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ABSTRACT 
Elasticity, the ability to rapidly scale resources up and down on 
demand, is an essential feature of public cloud platforms. 
However, it is difficult to understand the elasticity requirements of 
a given application and workload, and if the elasticity provided by 
a cloud provider will meet those requirements. We introduce the 
elasticity mechanisms of a typical Infrastructure as a Service 
(IaaS) cloud platform (inspired by Amazon EC2). We have 
enhanced our Service Oriented Performance Modeling method 
and tool to model and predict the elasticity characteristics of three 
realistic applications and workloads on this cloud platform.  We 
compare the pay-as-you-go instance costs and end-user response 
time service level agreements for different elasticity scenarios. 
The model is also able to predict the elasticity requirements (in 
terms of the maximum instance spin-up time) for the three 
applications. We conclude with an analysis of the results. 
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Performance 
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1. Cloud Elasticity 
"My biggest problem is elasticity. VM spin-up time... Ten to 20 
minutes is just too long to handle a spike in Yahoo's traffic when 
big news breaks such as the Japan tsunami or the death of Osama 
bin Laden or Michael Jackson.” Todd Papaioannou, Vice 
President of Yahoo’s cloud architecture, quoted in [1]. 

Not everyone is running an enterprise on the scale of Yahoo, but 
in order to take advantage of the opportunities provided by cloud 
computing it is vital to understand the elasticity characteristics of 
applications, workloads and cloud platforms. Intrinsic to the 
definition of cloud computing is that resources are dynamically 
increased and decreased on demand, and that charging is 
consumption based. 

Ideally a cloud platform is infinitely and instantaneously elastic. 
An application could be scaled out indefinitely with increasing 
load, and this could happen as fast as the load increases with no 
degradation of response times. Resources would be available 
instantly and the application would be immediately deployed and 
available for use. A perfectly elastic cloud platform would be 
ideal for hosting interactive applications with strict response time 
requirements, and with spiky unpredictable workloads. These are 
difficult to host on traditional fixed and finite infrastructures as 
the quantity of resources is not known in advance, and the cost of 
keeping the resources available for occasional extreme load events 
is prohibitive.  

However, real clouds are not perfectly elastic. There will 
inevitably be a delay between when resources are requested, and 
when the application is running and available on it. The resource 
provisioning speed may depend on a number of factors including: 
the type of cloud platform (e.g. Infrastructure vs. Platform as a 
Service); the type, cost model, number, size, or speed of resources 
requested; the availability of spare resources in the requested 
region and the demand on the cloud platform from other users; the 
rate of increase (acceleration) of the workload; and any quotas or 
limits imposed by the cloud platform or the contract with them.  

On a typical (e.g. Amazon EC2) IaaS (Infrastructure as a Service) 
cloud platform the elasticity infrastructure enables auto-scaling of 
instances for an application with user customised rules which 
periodically fire to check metric values, make decisions, and 
request an action in response (e.g. increasing or decreasing 
instances by a specified amount). There are typically a number of 
steps involved in auto-scaling:   

• Periodically fire the rules (e.g. every 5 minutes): 
o Depending on the metric and threshold (e.g. 

server utilisation > 80%) and 
o The statistic and time period (e.g. average 

over the last 10 minutes) 
o Then execute the resource request actions 

(e.g. increase instances by 1). 

The cloud infrastructure cannot instantly respond to this request as 
it has to first find and reserve an available server, create a new 
virtual machine instance on it, deploy the application code and 
other data onto the new virtual machine, start the application, and 
include the new instance in a load balancer so it can be accessed 
externally (e.g. the Amazon Elastic Load Balancer). The time 
taken for all these steps is often referred to as the instance “spin-
up” time.  It may also be possible to suspend the rules from firing 
for some period of time once a rule has fired to allow the 
requested actions to be completed, to prevent premature rule 
firing. For the remaining discussion we assume “on-demand” 
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instance types, with a typical (constant) instanc
10 minutes.  In practice, spin-up time depends
cloud provider and can vary considerably. Co
cloud providers do not have a Service Level Agr
spin-up time.  

