
Compositional Performance Abstractions of Software
Connectors

Misha Strittmatter
Karlsruhe Institute of Technology

Am Fasanengarten 5
76131 Karlsruhe, Germany

misha.strittmatter@student.kit.edu

Lucia (Kapova) Happe
Karlsruhe Institute of Technology

Am Fasanengarten 5
76131 Karlsruhe, Germany

kapova@kit.edu

ABSTRACT
Typically, to provide accurate predictions, a performance
model has to include low-level details such as used commu-
nication infrastructure, or connectors and influence of the
underlying middleware platform. In order to profit from the
research on inter-component communication and connector
design, performance prediction approaches need to include
models of different kinds of connectors. It is not always
feasible to model complex connectors with all their details.
The choice of suitable abstraction filter, which reduces the
amount of detailed information needed with respect to the
model purpose, is crucial to decrease modelling effort. We
propose an approach by which an abstract connector model
can be augmented with selected adaptations and enhance-
ments using model completions to result in a more detailed
connector model. As the purpose of our models is perfor-
mance prediction, we designed a suitable abstraction filter
based on the Pipes & Filters pattern to produce performance
models of connectors. Thus, we need to characterize only
a small set of compositional and reusable transformations.
The selection of applied transformations is then based on
the feature-oriented design of the connector’s completion.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems—Modeling techniques; D.2.8 [Software Engi-
neering]: Metrics; D.2.11 [Software Engineering]: Soft-
ware Architecture—Patterns

Keywords
Connectors, Model Completions, Performance Abstractions

1. INTRODUCTION
In Model-Driven Software Performance Engineering (MD-

SPE), applications are composed from prefabricated compo-
nents. The modelling of the system is done at a high abstrac-
tion level. Adding non-functional information to the compo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

nent specifications enables a system-wide analysis. This is
the main intention of the Palladio Component Model (PCM)
[2]. A design-time performance prediction using component-
based models requires plenty of implementation details to
be sufficiently accurate. Model Completions [5] are one
possible approach to reduce model development effort and
keep the model free from implementation details (especially
in early development stages), by adding components with
performance-relevant details to the model transparently for
the user and automatically by model transformations.

The separation of concerns is essential to avoid construc-
tion of large and monolithic models, which are hard to main-
tain or reuse. Reusability of such models is limited especially
because they are often designed for one purpose, and as such
do not consider possible enhancements when the purpose of
the model changes and new domain-specific details have to
be introduced. For example, a component-based architec-
ture model could be used to predict performance. However,
the same model could be used to analyse reliability, as well.
Both of these purposes require additional domain-specific
details, i.e. performance or reliability specific implementa-
tion details.

Model Completions support the reuse of purpose-specific
abstractions of specific implementation details, which could
be configured and used for different purposes. Moreover be-
cause the integration of the completions is automated, they
are also a technique of experimenting with different settings
without having to adapt the whole model manually. The
goal of this paper is to create a basis for the implementa-
tion of completions which insert connector models into PCM
model instances. Although, we have used PCM as modelling
language, the analysed connectors and their feature models
are applicable for all component-based systems in general.
This work introduces: i) compositional performance abstrac-
tions that define model transformations to enhance models
of connectors; ii) feature models describing possible config-
uration variants of the connectors; and iii) descriptions on
how the configurations of these features influence the system
architecture and performance. Subjects of analysis are the
connectors, such as procedure calls, messaging, streaming
and blackboards analysed by [3]. We focus in this work on
performance of the software systems and thus we provide
only performance abstractions of the features in the feature
models.

The paper is structured as follows. After discussing the
foundations in Section 2, we provide a discussion on the suit-
able connector abstractions in Section 3. The result of this
analysis is an architecture and feature-oriented design of an

275

exemplary connector. Section 4 discusses the implementa-
tion of the completions. Section 5 gives an overview of work
related to our approach. Finally, Section 6 concludes the pa-
per, highlights future research directions, and additionally,
we discuss the limitations and the validity of the approach.

