
Integrating Software Performance Curves
with the Palladio Component Model

Alexander Wert
SAP Research

Vincenz-Priessnitz-Str. 1
Karlsruhe, Germany

alexander.wert@sap.com

Jens Happe
SAP Research

Vincenz-Priessnitz-Str. 1
Karlsruhe, Germany

jens.happe@sap.com

Dennis Westermann
SAP Research

Vincenz-Priessnitz-Str. 1
Karlsruhe, Germany

dennis.westermann@sap.com

ABSTRACT

Software performance engineering for enterprise applications
is becoming more and more challenging as the size and com-
plexity of software landscapes increases. Systems are built
on powerful middleware platforms, existing software com-
ponents, and 3rd party services. The internal structure of
such a software basis is often unknown especially if busi-
ness and system boundaries are crossed. Existing model-
driven performance engineering approaches realise a pure
top down prediction approach. Software architects have to
provide a complete model of their system in order to con-
duct performance analyses. Measurement-based approaches
depend on the availability of the complete system under
test. In this paper, we propose a concept for the combina-
tion of model-driven and measurement-based performance
engineering. We integrate software performance curves with
the Palladio Component Model (PCM) (an advanced model-
based performance prediction approach) in order to enable
the evaluation of enterprise applications which depend on a
large software basis.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques

1. INTRODUCTION
The performance (response time, throughput, and resource

utilisation) of enterprise applications is crucial for their suc-
cess. Performance directly influences the total cost of own-
ership (hardware and energy) as well as customer satisfac-
tion. In order to develop performant applications, software
architects need to evaluate the influence of different design
alternatives on software performance, identify critical com-
ponents, and plan capacities of their system early in the
development cycle.
The increasing complexity of software systems makes de-

sign time performance analyses a difficult task that requires
a high expertise in the system under study and performance
engineering. Today’s enterprise applications are built on
a complex technology stack including powerful middleware
platforms, different operating systems and virtualisation tech-
nologies. Furthermore, systems are placed in a software
landscape with which they interact and on which they de-
pend. The external systems largely contribute to the per-

Copyright is held by the author/owner(s).
ICPE'12, April 22-25, 2012, Boston, Massachusetts, USA
ACM 978-1-4503-1202-8/12/04.

formance of an enterprise application and thus have to be
considered for performance analyses. In most cases, no per-
formance models are available for systems that have been
developed over the past decades or are provided by 3rd par-
ties. The necessary information to build performance models
for these systems is not available or performance modelling
is too much effort.

Model-driven performance engineering approaches [3] im-
plement a pure top down approach and thus require perfor-
mance models for all relevant parts of a system. This re-
quirement can render their application impossible for soft-
ware systems placed in a software landscape. Approaches
for measurement-based performance evaluation (such as [19,
6]) require no (or at least no detailed) models of a system.
However, they depend on the availability of large parts of
the application and can only be applied later in the devel-
opment cycle. During these stages, the evaluation of design
decisions and the identification of critical components re-
quires large and costly code changes and thus is inefficient.
Other approaches combine performance prediction models
with systematic measurements (such as [14, 12]) for resource
demand estimation. However, these approaches still rely on
knowledge about the internal structure of a system.

In this paper, we integrate model-driven and measurement-
based performance prediction approaches. We introduce the
concept of software performance curves, which describe the
performance (response time, throughput, and resource utili-
sation) of a service or (sub-)system in dependence on its us-
age and configuration. Performance curves are inferred from
systematic measurements using statistical methods and ma-
chine learning techniques. Performance curves characterise
the response time, throughput, and resource utilisation of
services which are available, but whose internal structure
is unknown or too complex. To enable design-time per-
formance analysis, we integrated performance curves into
the Palladio Component Model (PCM) [4], an advanced ap-
proach for model-driven performance engineering. With the
combination of model-driven and measurement-based per-
formance analysis, software architects can evaluate design
decisions, identify critical components, and plan capacities
during early development stages including the effects of the
system’s environment.

The contribution of this paper is a concept for the integra-
tion of measurement-based and model-driven performance
engineering approaches. Moreover, we introduce an inter-
preter of performance curves which extends the PCMmodel-
to-text transformations that map a performance model to a
discrete-event simulation.

283

This paper is structured as follows. Section 2 provides
a brief overview of our approach. In Section 3, we present
the concept of performance curves and provide an examples.
Section 4 describes the integration of performance curves
with the PCM. In Section 5, we describe related research.
Finally, Section 6 concludes this paper.