1.1 Cloud Elasticity Modeling 
Our research since 2007 has focused on 
modeling of Service Oriented Architectures.   W
a tool and method for SOA performance modelin
trialed and validated on a large number of gove
government enterprise SOAs at different stage
development lifecycle.  From these engagements
three example applications and workloads tha
relevant for evaluating cloud elasticity.   

The three example applications are: (1) BigC
application that has a variety of different use
external business partners, and web and mobile c
workload which gradually increases and then de
hour period (2)  Lunch&COB, a whole of g
application which is distributed over four 
applications deployed on distinct Virtual M
different workloads, one longer but lower peak 
another higher but shorter peak near close of 
FlashCrowd, a web site which typically has a
load, and then occasionally exhibits a very large
over a 1 hour period (representative of  a “Flash 

We have previously modeled and validated thes
loads for fixed resources to explore the im
workloads, for capacity planning, to assist with 
and to investigate architectural alternatives
[10][11][12][13][14].  From these experiments w
three applications are CPU rather than netw
limited. We have also modeled different re
including virtualisation and cloud platforms (e
Google AppEngine, Microsoft Azure) to pred
scalability, cost, and power consumption [8][
research has explored related cloud elasticity
cloud modeling prediction, and cloud elast
[2][3][4][5][6][7]. Our tool is model driven and
model of the service oriented performance mod
editing, viewing and animation. To predict the 
transformation is made to a run-time version of
is simulated dynamically using a discrete 
Complex dynamic resourcing models can be bu
run-time with this approach, making it ideal 
cloud elasticity which intrinsically has time as a 
secondary metric which is computed from know
cost model, resource usage, and instance start an

We have constructed models of these three a
generic elastic cloud platform (inspired by
focusing solely on the CPU resource requirem
costs. Figure 1 shows the main components of a
cloud that are included in our cloud elasticity m
load, elastic load balancer, virtual machine
application, and elasticity mechanisms (m
instance requests, instance provisioning, etc) c
spin-up time. 

1.2 Elasticity Scenarios 
We explore the following elasticity scenarios for

ce spin-up time of 
s on the particular 
onsequently, most 
reement (SLA) for 

the performance 
We have developed 

ng which has been 
ernment and non-

es of the software 
s we have selected 
at are particularly 

Co, an enterprise 
er types (internal, 
customers), with a 
ecreases over a 24 
government SOA 

zones (separate 
Machines), with 2 

at lunch time and 
business, and (3) 

a low background 
e spike in demand 
Crowd”).  

e applications and 
mpact of different 

developing SLAs, 
s and evolution 

we know that these 
work or database 
esourcing models 

e.g. Amazon EC2, 
dict performance, 
[9]. Other related 

y issues including 
ticity architecture 
d supports a meta-
del and GUI-based 

metrics from it, a 
f the model which 

event simulator.  
uilt and solved at 
for investigating 

variable. Cost is a 
wledge of the cloud 

d stop times.  

applications on a 
y Amazon EC2), 
ments, SLAs and 
an elastic compute 
models: incoming 

es with deployed 
monitoring, rules, 

ontributing to the 

r the examples. 

Default (10 minute spin-up time). T
“typical” elasticity characteristics w
default settings for the cloud platfo
instance spin-up behaviour: Rule che
request threshold of 80% average serve
1 minute, instance decrease threshold
over 10 minutes, 1 instance increase/de
suspension time equal to the instance s
10 minutes by default. 

Worst case elasticity has no elastici
relies on fixed over-provisioning of 
period. Only if the maximum load 
sufficient fixed resources can be mad
prevent SLA violations. Depending o
likely to be higher than using elast
dynamically.  If the workload is high
fixed resources will be saturated and th

 

Figure 1 Cloud Elasticity

Best case elasticity attempts to predict
be achieved given the constraints 
assuming zero spin-up time. The minim
minute, and that the charging model is
is increased to 95% Utilisation and dec
to 50% Utilisation. Higher thresholds 
the SLA as less headroom is neede
available instantly. 

