
Is your Cloud Elastic Enough?
Performance Modeling the Elasticity of Infrastructure

as a Service (IaaS) Cloud Applications
 Paul Brebner

NICTA/ANU
Canberra
Australia

Paul.Brebner@nicta.com.au

ABSTRACT
Elasticity, the ability to rapidly scale resources up and down on
demand, is an essential feature of public cloud platforms.
However, it is difficult to understand the elasticity requirements of
a given application and workload, and if the elasticity provided by
a cloud provider will meet those requirements. We introduce the
elasticity mechanisms of a typical Infrastructure as a Service
(IaaS) cloud platform (inspired by Amazon EC2). We have
enhanced our Service Oriented Performance Modeling method
and tool to model and predict the elasticity characteristics of three
realistic applications and workloads on this cloud platform. We
compare the pay-as-you-go instance costs and end-user response
time service level agreements for different elasticity scenarios.
The model is also able to predict the elasticity requirements (in
terms of the maximum instance spin-up time) for the three
applications. We conclude with an analysis of the results.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance

Keywords
Cloud, IaaS, Elasticity

1. Cloud Elasticity
"My biggest problem is elasticity. VM spin-up time... Ten to 20
minutes is just too long to handle a spike in Yahoo's traffic when
big news breaks such as the Japan tsunami or the death of Osama
bin Laden or Michael Jackson.” Todd Papaioannou, Vice
President of Yahoo’s cloud architecture, quoted in [1].

Not everyone is running an enterprise on the scale of Yahoo, but
in order to take advantage of the opportunities provided by cloud
computing it is vital to understand the elasticity characteristics of
applications, workloads and cloud platforms. Intrinsic to the
definition of cloud computing is that resources are dynamically
increased and decreased on demand, and that charging is
consumption based.

Ideally a cloud platform is infinitely and instantaneously elastic.
An application could be scaled out indefinitely with increasing
load, and this could happen as fast as the load increases with no
degradation of response times. Resources would be available
instantly and the application would be immediately deployed and
available for use. A perfectly elastic cloud platform would be
ideal for hosting interactive applications with strict response time
requirements, and with spiky unpredictable workloads. These are
difficult to host on traditional fixed and finite infrastructures as
the quantity of resources is not known in advance, and the cost of
keeping the resources available for occasional extreme load events
is prohibitive.

However, real clouds are not perfectly elastic. There will
inevitably be a delay between when resources are requested, and
when the application is running and available on it. The resource
provisioning speed may depend on a number of factors including:
the type of cloud platform (e.g. Infrastructure vs. Platform as a
Service); the type, cost model, number, size, or speed of resources
requested; the availability of spare resources in the requested
region and the demand on the cloud platform from other users; the
rate of increase (acceleration) of the workload; and any quotas or
limits imposed by the cloud platform or the contract with them.

On a typical (e.g. Amazon EC2) IaaS (Infrastructure as a Service)
cloud platform the elasticity infrastructure enables auto-scaling of
instances for an application with user customised rules which
periodically fire to check metric values, make decisions, and
request an action in response (e.g. increasing or decreasing
instances by a specified amount). There are typically a number of
steps involved in auto-scaling:

• Periodically fire the rules (e.g. every 5 minutes):
o Depending on the metric and threshold (e.g.

server utilisation > 80%) and
o The statistic and time period (e.g. average

over the last 10 minutes)
o Then execute the resource request actions

(e.g. increase instances by 1).

The cloud infrastructure cannot instantly respond to this request as
it has to first find and reserve an available server, create a new
virtual machine instance on it, deploy the application code and
other data onto the new virtual machine, start the application, and
include the new instance in a load balancer so it can be accessed
externally (e.g. the Amazon Elastic Load Balancer). The time
taken for all these steps is often referred to as the instance “spin-
up” time. It may also be possible to suspend the rules from firing
for some period of time once a rule has fired to allow the
requested actions to be completed, to prevent premature rule
firing. For the remaining discussion we assume “on-demand”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1202-8/12/04...$10.00.

263

instance types, with a typical (constant) instanc
10 minutes. In practice, spin-up time depends
cloud provider and can vary considerably. Co
cloud providers do not have a Service Level Agr
spin-up time.

1.1 Cloud Elasticity Modeling
Our research since 2007 has focused on
modeling of Service Oriented Architectures. W
a tool and method for SOA performance modelin
trialed and validated on a large number of gove
government enterprise SOAs at different stage
development lifecycle. From these engagements
three example applications and workloads tha
relevant for evaluating cloud elasticity.