2. OVERVIEW
In model-driven performance engineering (survey in [3]

and [10]), architectural models of a software system are an-
notated with performance-relevant information such as re-
source demands and branching probabilities. These mod-
els are transformed to analytical models, such as stochastic
Petri nets, stochastic process algebras, and queueing models
(overview in [5]) or to discrete-event simulations [15, 13].
For the integration of model-driven and measurement-

based performance analysis, we assume that some parts of
the system are already available (for example, 3rd party ser-
vices or software artefacts) and other parts are newly devel-
oped. The performance analysis follows the process shown
in Figure 1.

Figure 1: Overview of integrating model-driven and

measurement-based performance analysis.

For the newly created parts, we can apply the standard ap-
proach for model-driven performance engineering [11]. Soft-
ware architects specify the system’s components, behaviour,
deployment, and usage (System Modelling). This activity re-
sults in a System Model that describes the newly developed
parts as well as its usage. In order to consider the effect of
existing parts in performance analysis, we need to include
them in the prediction model. However, modelling existing
(sub-)systems can be difficult if the system has been devel-
oped by or is provided by a 3rd party. For in-house com-
ponents, performance modelling can also become a difficult
task due to the complexity and heterogeneity of systems.
However, existing systems can be measured (Measurement)
resulting in Performance Data of the system. Such data can
be used for Model Inference. In this step, statistical methods

and machine learning techniques derive a model of the sys-
tem that describes its performance properties on an abstract
level. Such models can be either simple performance models
(such as used in [12]) or arbitrary statistical models (such as
used in [7]). To consider the effect of system external parts
on performance, these models have to be integrated with or
made available in model-driven prediction approaches (Inte-
gration). This step merges both model types and creates a
common basis for further performance analysis (Prediction).
Based on the Performance Predictions, software architects
and performance analysts can decide about design alterna-
tives, plan capacities, or identify critical components. In the
following section, we introduce the concept of performance
curves illustrating it on an example.

3. SOFTWARE PERFORMANCE CURVES
In most cases, the necessary information to build perfor-

mance models for 3rd party software systems is not available.
Thus, we propose to specify the timing behaviour of such
systems by more abstract models called performance curves.
A performance curve describes the performance metrics of
interest (e.g., response time) in dependence on a set of input
parameters (e.g. number of requested table rows).

Formally, a performance curve describes the performance
P (response time, throughput, and resource utilisation) of a
system in dependence on a set of input parametersA1, . . . , An

with n ∈ N. It is a function f : A1×A2×. . .×An → R, where
each input parameter Ai is a number (⊂ R), an enumera-
tion, or a boolean value. The function’s result represents
the performance metric of interest. A performance curve is
inferred from systematic measurement of a software system
using statistical methods [8], such as symbolic regression or
multidimensional interpolation techniques like Kriging.

Figure 2: Performance curves for Apache Derby and

MySQL.

In Figure 3, we depicted a simple example for a perfor-
mance curve with two input parameters. Therefore, we mea-
sured the response time of a database systems’ (MySQL
5.5 [1]) update operation in dependence of the queue length
and the number of requested rows. We measured the re-
sponse times for a queue length of 1 to 10 (step size 1) and
for a number of requested rows between 1 and 12,000 (step
size 3000). This example should only illustrate the idea be-
hind performance curve. In most cases, accurate perfor-

284

Figure 3: Integrating performance curves using

QoSAnnotations.

mance curves of real software systems are much more com-
plex and high dimensional. For the measurements, we used
the Software Performance Cockpit [17, 16] applying the
FullExplorationStrategy, which measures the performance of
all combinations of possible parameter values. More sophis-
ticated and efficient strategies have been presented in [18].

4. INTEGRATION CONCEPT
In the following, we introduce our concept for integrat-

ing performance curves with the Palladio Component Model
and describe our extension of the transformations that map
PCM-instances to a discrete-event simulation called Simu-
Com (for details about SimuCom see [4]).
We can integrate a performance curve into a component-

based architecture using three different approaches: i) A
performance curve models latencies and thus could be mod-
elled as a specific kind of resource, ii) a performance curve
describes the performance of a black-box component and
thus could be specified as special components, and iii) per-
formance curves model external services and components
considering no further service dependencies and thus could
specify the performance of system external calls. The first
two approaches have significant drawbacks. Resources can-
not provide the complex interfaces needed to capture the
parameter dependencies of performance curves. Therefore,
the first approach is not applicable. Furthermore, the per-
formance of software components depends on their usage,
deployment, and external services. Performance curves are
currently not parametrised for arbitrary deployments or for
the exchange of external services. Therefore, the second
approach can lead to erroneous models and inaccurate pre-
dictions. In the following, we describe the integration of per-
formance curves with model-driven prediction approaches as
system external calls (iii).
Figure 3 gives an overview of the integration of perfor-

mance curves into the PCM. At the model layer (top of
Figure 3), PCM models with a system required role indicate
their dependency on an external system. The external sys-
tem is a black-box, whose internal structure and behaviour
is unknown but a performance curve is available. To inte-
grate a performance curve as an external system into the

