (Multiprocessors)
Keywords
NUMA, Benchmarking, System Analysis

1. INTRODUCTION
Non-uniform memory access (NUMA) architectures are the de

facto standard for servers today. The wholesale shift toward the
replication and distribution of system resources is driven by the
need to increase memory and I/O bandwidth to satisfy more cores
simultaneously accessing data. In NUMA systems, resources local
to a processor exhibit the uniform access bandwidth and latency
to which programs that are designed for uniform memory access
(UMA) systems are accustomed. However, resources that are re-
mote to a processor may be subject to significantly worse band-
width and latency data-transfer characteristics. Differences in the
designs of NUMA architectures may result in substantially differ-
ent data-access performance for each architecture.

When non-local resources are accessed frequently, data-access
latency and bandwidth in modern NUMA architectures can signif-
icantly affect program performance. For applications that are sen-
∗ This work was supported in part by NSF I/UCRC IIP-0804155 via the
NSF Center for High-Performance Reconfigurable Computing and Los
Alamos National Laboratory via the Accelerated Strategic Computing pro-
gram of the Department of Energy. Los Alamos National Laboratory is
operated by Los Alamos National Security LLC for the US Department of
Energy under contract DE-AC52-06NA25396.

Copyright 2012 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

sitive to data-access performance, it may be critical for a system
designer or application developer to understand the NUMA char-
acteristics of the system in which the program is executed so as to
avoid remote data accesses as much as possible.

We propose the use of empirical micro-benchmark data to pro-
vide data-access performance information to assist with NUMA
system analysis. To run these tests in a deterministic and auto-
mated fashion, we present the addition of NUMA testing to the
Cbench Scalable Testing Framework [1] [8].

The purpose of this paper is to present the characterization of
data-access performance in modern NUMA server architectures
using Cbench. The report generated by our new tool provides
a straightforward method for comparing data-access attributes in
NUMA systems. This knowledge may be used to improve applica-
tion behavior in NUMA systems, improve system configurations,
model the performance of applications in specific NUMA systems,
and be used by run-time schedulers to improve program execution
efficiency.

Our contributions are two-fold: NUMA system characterization
and the initial implementation of NUMA data-access performance
extensions to the Cbench Scalable Testing Framework. For the
former, we present methods for data-access bandwidth character-
ization in modern NUMA architectures using open-source micro-
benchmarks. This characterization analyzes CPU interconnect
links and PCIe interconnect lanes to describe the bandwidth capa-
bilities of a NUMA system. For the latter, we present the addition
of our NUMA system characterization tests to the Cbench cluster
testing framework in order to assist with the analysis of NUMA
architectures.

This tool provides a straightforward method for analyzing and
comparing data-access performance across thousands of nodes in
a cluster or single stand-alone nodes, as necessary. While other
NUMA tools analyze only the hierarchy of NUMA memory nodes
in a system, our Cbench tool allows for analysis of the hierarchy,
performance, and hardware design of a NUMA system.

2. RELATED WORK & BACKGROUND
The characterization of a NUMA system is typically thought of

in terms of the hierarchy of memory nodes and the distance be-
tween nodes. The libnuma [4] and hwloc [2] projects describe
NUMA systems in this manner, including the distance to additional
hardware resources such as PCIe-based interfaces for networking
and graphics.

Both tools rely on the Linux /proc and /sys kernel filesys-
tems to determine NUMA hierarchy information for a system. The
NUMA distance data reported by libnuma is derived by the ker-
nel from the BIOS ACPI tables and may be wrong or incomplete.
The hwloc project interrogates these kernel filesystems to provide
the programmer with other architectural details of a system in addi-

295

tion to the ACPI-based NUMA distance information presented by
libnuma. The notion of NUMA distance only takes into account
which nodes are connected to each other. Modern NUMA designs,
such as AMD’s Magny-Cours and Interlagos architectures, have
variable-width CPU interconnect links and therefore exhibit differ-
ent bandwidth for links of the same NUMA distance.