The three example applications are: (1) BigC
application that has a variety of different use
external business partners, and web and mobile c
workload which gradually increases and then de
hour period (2) Lunch&COB, a whole of g
application which is distributed over four
applications deployed on distinct Virtual M
different workloads, one longer but lower peak
another higher but shorter peak near close of
FlashCrowd, a web site which typically has a
load, and then occasionally exhibits a very large
over a 1 hour period (representative of a “Flash

We have previously modeled and validated thes
loads for fixed resources to explore the im
workloads, for capacity planning, to assist with
and to investigate architectural alternatives
[10][11][12][13][14]. From these experiments w
three applications are CPU rather than netw
limited. We have also modeled different re
including virtualisation and cloud platforms (e
Google AppEngine, Microsoft Azure) to pred
scalability, cost, and power consumption [8][
research has explored related cloud elasticity
cloud modeling prediction, and cloud elast
[2][3][4][5][6][7]. Our tool is model driven and
model of the service oriented performance mod
editing, viewing and animation. To predict the
transformation is made to a run-time version of
is simulated dynamically using a discrete
Complex dynamic resourcing models can be bu
run-time with this approach, making it ideal
cloud elasticity which intrinsically has time as a
secondary metric which is computed from know
cost model, resource usage, and instance start an

We have constructed models of these three a
generic elastic cloud platform (inspired by
focusing solely on the CPU resource requirem
costs. Figure 1 shows the main components of a
cloud that are included in our cloud elasticity m
load, elastic load balancer, virtual machine
application, and elasticity mechanisms (m
instance requests, instance provisioning, etc) c
spin-up time.

1.2 Elasticity Scenarios
We explore the following elasticity scenarios for

ce spin-up time of
s on the particular
onsequently, most
reement (SLA) for

the performance
We have developed

ng which has been
ernment and non-

es of the software
s we have selected
at are particularly

Co, an enterprise
er types (internal,
customers), with a
ecreases over a 24
government SOA

zones (separate
Machines), with 2

at lunch time and
business, and (3)

a low background
e spike in demand
Crowd”).

e applications and
mpact of different

developing SLAs,
s and evolution

we know that these
work or database
esourcing models

e.g. Amazon EC2,
dict performance,
[9]. Other related

y issues including
ticity architecture
d supports a meta-
del and GUI-based

metrics from it, a
f the model which

event simulator.
uilt and solved at
for investigating

variable. Cost is a
wledge of the cloud

d stop times.

applications on a
y Amazon EC2),
ments, SLAs and
an elastic compute
models: incoming

es with deployed
monitoring, rules,

ontributing to the

r the examples.

Default (10 minute spin-up time). T
“typical” elasticity characteristics w
default settings for the cloud platfo
instance spin-up behaviour: Rule che
request threshold of 80% average serve
1 minute, instance decrease threshold
over 10 minutes, 1 instance increase/de
suspension time equal to the instance s
10 minutes by default.

Worst case elasticity has no elastici
relies on fixed over-provisioning of
period. Only if the maximum load
sufficient fixed resources can be mad
prevent SLA violations. Depending o
likely to be higher than using elast
dynamically. If the workload is high
fixed resources will be saturated and th

Figure 1 Cloud Elasticity

Best case elasticity attempts to predict
be achieved given the constraints
assuming zero spin-up time. The minim
minute, and that the charging model is
is increased to 95% Utilisation and dec
to 50% Utilisation. Higher thresholds
the SLA as less headroom is neede
available instantly.

To be perfectly elastic the resources
(no more or less), there is no time de
changes and changing resourcing
instantaneous), and you only pay for w
is fine-grain consumption based). Eve
any cloud platforms are perfectly el
assuming a perfectly elastic cloud platf
grained cost model which only char
actually consumed, by the CPU Millis
the default cost model. Table 1
scenarios (columns) in terms of the r
spin-up times, and charging settings.

We also predict the Elasticity Break
breaking point (where the platform is n
up time is increased until the SLA is v
minutes is too long).

To illustrate the impact of
we assume the following
orm auto-scaling rules and
eck every minute, increase
er utilisation computed over
d of 30% server utilisation
ecrease at a time, and a rule
spin-up time, which is set to

ity mechanism and instead
resources for the 24 hour
is known in advance can

de available in advance to
n the workload, the cost is
ticity to manage resources
her than predicted then the
he SLA will be violated.

y Architecture

t the most elasticity that can
of a cloud platform, but
mum rule check period is 1
s hourly. Increase threshold
crease threshold is increased
can be used and still satisfy
ed due to instances being

exactly match the demand
elay between detecting load
g levels (resourcing is

what you consume (charging
en though it is unlikely that
astic, we can model it by
form and an extremely fine-
rges for resources that are
second, at a rate pro rata to
summarizes the elasticity

resources (fixed or elastic),

point. In order to find the
not elastic enough) the spin-
violated (or decreased if 10

264

Table 1 Elasticity Scenarios

 Worst 10 min Best Perfect

Resources Fixed Elastic Elastic Elastic

Spin-up In
advance

10 min 0 min 0 min

Charging Hourly Hourly Hourly Millisecond

2. Examples Elasticity Predictions
2.1 Example 1: BigCo
The workload for the first application, BigCo, runs for 24 hours
and represents an observed extreme case of a typical day (Figure
2). During the 24 period the load ranges from a low of 300TPH
(Transactions Per Hour) to a high of 27,000 TPH.