2. FOUNDATIONS
Software performance engineering (SPE) enables an early

performance evaluation of software systems. It allows soft-
ware architects and developers to identify potential perfor-
mance problems, such as bottlenecks, in their software sys-
tems during the design phase. For this purpose, SPE inte-
grates performance predictions directly in the software de-
velopment process.

MD-SPE [1] aims to improve the prediction quality of per-
formance models while requiring little manual effort. Soft-
ware architects describe their system in a language specific
to their domain and annotate these models with configu-
rations of performance abstractions (completions) or other
performance-relevant information. Completions [5] are con-
figurable transformations which add performance-relevant
details about the implementation, execution environment
etc. to the models. Executing all completions results in the
refined model, which then can be transformed into a per-
formance model. Typical models for performance analysis
are queueing networks, stochastic Petri nets, or stochastic
process algebras. Solving the performance models by analyt-
ical or simulation-based methods yields various performance
metrics for the system under study. In practice, tools encap-
sulate the transformation and the solution of the models and
hide their complexity.

A Feature Diagram is a tree with its nodes representing
features (except the root). The connection between nodes
carry annotations, which state rules on how features can be
selected. E.g. there are optional or mandatory features,
alternative (or) and mutually exclusive (xor) feature sets. A
tree can be instantiated by selecting features (following the
rules) and annotating additional data, where demanded. We
use such instances as configuration for completions [5].

We apply our approach in the area of Component-base
Software Architecture. The implementation of our approach
is based on an architectural modelling language PCM [2]. It
is specifically designed for performance prediction of compo-
nent-based systems, with an automatic transformation into
a discrete-event simulation of generalised queuing networks.
Software components are the core entities of the PCM. Ba-
sic components contain an abstract behavioural specifica-
tion called Resource Demanding-Service Effect Specification
(RD-SEFF) for each provided service. RD-SEFFs describe
how component services use resources and call required ser-
vices using an annotated control flow graph. AssemblyCon-
nectors connect required interfaces with provided interfaces.
Resource containers model the hardware environment in the
PCM. They represent nodes, e.g., servers or client comput-
ers, on which components can be allocated. They provide
a set of processing resources, such as CPUs and hard disks,
which can be utilized by the hosted components.

3. CONNECTOR ABSTRACTIONS
The purpose of our models is performance prediction, there-

fore we aim to model only performance abstractions of con-
nectors, thus we can abstract from the functional details

and concentrate on the performance-relevant dependencies.
From a performance point of view, a connector is a chain of
components producing load dependent on the size of data
being sent through it (and sometimes on additional prop-
erties, e.g. entropy). In such a highly abstract connector
model, we can simplify the basic building blocks of connec-
tors to two types of activities: buffering of transferred data
and computation or I/O activities involving the data. This
is very similar to the Pipes & Filters pattern, which is an ar-
chitecture pattern for data stream processing systems [4]. As
we break down the connector’s overall task into several inde-
pendent incremental processing steps, we can use the Pipes
& Filters pattern and consider filters as processing steps,
which execute their subtask, while pipes connect adjacent
filters and provide buffering, linking and transport. A filter
is defined by the load it generates (dependent on the proper-
ties of data) and if and how it changes the properties of data
(e.g. compression reduces bytesize, but increases entropy).
The filters of a connector also form a chain of producer-
consumer systems. A filter is a consumer with regard to
his predecessor and a producer with regard to his successor,
while the pipes are the bounded buffers in between. This in-
ternal mechanism is modelled in the RD-SEFFs of the filter
and pipe components. Filters also have a definable amount
of worker threads. One challenge we faced was to model the
behaviour of these active components (opposed to reactive
components, which just pass a call along) using the PCM.
This was achieved by adding worker management interfaces,
so that the pipe could acquire and release workers of adja-
cent pipes.