To provide the performance details necessary to describe these
newer systems, we build upon existing tools and libraries by mea-
suring the performance for data-access operations between memory
nodes and between memory nodes and PCIe devices, specifically
GPUs. Our primary goal in characterizing NUMA systems is to
quantify the data-access performance of each type of data access
that is possible in a system so that the impact of the hierarchy on a
system’s performance is better understood.

As a case study, we examine the AMD Magny-Cours two-socket
(2P) architecture shown in Figure 1. This system has two sources of

Socket 0 Socket 1

D
D

R
3 D

R
A

M
D

D
R

3 D
R

A
M

Die 2
Core 9

Core 11

Core 10

Core 12

D
D

R
3

D
R

A
M

D
D

R
3

D
R

A
M

I/O
ControllerG

PU
/N

IC I/O
Controller

G
PU

/N
IC

x16 cHT link

x8 cHT link

DDR3 Memory
Channel

x16 ncHT link

PCIe Bus

Die 0

Die 1 Die 3

Figure 1: AMD Socket G34 2P Architecture

NUMA performance complexity: the CPU package, consisting of
two CPU dies, three levels of cache, and wires in a socket; and the
HyperTransport (HT) interconnect links between CPUs and other
components. This increased complexity results in substantial data-
access heterogeneity despite the fact that it is only a 2P design.

3. CBENCH AS A NUMA ANALYSIS TOOL
Cbench is a benchmark utility framework developed at Sandia

National Laboratories and designed for HPC system integration en-
gineers and analysts. The Cbench framework consists of a toolkit
of Perl and Bash scripts that manage the building of supported
open-source benchmarks from source code and the creation, sub-
mission, and analysis of benchmark jobs on Linux HPC clusters.
In addition, Cbench provides basic statistical analysis to compare
benchmark results for nodes in a cluster so that machines with sub-
standard performance may be automatically identified. Running
benchmark programs in Cbench provides a robust and straightfor-
ward method for executing identical tests on evaluation machines
in order to compare performance.

Cbench is also used to evaluate new systems and architectures.
The Cbench Single-Node-Benchmark (SNB) script runs node-level
tests and produces a LATEX report showing the baseline performance
of a given system.

3.1 Previous Cbench Capabilities
The main focus of the Cbench framework is to run benchmark

jobs across a large number of nodes in a Linux cluster to test various
attributes of the system. Benchmark tests run within Cbench are
generally divided into cluster-level MPI-based tests (e.g. Linpack,
OSU Bandwidth Benchmarks, NAS Parallel Benchmarks) and
node-level serial or parallel tests (e.g. STREAM, memtester, node-
level Linpack). The NUMA data-access characterization effort

presented in this paper is focused on node-level data-access band-
width, so we focus on the node-level portion of Cbench.

3.2 Integrating NUMA Testing and Analysis
Our goal is to enable comprehensive NUMA performance anal-

ysis using Cbench. As a starting point, we extended the Cbench
framework to characterize the single-threaded data-access band-
width of NUMA systems. This characterization is achieved by
running benchmark programs using the possible data-access sce-
narios for a given system and partition the results into bandwidth
classes, or equivalence classes of data-access bandwidth, based on
the empirical results.

We automate these data-access characterization tests by adding
the capability to run benchmarks in a NUMA-aware fashion (i.e.,
running benchmarks with CPU scheduler and memory allocation
policies explicitly set) to the SNB script in Cbench. This included
adding the ability to detect bandwidth equivalence classes from the
data produced by these benchmark tests to the Cbench SNB scripts.
Table 1 summarizes our additions to Cbench.

Table 1: Capabilities of Cbench Versions
OLD CBENCH NUMA CBENCH

MPI-level X X
Node-level X X

NUMA Memory X
NUMA PCIe+GPU BW X

NUMA BW Classes X

3.2.1 Data-Access Bandwidth Benchmarks
We use the STREAM [6] [7] benchmark to determine memory-

access bandwidth between CPU cores and memory nodes, intercon-
nect links, memory controller overhead, and memory technology
(e.g., DDR3). STREAM executes four types of memory-access oper-
ations on a large data array: Add, Copy, Scale, and Triad. Triad
is similar to operations found in many scientific applications, so we
report only Triad results.