PCM, we extend its quality of service annotations (QoSAn-
notations). QoSAnnotations specify the performance of sys-
tem external calls by annotating the RequiredRoles and cor-
responding signatures of the required interface. We intro-
duce the new annotation type PerformanceCurveQoSAnno-
tation (called PC-QoSAnnotation in Figure 3) which refer-
ences the RequiredRole to be annotated and a Performance-
CurveSpecification (in the following called PC-SPEC) which
describes the performance curve. Thus, the Performance-
CurveQoSAnnotation contains the information necessary to
link the required role of the system to the performance in-
formation captured by the performance curve.

We designed and implemented a performance curve inter-
preter concept (PC-Interpreter Concept) providing an in-
terface which is linked to the PCM’s simulation. A PC-
Interpreter (bottom right in Figure 3) loads a performance
curve, determines response times and simulates delays. Es-
sentially, the PC-Interpreter contains the generic logic for
performance curve integration. A bridge (PC-Bridge) imple-
ments the logic necessary for adapting the application spe-
cific interfaces to the interface of the PC-Interpreter. This
is necessary since the simulation-code generated from PCM
models requires different interfaces than the PC-Interpreter
provides. The interface and signatures which the required
role of the PCM model comprises vary from case to case.
Therefore, the PC-Bridge is generated for each application
of a performance curve. In order to generate the code of the
PC-Bridge, the PerformanceCurveQoSAnnotation and the
contained PerformanceCurveSpecification are transformed
to simulation code.

In the PCM, the simulation-code generation creates a Java
class for each component of a system. For each SEFF-action
and provided interface signature a method is generated con-
taining the corresponding simulation code. The PC-Bridge
can be integrated into the generated method of the exter-
nal call (in the following called M) in order to redirect the
simulation control flow to the PC-Interpreter. Then, the
PC-Interpreter loads the specified performance curve, cal-
culates the response time for the passed parameter values
and simulates a delay. After that, the PC-Interpreter re-
turns the control flow to M. The simulation engine measures
the time for the execution of M, which can be used later for
performance analysis and prediction.

5. RELATED WORK
In this section, we discuss research work dealing with

measurement-based performance prediction and its combi-
nation with model-based approaches.

Woodside et al. [19] introduced the idea of a workbench for
automated measurement of resource demands. The results
are derived by function fitting and the maintenance of re-
source functions is done by a repository. Woodside assumes
an analytical approach of performance consideration rather
than using simulations. Furthermore, Woodside briefly men-
tions the idea of combining measurement results with system
models by considering resource functions as model parame-
ters. However, the measurements are used to refine an exist-
ing model and do not completely abstract from the internal
behaviour of the (sub-)system.

Babka [2] introduced an approach for integrating (exter-
nal) resource models into performance models based on queu-
ing Petri nets. Babka also applies discrete-event simulation
for performance prediction. However, in contrast to this pa-

285

per, Babka focuses on low-level hardware and software re-
sources like CPU caches or locks, whereas in our approach it
does not matter whether the resource is a low-level resource
like a CPU or a complex legacy system. Another difference
is our assumption that the considered resource might be a
black-box, i. e. the internal behaviour is unknown. A sim-
ilar approach by Liu et al. [14] builds a queuing network
model whose input values are computed based on bench-
marks. The goal of the queuing network model is to derive
performance metrics for J2EE applications.
Jin et al. [9] introduce an approach called BMM that

combines benchmarking, production system monitoring, and
performance modelling. Their goal is to quantify the per-
formance characteristics of real-world legacy systems under
various load conditions. However, the measurements are
driven by the upfront selection of a performance model (e.g
layered queuing network) which is later on built based on
the measurement results.

