
Efficiency Improvements for Solving Layered Queueing
Networks

Greg Franks
greg@sce.carleton.ca

Lianhua Li
lianhua@sce.carleton.ca

Department of Systems and Computer Engineering, Carleton University
Ottawa, ON Canada K1S 5B6

ABSTRACT

Layered Queueing Networks (LQN) have been used success-
fully by numerous researchers to solve performance models
of multi-tier client server systems. A common approach for
solving a LQN is to split the model up into a set of submod-
els, then employ approximate mean value analysis (AMVA)
on each of these submodels in an interactive fashion and us-
ing the results from the solution of one submodel as inputs to
the others. This paper addresses the performance of the lay-
ered queueing network solver, LQNS, in terms of submodel
construction and in terms of changes to Bard-Schweitzer and
Linearizer AMVA, in order to improve performance. In some
of the models described in this paper, there is a difference
in four orders of magnitude between the fastest and slowest
approaches.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling Techniques

General Terms

Performance

Keywords

Performance Analysis, Approximate Mean Value Analysis

1. INTRODUCTION
The Layered Queueing Network (LQN) model exploits a

key property that a task may, during its service, stop while
making a nested request to another server. This type of
interaction, a remote procedure call, is very common in
the software of today’s distributed systems. Conventional
product-form queueing networks cannot be used to solve
these types of models because of the blocking. The call to
the lower level server creates a form of simultaneous resource
possession because the customer is occupying the client and
it’s server during the remote procedure call.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12 April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-4503-1202-8/12/04 ...$10.00.

Figure 1 shows a Layered Queueing Network (LQN) using
a condensed notation. The parallelograms in the figure rep-
resents Tasks. Tasks are concurrent entities and can make
requests to other tasks in the model. Tasks in layer 1 in the
figure are called Reference Tasks and are the customers in
the model. Tasks at lower layers in the model, called ac-

tive servers, can both accept requests and make requests to
other tasks and are used to model actual tasks in the system,
non-processor hardware devices such as disks, and passive
resources such as critical sections. The circles in the figure
represent processors and are pure servers are used to con-
sume time. Both tasks and processors can be multiservers.
For reference tasks, a multiserver represents a population of
customers greater than one.

Layer 7OrderShoppingCart_48aa23Inventory

Layer 6Shipping

Layer 5Billing

Layer 4Billing_2f8358ShoppingCart_1dfbff

Layer 3CustomerAccountShipping1

Layer 2

Layer 13

procUserServerRef_5d56d5

Layer 1Client

ServerRef_194a4e

proc1

Layer 12Book_3162d5

Layer 11ShoppingCart_19f91cOrder_27391d

Layer 10Order_7a29a1

Layer 9CustomerAccount_916a2

Layer 8Book_21c887

Figure 1: Bookstore model (from [4]).

279



Calls in Figure 1 are shown as directed arcs from one
task to another. Calls can either be synchronous or asyn-
chronous; replies from synchronous requests can be deferred
to lower layer servers through forwarding. Layering arises
from analyzing the call graph of the requests from the cus-
tomers in layer one, to the servers (usually processors) at
the deepest layer in the graph. A complete description of
the model can be found in [3].
Fast analytic solutions for solving a Layered Queueing

Network were developed in [9], with Stochastic Rendezvous
Networks (SRVN), and in [7] with the Method of Layers
(MOL). Stochastic Rendezvous Networks treated each server
independently and used new approximations for calculating
the residence times at servers. The Method of Layers intro-
duced the important concept of grouping servers in “layer
submodels”, then solved the submodels using Linearizer ap-
proximate Mean Value Analysis (AMVA). Blocking delays
caused by synchronous calls are treated as surrogate de-
lays [5] and are imported from other submodels. The Lay-
ered Queueing Network (LQN) model is an extension of both
MOL and SRVN and incorporates features found in impor-
tant application systems [3].
Layer submodels can be constructed in a variety of differ-

ent ways. This paper examines five different layering tech-
niques, ranging from a single server per layer, like the SRVN
method in [9], to the extreme opposite case where there is
only one layer containing all of the servers in the model. Ap-
proximate MVA is used to solve each of the layer submodels
so the approximate MVA algorithm was modified to reduce
the amount of iteration. The modified algorithms are com-
pared against the original implementation for improvements
in performance and variations in the results.

2. LAYERING QUEUEING NETWORK

SOLVER
The layered queueing network solver (LQNS) [3] is used

in this work. Algorithm 1 lists the major steps used to solve
a model. The algorithm iterates over each of the submodels
and uses successive substitution to converge on a solution.
The algorithm will terminates when the root of the sum of
mean difference in utilizations of the entities in the model is
less than a user-defined amount or some pre-defined iteration
limit is reached.