We use components of the Scalable HeterOgeneous Computing
(SHOC) benchmark suite [3] to characterize PCIe data-access band-
width. The data-access performance of a device connected by PCIe
I/O links in a system such as that shown in Figure 1 is a function
of traversing the PCIe links, the HT CPU interconnect links from
CPUs to PCIe devices, controllers and chipsets along the CPU-to-
PCIe path, and the specific PCIe device that contains the requested
data. We present the analysis of high-performance GPUs transfer-
ring data across the PCIe interconnect to requesting processors in
the system shown in Figure 1 and described in Table 3. The CPU-
to-I/O controller affinity shown by these tests also applies to other
PCIe devices, though the reported absolute bandwidth for other de-
vices may differ.

Analysis of data transfers for a GPU connected by PCIe involves
measuring the download rate (writing to GPU memory) and the
readback rate (reading from GPU memory) when transferring data
between the host CPU core and the GPU device. To measure these
rates, we use the BusSpeedDownload and BusSpeedReadback
tests in the SHOC benchmark suite. These tests measure the band-
width of the link(s) between host processor and GPU device by
transferring data payloads of varying size to (download) and from
(readback) the GPU device. Systems configured with NVIDIA
GPUs can run both CUDA and OpenCL code, and in some cases,
the PCIe bandwidth reported by the CUDA and OpenCL versions
of SHOC vary. Cbench is configured to run both versions, though we
only report CUDA results in this paper.

3.2.2 Testing Data-Access Bandwidth

296

Benchmarking every data-access scenario in a NUMA system
entails mapping benchmark processes and their memory in every
possible configuration that a program might encounter during ex-
ecution. For modern many-core systems, mapping processes to
individual cores greatly expands the set of core-to-node combina-
tions that must be tested. To test all processor-core-to-memory-
node combinations, p×m tests must be executed, where p is the
number of CPU cores and m is the number of memory nodes in
a system and where p >> n. However, cores that are attached to
the same memory node show virtually identical memory bandwidth
when accessing data on a given memory node (see Table 2), so
core-to-node testing is unnecessary. We therefore allow the process
scheduler to choose to schedule a process on any core attached to
a memory node (i.e. any core on the same die). Such a process-to-
node mapping reduces the number of tests to m×m and is done at
run-time using the numactl tool for both STREAM and SHOC bench-
marks. This ensures that the host CPU process is executed on the
appropriate cores and that its memory is bound to the appropriate
memory node.

For PCIe tests, it is technically only necessary to characterize
one set of core/memory node combinations because GPU memory
transfers use pinned memory. This means that the location of the
pinned memory, not the location of the host CPU process, is the de-
termining factor in the data-access performance for GPU programs.
Nevertheless, for completeness the download and readback rates
for each of the node-to-device combinations in a system are gath-
ered by Cbench and organized into bandwidth equivalence classes,
similar to the results of the STREAM benchmarks.

3.2.3 Addition of NUMA Tests to Cbench
We extend the SNB script to characterize data accesses in NUMA

systems by running a given program from all cores to all memory
nodes or from all memory nodes to all memory nodes and bind-
ing CPU and memory affinity as described in Section 3.2.2. This
solution has the benefit of providing NUMA characterization capa-
bility to any of the node-level tests already supported by Cbench.
Cbench builds many varieties of the STREAM benchmark; using ver-
sions from different compilers only requires instructing Cbench to
build the benchmarks with the appropriate compiler.

GPU benchmark support in Cbench is in the early stages of de-
velopment, and the addition of the SHOC PCIe bandwidth tests to
the Single-Node-Benchmark script provides the first complete GPU
testing capability for Cbench. These SHOC tests facilitate PCIe data-
access characterization similar to the STREAM tests discussed previ-
ously.