Figure 2 BigCo Workload

All three examples are user facing interactive applications with
strict response time requirements of a few seconds at most. The
SLA is 99% of transactions taking less than 10 seconds. IaaS
cloud platforms typically offer a variety of instance sizes, from
partial cores (multi-tenancy on shared servers) to multiple cores
(single-tenancy on large servers). Due to the minimum
application requirements for core speed and other resources (e.g.
memory and network bandwidth), we selected a single-tenancy 4
core (approx 2.4GHz Intel core speed) instance type with a cost of
40 cents an hour or part thereof. We ran the model with the 24
hour workload for all the elasticity scenarios. Figure 5 shows the
total running cost, and Figure 6 shows the elasticity breaking
point (50 minutes). A 10 minute spin-up results in a cost saving of
32% compared with the worst case, increasing to 54% as spin-up
time approaches zero, while perfect elasticity is 71% cheaper.

2.2 Example 2: Lunch&COB
Our second example is modeled on a government Service
Oriented Architecture (SOA) application supporting multiple user
types including government, business, and citizens. This example
was originally modeled and validated on dedicated hardware, and
we have since modeled it on various cloud platforms. It is a
distributed application consisting of four distinct application
zones which are deployed on separate virtual machines. The
workloads occur during business hours (12 hours). Two peaks are
expected, one around lunchtime with a peak of 10,000TPH and
the highest with a peak of 20,000TPH at close of business (COB)
as shown in Figure 4. The workloads impose different demands
on each of the application zones, so the resources for each zone
must be scaled at different rates.

The breaking point is 20 minutes when the SLA is violated
(Figure 6). The Lunch&COB example is more demanding than
BigCo and there is little room for an increase in the cloud
platform spin-up time before the SLA is violated. Figure 5 shows

the cost for 12 hours for the scenarios. The 10 minute and best
case elasticity costs are very similar and represent a cost saving
compared with the worst case of up to 50%. The fact that they are
very similar indicates that the elasticity is close to breaking point.
However, perfect elasticity is 89% cheaper, suggesting that there
is even more room for improvement in the elasticity of cloud
platforms for more elastically demanding applications and
workloads such as Lunch&COB.

Figure 3 Lunch&COB Workloads

2.3 Example 3: FlashCrowd
The 3rd example is modeled on an emergency web service
application which was designed for infrequent use when the main
web site was in danger of overloading due to an exceptional load
spike caused by an emergency situation. The workload is expected
to increase within 30 minutes from the normal peak load of 5TPS
to a maximum of 470TPS (a factor of 92), and then drop back to
normal very quickly, the load spike lasting for 1 hour. The
complete workload runs for 2 hours with over 1.25 million service
calls in this period (Figure 4).

Figure 4 FlashCrowd Workload

FlashCrowd has more demanding elasticity requirements than the
preivious examples, as a 10-minute spin-up time cannot provision
CPUs fast enough, and the system saturates and catastrophically
fails the SLA. In fact, the model predicts that 5 minutes is the
longest possible spin-up time. However, in order to achieve the
SLA with 5 minutes spin up it is necessary to request 30 instances
at a time, rather than just 1 at a time. Unlike the 10 minute default
spin-up time scenario, the worst, perfect and best case elasticity
scenarios all satisfy the SLA. Figure 5 shows total costs for 2
hours for scenarios, with the default case using a 5 minute spin-up
time. Figure 6 compares the elasticity breaking points for all the
examples.

3. Observations
More cores are needed for the peak loads using elasticity
compared with fixed resources. For example, for FlashCrowd 356
cores were needed with 5 minute spin-up compared with 272 for
fixed. This is significantly higher, and will impose more demand
on the shared cloud infrastructure, and potentially more cost for

�
�����
�����
�����

� � �� �� �� ��

��
��
���
	

�

��
���
�����

�
�����
�����

� � ����
��
���
	

�

��
���
�����

��	
��
�� ����
��

�
���
���
���

� ��� � ��� � ���

��
��
���
	�
�

��
���
�����

265

the user, particularly if the elasticity rules result in significantly
more instances being requested than actually needed.

Figure 5 Example/Scenario costs ($/workload duration)

Figure 6 Elasticity Breaking points

The approach of predicting both cost and response time SLAs for
applications deployed on cloud platforms allows for both
comparison of different elasticity scenarios, and determining if the
platform is elastic enough.