To be perfectly elastic the resources 
(no more or less), there is no time de
changes and changing resourcing
instantaneous), and you only pay for w
is fine-grain consumption based). Eve
any cloud platforms are perfectly el
assuming a perfectly elastic cloud platf
grained cost model which only char
actually consumed, by the CPU Millis
the default cost model. Table 1 
scenarios (columns) in terms of the r
spin-up times, and charging settings. 

We also predict the Elasticity Break 
breaking point (where the platform is n
up time is increased until the SLA is v
minutes is too long). 

To illustrate the impact of 
we assume the following 
orm auto-scaling rules and 
eck every minute, increase 
er utilisation computed over 
d of 30% server utilisation 
ecrease at a time, and a rule 
spin-up time, which is set to 

ity mechanism and instead 
resources for the 24 hour 
is known in advance can 

de available in advance to 
n the workload, the cost is 
ticity to manage resources 
her than predicted then the 
he SLA will be violated. 

 
y Architecture 

t the most elasticity that can 
of a cloud platform, but 
mum rule check period is 1 
s hourly. Increase threshold 
crease threshold is increased 
can be used and still satisfy 
ed due to instances being 

exactly match the demand 
elay between detecting load 
g levels (resourcing is 

what you consume (charging 
en though it is unlikely that 
astic, we can model it by 
form and an extremely fine-
rges for resources that are 
second, at a rate pro rata to 
summarizes the elasticity 

resources (fixed or elastic), 

point. In order to find the 
not elastic enough) the spin-
violated (or decreased if 10 
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Table 1 Elasticity Scenarios 

 Worst 10 min Best Perfect 

Resources Fixed Elastic Elastic Elastic 

Spin-up In 
advance 

10 min 0 min 0 min 

Charging Hourly Hourly Hourly Millisecond 

 

2. Examples Elasticity Predictions 
2.1 Example 1: BigCo 
The workload for the first application, BigCo, runs for 24 hours 
and represents an observed extreme case of a typical day (Figure 
2).  During the 24 period the load ranges from a low of 300TPH 
(Transactions Per Hour) to a high of 27,000 TPH. 

 
Figure 2 BigCo Workload 

All three examples are user facing interactive applications with 
strict response time requirements of a few seconds at most. The 
SLA is 99% of transactions taking less than 10 seconds. IaaS 
cloud platforms typically offer a variety of instance sizes, from 
partial cores (multi-tenancy on shared servers) to multiple cores 
(single-tenancy on large servers).  Due to the minimum 
application requirements for core speed and other resources (e.g. 
memory and network bandwidth), we selected a single-tenancy 4 
core (approx 2.4GHz Intel core speed) instance type with a cost of 
40 cents an hour or part thereof.  We ran the model with the 24 
hour workload for all the elasticity scenarios. Figure 5 shows the 
total running cost, and Figure 6 shows the elasticity breaking 
point (50 minutes). A 10 minute spin-up results in a cost saving of 
32% compared with the worst case, increasing to 54% as spin-up 
time approaches zero, while perfect elasticity is 71% cheaper. 

2.2 Example 2: Lunch&COB 
Our second example is modeled on a government Service 
Oriented Architecture (SOA) application supporting multiple user 
types including government, business, and citizens. This example 
was originally modeled and validated on dedicated hardware, and 
we have since modeled it on various cloud platforms. It is a 
distributed application consisting of four distinct application 
zones which are deployed on separate virtual machines.  The 
workloads occur during business hours (12 hours). Two peaks are 
expected, one around lunchtime with a peak of 10,000TPH and 
the highest with a peak of 20,000TPH at close of business (COB) 
as shown in Figure 4. The workloads impose different demands 
on each of the application zones, so the resources for each zone 
must be scaled at different rates. 