Algorithm 1 LQNS Algorithm

1: Read input and create LQNS model.
2: Create S submodels based on layers.
3: repeat
4: for s← 1 to S do
5: Solve submodel s using approximate MVA.
6: Set waiting times for submodel s.
7: Set think times for submodel s+ 1.
8: end for
9: until convergence or iteration limit
10: Save results.

2.1 Submodel Creation
Submodels are constructed by first finding a set of servers

(starting from layer 2), then finding all of the callers to
these servers regardless of layer and treating these entities
as clients. A task or processor can appear as a server in ex-

actly one submodel. However, a task can appear as a client

in multiple places.
Five submodel construction strategies are studied in this

paper:

SRVN: Each submodel consists of exactly one server (see [9]).

Batched: Each submodel treats of all of the tasks and pro-
cessors at a given layer as servers.

MOL: Software submodels are constructed by treating only
the tasks at a given layer as servers. A single hardware
submodel is constructed using all of the processors as
servers (see [7]).

HwSw: Two submodels are used: a software submodel is
constructed by treating all non-reference tasks as servers
and a hardware submodel like MOL. A task may ap-
pear as both a client and a server with this approach.

Squashed Only one submodel is used where all non-reference
tasks and processors are treated as servers. Non-reference
tasks will appear as both a client and a server.

2.2 Submodel Solution
Submodels are solved by converting a submodel into an

ordinary queueing network model then solving this model ei-
ther Bard-Schweitzer proportionate estimation [1, 8] or Lin-
earizer [2] AMVA. Inputs to the AMVA solver are think
and service times. Outputs are waiting (or residence) times,
throughputs and utilizations. The clients in a submodel map
to the chains in the queueing model and represented using
delay centers. The service time for a client in a submodel are
found by summing up the residence times to all the client’s
servers, except for those servers that are in the same sub-
model. Think times, Z, for clients in a submodel are set
using the input parameters for reference tasks, and derived
from the throughputs, λ, and the utilizations, U , for non-
reference tasks. The servers in the submodel make up the
queueing centers in the queueing model. The queueing dis-
cipline of the center depends on the task or processor type
in the input model.

Once the queueing network for a submodel has been solved,
the waiting time components corresponding to the submodel
are updated for all of the submodel’s clients, and the through-
puts and utilizations are updated for all the submodel’s
servers. This process is repeated over all the submodels in
the model until the convergence criteria has been met.

3. APPROXIMATE MVA CHANGES
In solving a layered queueing network using Linearizer

AMVA, there are three levels of loops: the outer iteration
shown in Algorithm 1, the loops in Linearizer for running
Bard-Schweitzer AMVA, and the iterations within Bard-
Schweitzer AMVA itself. This section briefly describes Ap-
proximate MVA and the changes to Linearizer and Bard-
Schweitzer AMVA to remove most of this looping.

3.1 One Step MVA
Algorithm 2 shows one step of the main algorithm for

Mean Value Analysis. The function wait(m, k,n) is used to
calculate the residence time at queueing station m for chain
k for the population vector n. The computational cost of
one-step MVA is O(MK) where M is the total number of

280



stations in the queueing model and K is the total number of
chains. Exact MVA recursively performs one-step MVA for
all customer populations starting from zero, using the results
from a previous solution with one customer removed from
a chain j in the current iteration. It becomes prohibitively
expensive for moderate numbers of chains and customers.

Algorithm 2 step(n)

1: for m← 1 to M do {One-step MVA}
2: for k ← 1 to K do
3: Rmk ← vmk × wait(m, k,n)
4: end for
5: end for
6: for k ← 1 to K do
7: λk ←

nk

Zk +
M
∑

m=1

Rmk

8: for m← 1 to M do
9: Lmk(n)← λkRmk

10: end for
11: end for

3.2 Bard-Schweitzer AMVA
Bard-Schweitzer proportional estimation AMVA [8] breaks

the recursion in Exact MVA by solving the network at N
(the full customer population). It estimates the queue lengths
Lmk at station m for each chain k with one customer re-
moved from chain ej , by assuming that Lmk(N− ej) is pro-
portional to Lmk(N), i.e:

Lmk(N− ej) =

{

Lmk(N) for k 6= j
Nj−1

Nj
Lmk(N) for k = j

Algorithm 3 shows the Bard-Schweitzer AMVA algorithm
as incorporated by Linearizer. Dmkj(N) = 0 is a value
used to adjust the proportion one customer contributes to
the length of a queue. For pure Bard-Schweitzer AMVA,
Dmkj(N)) = 0.