6. CONCLUSIONS
In this paper, we presented a combination of model-driven

and measurement-based performance analysis. Our approach
allows software architects to combine models of a software
system with performance curves of existing (sub-)systems.
The latter are derived by systematic measurements using
the Software Performance Cockpit [17, 16]. We integrated
the performance curves into the Palladio Component Model
(PCM) [4]. For this purpose, we extended the discrete-event
simulation (SimuCom) of the PCM with an interpreter and
adapter for performance curves.
The integration of model-driven and measurement-based

performance analysis allows software architects to evalu-
ate design alternatives, plan capacities, and identify critical
components of a software system even though the system de-
pends on external services, 3rd party components or legacy
systems. Having this integration in place, performance en-
gineering becomes more applicable in practice reducing the
manual effort necessary to build prediction models.
In our future work, we look into issues that arise for the

measurement of complex systems. With an increasing num-
ber of parameters, the number of measurements grows ex-
ponentially (”curse of dimensionality” [8]). A first measure
to reduce the complexity is to identify and focus on the
relevant parameters only. For this purpose, we look into dif-
ferent screening techniques that rank parameters according
to their influence. Moreover, the integration of performance
curves into the PCM requires further extensions. For exam-
ple, performance curves have to consider interaction effects
with other components or performance curves that occur if
they share common resources. Last but not least, we need
to gather more experience applying our approach in more
complex scenarios within SAP.

7. REFERENCES

[1] Mysql 5.5. last visited 04.01.2011.

[2] V. Babka. Resource Sharing in QPN-based
Performance Models. In J. Safrankova and J. Pavlu,
editors, In the Proceedings of WDS’08. Citeseer, 2008.

[3] S. Balsamo, A. Di Marco, P. Inverardi, and
M. Simeoni. Model-Based Performance Prediction in
Software Development: A Survey. IEEE Transactions
on Software Engineering, 30(5):295–310, May 2004.

[4] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 2009.

[5] M. Bernardo and J. Hillston, editors. Formal Methods
for Performance Evaluation (Int. School on Formal
Methods for Design of Computer, Communication,
and Software Systems, SFM2007). 2007.

[6] G. Denaro, A. Polini, and W. Emmerich. Early
performance testing of distributed software
applications. SIGSOFT Software Engineering Notes,
29(1):94–103, 2004.

[7] J. Happe, D. Westermann, K. Sachs, and L. Kapova.
Statistical Inference of Software Performance Models
for Parametric Performance Completions. In Proc. of
QoSA 2010), LNCS. Springer, 2010.

[8] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data mining,
Inference ,and Prediction. Springer, 2009.

[9] Y. Jin, A. Tang, J. Han, and Y. Liu. Performance
evaluation and prediction for legacy information
systems. In Proceedings of 29th ICSE 2007,
Washington, DC, USA, 2007. IEEE Computer Society.

[10] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Evaluation, 2009.

[11] H. Koziolek, S. Becker, J. Happe, and R. Reussner.
Life-Cycle Aware Modelling of Software Components.
5182, Oct. 2008.

[12] S. Kraft, S. Pacheco-Sanchez, G. Casale, and
S. Dawson. Estimating service resource consumption
from response time measurements. In Proceedings of
Valuetools 2006, New York, NY, USA, 2006. ACM.

[13] P. L’Ecuyer and E. Buist. Simulation in Java with
SSJ. In Proc. of the 37th Conf. on Winter Simulation,
pages 611–620. WSC 2005, 2005.

[14] Y. Liu, A. Fekete, and I. Gorton. Design-Level
Performance Prediction of Component-Based
Applications. IEEE Transactions on Software
Engineering, 31(11):928–941, 2005.

[15] B. Page and W. Kreutzer. The Java Simulation
Handbook. Simulating Discrete Event Systems with
UML and Java. 2005.

[16] D. Westermann and J. Happe. Software Performance
Cockpit. http://www.sopeco.org/, 2011.

[17] D. Westermann, J. Happe, M. Hauck, and C. Heupel.
The performance cockpit approach: A framework for
systematic performance evaluations. In Proc. of the
36th EUROMICRO SEAA 2010). IEEE CS, 2010.

[18] D. Westermann, R. Krebs, and J. Happe. Efficient
experiment selection in automated software
performance evaluations. In EPEW ’11: Proc. of the
8th European Performance Engineering Workshop,
Berlin, Heidelberg, 2011. Springer.

[19] C. M. Woodside, V. Vetland, M. Courtois, and
S. Bayarov. Resource function capture for performance
aspects of software components and sub-systems. In
Performance Engineering, State of the Art and
Current Trends, London, UK, 2001. Springer-Verlag.

286