Figure 1: Connector Layout

The settings in which a particular connector can be used
are determined by its topology. In the scope of this work
we built several exemplary connectors (including their fea-
ture trees) with varying topology and arbitrary cardinality,
whose underlying architectures were designed by [3]. These
connectors are Procedure Call, Messaging, Streaming and
Blackboard. Their layout is shown in Fig. 1. The Procedure
Call and half duplex Streaming connectors feature unidirec-
tional, while Full Duplex and Blackboard connectors feature
bidirectional communication. Components connected to the
Messaging connector can either be sender, receiver or both.
Considering one direction of communication, a call can ei-
ther be synchronous (i.e. caller will wait for response) or
asynchronous (i.e. caller can resume as soon as the call was
accepted by the first pipe).

Fig. 2 shows the sub feature tree which is used to configure
the behavior of one generic filter. The declarations of the
sizes of worker pool and buffer of the preceding pipe are

276

Figure 2: Filter (Sub) Feature Diagram

mandatory. For each method, which is contained in the
signature of the interface on which the connector is being
applied, one can either define the further behaviour of the
filter manually or use predefined formulas.

Figure 3: Procedure Call Connector Server Unit

A connector is composed of multiple units (a unit is noth-
ing more than an assembly of components). The most sim-
ple 1:1 procedure call connector e.g. is composed of a client
and a server unit. Should the two components (which are
connected by the connector) be deployed on different re-
source containers, the client unit will be deployed on the
client’s container and vice versa. As an example of how the
connector looks like when realized within the PCM, Fig. 3
shows the server unit of a procedure call connector (though
in this case it has 3:1 cardinality). The unit is fully featured
(all features which map to server side filters are selected).
Most processing steps are realized as simple filters, while the
interceptor can be linked to an external interface and the
transaction manager may be inserted by another (nested)
completion.

4. COMPLETION IMPLEMENTATION
To adapt models corresponding to the real system, we im-

plemented a transformation realizing connector completions
and composing them from basic elements. It is a model-to-
model transformation using QVT Relational [7]. The tool
used to run the transformation is the Medini QVT Engine.
The transformation can be divided into a number of basic
steps. As the first step of the transformation, the source
model has to be copied completely into the target model,
but without the annotated AssemblyConnectors (because it
will be replaced by our connector abstraction). Then the
Connectors have to be created. The creation of a Connector
can be divided into the following steps: (a) find elements in
the target model, (b) create new elements, (c) connect ele-
ments, (d) allocate elements, and (e) place elements. First,

the location (pivot element) and the elements that are di-
rectly connected to this location, where the Connector has to
be inserted into the copied system, has to be identified. The
new elements and their interconnections are defined by the
feature diagram. For each completion, a completion trans-
formation is generated. Second, this generated transforma-
tion is executed and all the new elements that are part of
the connector are integrated. Then all the elements get al-
located to hardware resources depending on the allocation
in the source model. At the end all created elements have
to be placed inside the system or the allocation element to
be at the right place in the PCM model.

The resulting transformation then integrates the selected
model primitives based on the configuration of the feature
model (cf. Figure 4). Moreover, the transformation cali-
brates the feature model for a certain platform by adding
the resource demands to the connector primitives modelled
as filters (cf. Figure 4: Resource Demands (RD)).

In the performance abstractions of connectors, a feature
is a discrete design element of connector and a model (i.e.,
transformation) primitive is a relation from an abstract con-
nector to a more detailed connector. These transformation
primitives operate on the connectors and their parameters.
Each transformation primitive introduces a part of connec-
tor and their composition builds a whole valid connector. In
order to achieve generality and flexibility, we have to achieve
appropriate granularity of transformation primitives. How-
ever, in most of the approaches the additional effort that
is required to compose a large number of these small parts
is a problem. The means to implementing the primitives
and derive the transformation were chosen with this con-
cern in mind. Thus, we implement the primitives as rela-
tional transformation fragments (i.e., in QVT-R) with a very
high compositionality. The Figure 4 illustrates a few simple
compositional and reusable transformation primitives used
to implement the procedure call connector.