Algorithm 3 core(N)

1: repeat
2: {Estimate Lmk}
3: for m← 1 to M do
4: for k ← 1 to K do
5: Fmk(N) = Lmk(N)/Nk

6: for j ← 1 to K do
7: Lmk(N−ej)← (N−ej)k ·(Fmk(N)+Dmkj(N))
8: end for
9: end for
10: end for
11: step(N) {One-step MVA}
12: {Termination test}

13: until max
m∈M,k∈K

|LI
mk(N)− LI−1

mk (N)|

Nk

≤
1

4000 + 16|N|

3.3 Linearizer AMVA
Bard-Schweitzer AMVA often has large errors because the

queue length estimate Lmk(N− ej) is not a simple ratio of

the customers in chain j. Linearizer [2] improves the accu-
racy of the Bard-Schweitzer approximation by calculating a
scaling factor Dmkj to be used to find the populations of
the queues with one customer removed. Linearizer finds the
scaling factors by solving the queueing network using the
Schweitzer approximation at both the full customer popula-
tion N, and N− ej (i.e., one customer removed from chain
j) for all K chains. Algorithm 4 shows the Linearizer algo-
rithm.

Algorithm 4 linearizer(N)

1: Initialize L, ∀m, k
2: for I ← 1 to 2 do
3: core(N) {Step 1}
4: for c← 1 to K do {Step 2}
5: core(N− ec)
6: end for
7: for m← 1 to M do {Step 3}
8: for k ← 1 to K do
9: Fmk(N)← Lmk(N)/Nk

10: for j ← 1 to K do
11: Fmk(N− ej)← Lmk(N− ej)/Nk

12: Dmkj(N)← Fmk(N− ej)− Fmk(N)
13: end for
14: end for
15: end for
16: end for
17: core(N) {Step 1}

3.4 AMVA Changes
Three changes have been incorporated into the LQNS

solver to speed up MVA.

1. Restart MVA from previous solution [6]: After the first
iteration of Algorithm 1, values exist for the queue
lengths of all stations so the initialization step at line
1 in Algorithm 4 does not need to be run again.

2. Run core(N − ec) in Linearizer only once instead of
twice: The Linearizer algorithm in [2] runs the Bard-
Schweitzer core() three times at the full population
N, and twice with one customer removed from chain
j for all K chains. After the first run of Linearizer,
the invocation of core at line 3 in Algorithm 4 will
generate the same results as the last iteration of core
at line 17. Therefore, for the second and subsequent
invocations of Linearizer for a submodel, omit the call
to core at line 3.

The second performance improvement to Linearizer is
to reduce the number of iterations of the main loop at
line 2 in Algorithm 4 from 2 to 1. In effect, the main
loop of linearizer is now being performed by the main
loop of Algorithm 1.

3. Don’t iterated core: In Algorithm 3, remove the re-
peat ... until loop at lines 1 and 13. Again, the main
loop of Algorithm 1 can perform this step.

4. TEST CASE
In the results that follow a model of a bookstore applica-

tion [4] was solved using the five layering strategies described
earlier in §2.1 and using Linearizer AMVA (LIN), One-Step

281



MVA Layering Strategy
Solver Batched HwSw MOL Squashed SRVN

Number of outer iterations.
LIN 13 17 25 22 14
OSL 17 21 16 27 21
BSC 20 17 48 22 14
OSM 34 41 31 47 40

Calls to wait()×104

LIN 26117 40129 87852 70247 26900
OSL 632 1036 814 1824 655
BSC 99 133 519 264 99
OSM 3 4 7 5 3

Run times (in mm:ss.cc)
LIN 00:37 00:56 01:47 01:41 00:38
OSL 00:10 00:14 00:11 00:28 00:10
BSC 00:03 00:04 00:17 00:07 00:03
OSM 00:02 00:02 00:06 00:03 00:02

Table 1: Results for the Bookstore model.
.