Using perfect elasticity as the base line, the best case scenarios
were 1.5 to 4.5 times more expensive, the 10/5 minute spin-up
scenarios were 2 to 5 times more expensive, and the worst case
(fixed) scenarios were 3 to 10 times more expensive. This
indicates that dynamic resourcing shows consistent cost
advantages over fixed resourcing, realistic (10/5 minute) spin-up
times were not significantly more than best case (zero minute),
and that reducing spin-up times to zero (best case) without also
reducing the granularity of the charging model (perfect case) will
not significantly reduce costs. However, all the cloud elasticity
options, even the fixed instance scenarios, are relatively cheap.

A 10 minute spin-up time was sufficiently elastic for 2 out of the
3 example applications, but the 3rd example required a spin-up
time of 5 minutes and knowledge of the workload so that a larger
number of instances could be requested. This suggests that for
many applications the current elasticity (spin-up times and
elasticity mechanisms) may be adequate, but for more demanding
applications improvements in cloud elasticity technology are
needed. Computing the SLAs for given elasticity settings enables
us to determine if the SLA is satisfied, and to find the longest
spin-up time that satisfies the SLA, thereby answering the
question “Is a cloud platform elastic enough for a given
application and workload?” Modeling elasticity prior to
deployment enables cloud platforms to be evaluated before
investing the effort porting the application to a selected platform,
with increased confidence in cost and performance.

4. ACKNOWLEDGMENTS
NICTA is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Centre of Excellence program.

5. REFERENCES
[1] Julie Bort, “Yahoo builds ultimate private cloud”, Network

World, July 19, 2011.

[2] Amy Spellmann, Richard Gimarc, Mark Preston,
“Leveraging the Cloud for Green IT: Predicting the Energy,
Cost and Performance of Cloud Computing” , CMG ’09
Conference

[3] Urszula Herman-Izycka, “Flash Crowd Prediction”, Master’s
Thesis, Vrije Universiteit, Amsterdam, The Netherlands,
2006

[4] Nilabja Roy, Abhishek Dubey, Aniruddha Gokhale,
"Efficient Autoscaling in the Cloud Using Predictive Models
for Workload Forecasting," IEEE 4th International
Conference on Cloud Computing 2011, 500-507.

[5] Clovis Chapman, Wolfgang Emmerich, Fermín Galán
Márquez, Stuart Clayman, Alex Galis: “Software architecture
definition for on-demand cloud provisioning”, HPDC '10.
ACM, New York, NY, USA, 61-72.

[6] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov,
César A. F. De Rose, Rajkumar Buyya: “CloudSim: a toolkit
for modeling and simulation of cloud computing
environments”, Softw., Pract. Exper. 41(1): 23-50 (2011)

[7] Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar
Buyya. “Dynamically scaling applications in the cloud”,
SIGCOMM Comput. Commun. Rev. Volume 41, Issue 1,
2011, 45-52.

[8] Brebner, P., O’Brien, L, Gray, J., “Performance modeling
power consumption and carbon emissions for Server
Virtualization of Service Oriented Architectures (SOAs)”.
EDOCW 2009. 13th. 92-99.

[9] Paul Brebner, Anna Liu: “Performance and Cost Assessment
of Cloud Services”, ICSOC Workshops 2010: 39-50.

[10] Brebner, P. C. 2008. “Performance modeling for service
oriented architectures”, ICSE Companion '08. ACM, New
York, NY, 953-954.

[11] Paul Brebner, Liam O’Brien, Jon Gray. “Performance
Modeling for e-Government Service Oriented Architectures
(SOAs)”, ASWEC Conference Proceedings (Perth, March,
2008), 130-138.

[12] Brebner, P. 2009. “Service-Oriented Performance Modeling
the MULE Enterprise Service Bus (ESB) Loan Broker
Application”, SEAA 2009. IEEE Computer Society,
Washington, DC, 404-411.

[13] Paul Brebner, Liam O'Brien, Jon Gray: “Performance
modeling evolving Enterprise Service Oriented
Architectures”, WICSA/ECSA 2009: 71-80.

[14] Paul C. Brebner. “Real-world performance modeling of
enterprise service oriented architectures: delivering business
value with complexity and constraints”. ICPE '11. ACM,
New York, NY, USA, 85-96.

�

��

��

��

��

��

��

���������
�	�� !

��
��
���
��

��
��
��
��
��

��
���

��

� "��#���$�
%

� "��#��&%

� "��#���� 	�%�

� "��#'!�&%

��	
�(���#���$�
%

��	
�(���#��&%

��	
�(���#���� 	�%�

��	
�(���#'!�&%

)��&���!*+#���$�
%

)��&���!*+#��&%

)��&���!*+#��� 	�%�

)��&���!*+#'!�&%

�
��
��
��
��
��

� "�� ��	
�(���)��&���!*+

��
��
��
��

��

��

�

��
��
��
�

266