5. RELATED WORK
Mehta et al. [6] present an approach to a taxonomy of

connectors. They feature several levels of categories each
of which provides a connector instance on the lowest lev-
els. New connector instances can be composed by combin-
ing multiple features from the lowest levels. A technical
report of Bures and Plasil [3] explains how connectors can
be composed of elements and illustrates the connector gen-
eration process. In preparation to our work, we researched
how other component systems treat connectors. While they
are mainly not used for design time performance predictions,
there are still important aspects for our work in these sys-
tems. As surveyed in [1], ROBOCOP, a component model
with a performance prediction framework, has its applica-
tion in the field of embedded systems. In addition, to passive
components it also supports active and mixed-mode compo-
nents. As an outcome of the active/passive consideration it
also explicitly distinguishes between synchronous and asyn-
chronous calls. OLAN is an environment for architecture
description of distributed systems using middleware. It also
features explicit synchronous and asynchronous calls. The
SOFA component model, treats connectors as first class en-
tities and they can be described by their architecture.

277

Figure 4: Resulting active fragments of transformation in the completion.

6. CONCLUSIONS AND VISIONS
In this work-in-progress paper a suitable performance ab-

straction for Procedure Call Connector, its design and per-
formance impact, was analysed. As part of the definition,
connector feature models summarizing the configuration op-
tions were identified and systematically analysed. An impor-
tant aspect of this work was to examine the potential of the
PCM regarding its ability to model connectors. As a con-
clusion, almost everything was possible to implement with
the PCM’s own means. The behaviour of active components
can be emulated with passive resources representing thread-
pools. Buffering is done through the use of blocking on pas-
sive resources, asynchronous calls through forking. Connec-
tors do not have to be considered as first class entities since
they can be utilized using completions. Only the lack of an
internal component state was a constraint (e.g. when con-
sidering GC effects). Without it, the blackboard connector
cannot be used to communicate exact values. Instead it re-
sponds with statistical data. The resulting connector models
were composed from reappearing and reusable parts, which
consequently eased the development of the required model
transformations. In this work, we showed that starting with
general models and deciding about the purpose of models
later in the model development is acceptable, when the mod-
els’ purposes can be handled in isolation. In other words, an
early usage of modelling abstractions designed for one spe-
cific purpose only mirrors in the later usage of models and
the effort necessary to automate modelling actions.

As such this paper is a starting point for a wide variety of
further work. A more comprehensive case study should be
conducted to evaluate the effect of the whole concept and the
whole set of possible features. The results can also be used
to calibrate the architecture, its configuration as well as pre-
defined values, formulas and libraries. Most valuable would
be a complete integration of automated measurements and
regressions benchmarks (e.g. Performance Cockpit [8]) to
calibrate completions. Such approaches can provide multi-
dimensional parametrised resource demands needed for com-
pletions with less-effort. Especially already developed com-
pletions (e.g. middleware completions) have to be coordi-
nated or combined with the connector-completion.Finally,
the matured completion can be included in a completion
library or be directly integrated into the PCM IDE.

7. REFERENCES
[1] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni.

Model-Based Performance Prediction in Software
Development: A Survey. Transactions on Software
Engineering, 30(5):295–310, May 2004.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. 82:3–22, 2009.

[3] T. Bures and F. Plasil. Composing connectors of
elements. Technical Report 3, Dep. of SW Engineering,
Charles University, Prague, May 2003.

[4] F. Buschmann. Pattern-oriented software architecture,
volume 1: A system of patterns. Wiley, Chichester
[u.a.], repr. edition, 2007.

[5] L. Kapova and T. Goldschmidt. Automated feature
model-based generation of refinement transformations.
In Proceedings of the 35th EUROMICRO Conference
on Software Engineering and Advanced Applications
(SEAA). IEEE, 2009.

[6] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a
taxonomy of software connectors. In ICSE ’00:
Proceedings of the 22nd international conference on
Software engineering, pages 178–187, New York, NY,
USA, 2000. ACM.

[7] Object Management Group. MOF 2.0
Query/View/Transformation, version 1.0, Apr. 2008.

[8] D. Westermann, J. Happe, M. Hauck, and C. Heupel.
The performance cockpit approach: A framework for
systematic performance evaluations. In Proceedings of
the 36th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2010).
IEEE Computer Society, 2010.

278

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