Linearizer (OSL), Bard-Schweitzer (BSC), and One-Step MVA
(OSM). Table 4 shows the number of outer iterations of Al-
gorithm 1, the number of calls to the wait() function and
the overall run time for each approach.
This model has a software bottleneck at task Server-

Ref_5d56d5. The throughput of the model is the same to
four digits of precision regardless of the layering strategy
or whether the one-step approximation was used (Linearizer
and Bard-Schweitzer do produce different results, which is
not unexpected). Using the One-Step Linearizer (OSL) ap-
proximation reduces the number of calls to wait() by up to
two orders of magnitude and using One-Step MVA (OSM)
improves the performance by four orders. Run times of the
solver are also improved significantly from the worst to best
case.
The one-step approximation increases the number of outer

iterations of Algorithm 1 for all of the layering strategies ex-
cepting MOL. The MOL algorithm solves the software sub-
model to convergence prior to solving the hardware model.
The extra precision at the early stages of the iteration are
not beneficial so the one-step variant converges more quickly
overall.

5. CONCLUSIONS
This paper has examined the performance effects on the

solution speed of the Layered Queueing Network Solver from
using five different layering strategies and from changes to
the iterative structure of approximate MVA. A performance
model is solved by iterating among a set of submodels, each
of which is an ordinary queuing network. The layering strate-
gies ranged from a set of submodels, each consisting of ex-
actly one serving station, to the opposite extreme of ex-
actly one submodel. The case study considered in this paper
showed that the final result produced by the solver was rela-
tively insensitive to the layering approach chosen. However,
the approaches that created submodels with least number of
customer chains (SRVN and batched) were the least costly.
This paper also looked at improvements to the iterative

structure of the queueing model solution. Three changes
were made. First, rather than re-initializing the MVA so-

lution from scratch each time a submodel was solved, the
iteration was started from the previous solution of the sub-
model. Second, the number of iterations in Linearizer’s main
loop were reduced, partly because of the “warm start” in-
troduced earlier, and partly because the outer iteration of
the overall algorithm was going to run multiple times. Fi-
nally, the third change was to stop iterating the“core”Bard-
Schweitzer algorithm at the heart of Linearizer. Much of the
work obtaining“accurate”solutions during early iterations of
the outer-most loop is wasted because the parameters for a
given submodel are going to change anyway due to solutions
to other submodels. Using One-Step Linearizer reduced the
computational effort by about two orders of magnitude. Us-
ing One-Step MVA further reduced the cost by another two
orders of magnitude.

The improvements to Approximate Mean Value Analysis
described here are not limited to solutions to layered queue-
ing networks. Rather, they can be incorporated into any
solution that iterates between multiple queueing models.

Acknowledgments

This research was supported by a grant from NSERC, the
Natural Sciences and Engineering Research Council of Canada.

6. REFERENCES
[1] Y. Bard. Some extensions to multiclass queueing

network analysis. In M. Arato, A. Butrimenko, and
E. Gelenbe, editors, Performance of Computer Systems.
North-Holland, Amsterdam, 1979.

[2] K. M. Chandy and D. Neuse. Linearizer: A heuristic
algorithm for queueing network models of computing
systems. Commun. ACM, 25(2):126–134, Feb. 1982.

[3] G. Franks, T. Al-Omari, M. Woodside, O. Das, and
S. Derisavi. Enhanced modeling and solution of layered
queueing networks. IEEE Trans. Softw. Eng.,
35(2):148–161, Mar.–Apr. 2009.

[4] T. Israr, M. Woodside, and G. Franks. Interaction tree
algorithms to extract effective architecture and layered
performance models from traces. J. Syst. and Soft.,
80(4):474–492, Apr. 2007.

[5] P. A. Jacobson and E. D. Lazowska. Analyzing
queueing networks with simultaneous resource
possession. Commun. ACM, 25(2):142–151, Feb. 1982.

[6] M. Mroz and G. Franks. A performance experiment
system supporting fast mapping of system issues. In 4th

International Conf. on Performance Evaluation

Methodologies and Tools, Pisa, Italy, Oct. 20–22 2009.

[7] J. A. Rolia and K. A. Sevcik. The method of layers.
IEEE Trans. Softw. Eng., 21(8):689–700, Aug. 1995.

[8] P. Schweitzer. Approximate analysis of multiclass
closed networks of queues. In Proc. International

Conference on Stochastic Control and Optimization,
Amsterdam, 1979.

[9] C. M. Woodside, J. E. Neilson, D. C. Petriu, and
S. Majumdar. The stochastic rendezvous network
model for performance of synchronous client-server-like
distributed software. IEEE Trans. Comput.,
44(8):20–34, Aug. 1995.

282


	Introduction
	Layering Queueing NetworkSolver
	Submodel Creation
	Submodel Solution

	Approximate MVA Changes
	One Step MVA
	Bard-Schweitzer AMVA
	Linearizer AMVA
	AMVA Changes

	Test Case
	Conclusions
	References