3.2.4 Automatic Bandwidth Class Detection
A critical component of our data-access bandwidth analysis is

the synthesis of bandwidth classes from a system’s benchmark re-
sults. We employ the Algorithm::KMeans Perl module imple-
mentation of K-Means clustering [5] to provide automatic band-
width classification of the benchmark results gathered by Cbench.
To prepare the data for K-Means analysis, we first process the re-
sults for all iterations of each STREAM or SHOC benchmark version
that was executed by Cbench and use only the best result for each

Table 2: Core-to-Memory-Node STREAM TRIAD Results
Test run 30 times from each core 0-3 to each memory node

To Mem. Node Mean BW Std. Dev.
0 8.1 GB/s 0.020
1 5.1 GB/s 0.013

2/3 3.0 GB/s 0.023

data-access scenario. Pruning the data in this manner improves the
accuracy of the K-Means algorithm by preventing cluster detec-
tion for results that are produced by poorly-optimized benchmark
executables and not actual bandwidth classes. Once the data are
pruned, the K-Means algorithm is used to determine the best clus-
ters for the benchmark dataset.

There are two elements of the K-Means cluster algorithm that
are of paramount concern: the number of clusters in the data (K)
and the initial cluster center values. This algorithm automatically

tries all values of K where 2 ≤ K ≤
√

N
2 and N is the number of

data points for a given data set. The value of K with the best ratio
of avg. cluster radius

avg. dist. btw. cluster centers is returned as the number of clusters in
the data. The upper bound for K was set by the module developer
and has been sufficient for our purposes. The choice of the initial
cluster center values for each K is the most critical aspect of proper
bandwidth class detection using K-Means. The initial cluster cen-
ters are chosen using random data points, which means that the
quality of the final classification is somewhat random. For a first
effort at automating the process of data-access classification this
randomness is acceptable, but we intend to improve the accuracy
and determinism of the classification process.

3.3 Cbench NUMA Characterization Results
Cbench SNB NUMA Report. Tables 4 and 5 show the LATEX re-

port for memory and PCIe data-access bandwidth results produced
by the Cbench SNB script for the system described in Table 3. As
noted previously, the best results for each type of data access are
used to determine the bandwidth classes shown in Table 4. The
tables generated by Cbench are useful for comparing versions of
a benchmark, as well as for checking the configuration of the ma-
chine. For example, the PCIe results in Table 5 show that both GPU
devices are local to memory nodes 0 and 1 (i.e. both GPUs are lo-
cal to socket 0), meaning that both are accessed through the same
I/O controller and that the system may be misconfigured.

4. CONCLUSION
Next Steps. The NUMA data-access performance characteri-

zation work in this paper focused on a two-socket AMD system.
Systems with much more heterogeneous architectures are available
today, and analyzing these systems is one of the primary focuses of
our next development effort. Furthermore, other aspects of NUMA-
related data-access performance such as data-access latency, net-
work I/O, and disk I/O will be incorporated into Cbench to provide
a more comprehensive analysis of data-access performance.

The work presented in this paper focused exclusively on single-
threaded analysis of data-access bandwidth. We have the initial
implementation of multi-threaded memory bandwidth tests using
an MPI version of STREAM already in Cbench. The analysis of shar-
ing data-access resources among multiple threads is key to predic-
tive performance modeling in NUMA systems. As we further de-
velop our multi-threaded testing ability, we are also working to de-
velop data-access performance models using both single-threaded
and multi-threaded system characterization data from Cbench to
model the performance of applications in NUMA systems by taking
into account a program’s data-access profile and the performance

Table 3: Configuration of the AMD 2P Test System
CPU Model Magny-Cours 6134

CPU Cores/Mem. Nodes 16/4
Motherboard Supermicro H8DGG

GPUs (#) Tesla C2050 (2)
Linux Kernel 2.6.18-194.17.4.el5

297

Table 4: Data-Access Bandwidth Classes as determined by Cbench
for AMD 2P NUMA System