The breaking point is 20 minutes when the SLA is violated 
(Figure 6). The Lunch&COB example is more demanding than 
BigCo and there is little room for an increase in the cloud 
platform spin-up time before the SLA is violated.  Figure 5 shows 

the cost for 12 hours for the scenarios. The 10 minute and best 
case elasticity costs are very similar and represent a cost saving 
compared with the worst case of up to 50%. The fact that they are 
very similar indicates that the elasticity is close to breaking point. 
However, perfect elasticity is 89% cheaper, suggesting that there 
is even more room for improvement in the elasticity of cloud 
platforms for more elastically demanding applications and 
workloads such as Lunch&COB. 

 
Figure 3 Lunch&COB Workloads 

2.3 Example 3: FlashCrowd 
The 3rd example is modeled on an emergency web service 
application which was designed for infrequent use when the main 
web site was in danger of overloading due to an exceptional load 
spike caused by an emergency situation. The workload is expected 
to increase within 30 minutes from the normal peak load of 5TPS 
to a maximum of 470TPS (a factor of 92), and then drop back to 
normal very quickly, the load spike lasting for 1 hour. The 
complete workload runs for 2 hours with over 1.25 million service 
calls in this period (Figure 4). 

 
Figure 4 FlashCrowd Workload 

FlashCrowd has more demanding elasticity requirements than the 
preivious examples, as a 10-minute spin-up time cannot provision 
CPUs fast enough, and the system saturates and catastrophically 
fails the SLA. In fact, the model predicts that 5 minutes is the 
longest possible spin-up time. However, in order to achieve the 
SLA with 5 minutes spin up it is necessary to request 30 instances 
at a time, rather than just 1 at a time.  Unlike the 10 minute default 
spin-up time scenario, the worst, perfect and best case elasticity 
scenarios all satisfy the SLA. Figure 5 shows total costs for 2 
hours for scenarios, with the default case using a 5 minute spin-up 
time. Figure 6 compares the elasticity breaking points for all the 
examples. 

3. Observations 
More cores are needed for the peak loads using elasticity 
compared with fixed resources. For example, for FlashCrowd 356 
cores were needed with 5 minute spin-up compared with 272 for 
fixed. This is significantly higher, and will impose more demand 
on the shared cloud infrastructure, and potentially more cost for 
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the user, particularly if the elasticity rules result in significantly 
more instances being requested than actually needed. 

 
Figure 5 Example/Scenario costs ($/workload duration) 

 
Figure 6 Elasticity Breaking points 

The approach of predicting both cost and response time SLAs for 
applications deployed on cloud platforms allows for both 
comparison of different elasticity scenarios, and determining if the 
platform is elastic enough. 

Using perfect elasticity as the base line, the best case scenarios 
were 1.5 to 4.5 times more expensive, the 10/5 minute spin-up 
scenarios were 2 to 5 times more expensive, and the worst case 
(fixed) scenarios were 3 to 10 times more expensive. This 
indicates that dynamic resourcing shows consistent cost 
advantages over fixed resourcing, realistic (10/5 minute) spin-up 
times were not significantly more than best case (zero minute), 
and that reducing spin-up times to zero (best case) without also 
reducing the granularity of the charging model (perfect case) will 
not significantly reduce costs. However, all the cloud elasticity 
options, even the fixed instance scenarios, are relatively cheap.  

A 10 minute spin-up time was sufficiently elastic for 2 out of the 
3 example applications, but the 3rd example required a spin-up 
time of 5 minutes and knowledge of the workload so that a larger 
number of instances could be requested. This suggests that for 
many applications the current elasticity (spin-up times and 
elasticity mechanisms) may be adequate, but for more demanding 
applications improvements in cloud elasticity technology are 
needed. Computing the SLAs for given elasticity settings enables 
us to determine if the SLA is satisfied, and to find the longest 
spin-up time that satisfies the SLA, thereby answering the 
question “Is a cloud platform elastic enough for a given 
application and workload?” Modeling elasticity prior to 
deployment enables cloud platforms to be evaluated before 
investing the effort porting the application to a selected platform, 
with increased confidence in cost and performance.  
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