BW Class STREAM Triad (GB/s) BusSpeedDownload (GB/s) BusSpeedReadback (GB/s)
0 3.92 < BW ≤ 6.44 5.32 < BW ≤ 5.85 5.33 < BW ≤ 6.58
1 2.18 < BW ≤ 3.92 2.35 < BW ≤ 5.32 2.32 < BW ≤ 5.33
2 ≤ 2.18 ≤ 2.35 GB/s < 2.32

Table 5: NUMA STREAM and SHOC Bandwidth Test Results
STREAM Triad (GB/s) – best value in each column is highlighted

CPU: Node 0 CPU: Node 0 CPU: Node 0 CPU: Node 0 · · · CPU: Node 3 CPU: Node 3 CPU: Node 3 CPU: Node 3

Mem: Node 0 Mem: Node 1 Mem: Node 2 Mem: Node 3 · · · Mem: Node 0 Mem: Node 1 Mem: Node 2 Mem: Node 3

stream-big-c 6.40 3.91 2.16 2.15 · · · 2.13 2.14 3.92 6.32
stream-big-f 6.11 3.78 2.14 2.11 · · · 2.11 2.10 3.79 6.11

stream-c 5.32 3.35 2.18 2.15 · · · 2.15 2.13 3.88 5.34
stream-f 5.35 3.35 2.17 2.13 · · · 2.15 2.12 3.90 5.37

stream-gcc-c 6.12 3.88 2.15 2.14 · · · 2.14 2.15 3.89 6.28
stream-gcc2-c 6.38 3.91 2.15 2.12 · · · 2.12 2.12 3.91 6.14

SHOC CUDA PCIe Bandwidth Tests (GB/s) – values colored according to BW class
Device 0
BusSpeedDownload 5.85 5.32 2.35 2.32 · · · 5.81 5.32 2.35 2.30
BusSpeedReadback 6.58 5.32 2.31 2.28 · · · 6.58 5.28 2.31 2.28
Device 1
BusSpeedDownload 5.81 5.32 2.35 2.32 · · · 5.81 5.32 2.35 2.30
BusSpeedReadback 6.58 5.30 2.31 2.29 · · · 6.58 5.27 2.31 2.28

penalties associated with remote data accesses in a given system.
Task scheduling may also be improved by maximizing data-access
performance using the data we generated by Cbench.

Summary. By adding NUMA data-access bandwidth character-
ization, the Cbench Single-Node-Benchmark script is now a useful
tool for analyzing NUMA data-access performance. We presented
this promising and extensible tool using single-threaded memory
and GPU benchmarks to characterize data-access bandwidth in
modern NUMA systems and we will continue to develop addi-
tional characterization tests as we look at other factors affecting
data-access performance.

5. REFERENCES
[1] Cbench. http://cbench.sourceforge.net, Aug. 2011.
[2] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento,

B. Goglin, G. Mercier, S. Thibault, and R. Namyst. hwloc: A
Generic Framework for Managing Hardware Affinities in
HPC Applications. In 18th Euromicro International
Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 180 –186, 2010.

[3] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The Scalable
Heterogeneous Computing (SHOC) Benchmark Suite. In 3rd
Workshop on General-Purpose Computation on Graphics
Processing Units, GPGPU ’10, pages 63–74, New York, NY,
USA, 2010. ACM.

[4] A. Kleen. A NUMA API for Linux. Technical report, SUSE
Labs, April 2005.

[5] S. Lloyd. Least Squares Quantization in PCM. Information
Theory, IEEE Transactions on, 28(2):129–137, March 1982.

[6] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth
in High Performance Computers. Technical report, University
of Virginia, Charlottesville, Virginia, 1991-2007. A
continually updated technical report.
http://www.cs.virginia.edu/stream/.

[7] J. D. McCalpin. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer Society

Technical Committee on Computer Architecture Newsletter,
pages 19–25, Dec. 1995.

[8] J. Ogden. Cbench: A Software Toolkit for Testing,
Benchmarking, and Qualifying HPTC Linux Clusters.
Technical report, Sandia National Laboratories, Accessed
August 2011.

298

