
Understanding Performance Modeling for Modular
Mobile-Cloud Applications

Ioana Giurgiu
Systems Group, Dept. of Computer Science, ETH Zurich

igiurgiu@inf.ethz.ch

ABSTRACT
Mobile devices are becoming the main entry points to the
growing number of cloud applications and services. Unlike
traditional approaches, we pursue a flexible architectural
model where cloud hosted applications are distributed be-
tween mobile devices and the cloud in a bid to improve inter-
action performance. Given the increasing variety of mobile
platforms or virtual instances, in this paper we approach the
problem of estimating performance for such applications in
two steps. First, we identify the factors that impact inter-
action response times, such as the application distribution
schemes, workload sizes and intensities, or the resource vari-
ations of the mobile-cloud setup. Second, we attempt to find
correlations between these factors and to understand how to
build a unified and generic performance estimation model.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

Keywords
Mobile cloud applications, performance models

1. INTRODUCTION
Mobile devices are becoming the main entry points to the

growing number of cloud applications and services. The pre-
dominant architecture for offering such services to users are
browser-based applications, where most, if not all, of the
application software is hosted in the cloud. In such scenar-
ios, performance depends only on the available bandwidth
and connection latency between the mobile device and the
cloud instance. To alleviate the network problem, we ex-
plore an alternative model for cloud applications, where the
cloud instance dynamically migrates part of the application
to the mobile device to improve user experience, by minimiz-
ing data transfers and overall interaction times. Our model
uses modularization [7] to allow flexible distributed deploy-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

ments of applications, from keeping only the user interface
on the device to hosting the whole application locally.

Given the increasing variety of mobile platforms and cloud
instances, we cannot aasume to always have access to accu-
rate measurements in all scenarios, by running the appli-
cations a-priori. Therefore, in this paper we address the
following question: ”What is the best performance of an ap-
plication, when distributed between a mobile device MD and
a cloud virtual instance VI, with workload Y?”. The mobile
device MD and virtual instance VI represent the setup to es-
timate the application’s response time for, without actually
running it. With the diversity of mobile devices, each with
different resource capabilities, the application performance
will vary accordingly. For an image processing application,
one would experience higher response times on a Motorola
Droid (i.e. 600MHz CPU) compared to an HTC Desire (i.e.
1GHz CPU), when using the same distribution scheme and
cloud instance. Similar changes in response time are ob-
served when different virtual instances are used.

Best performance is correlated with the application distri-
bution scheme that achieves the lowest response time in the
setup (MD, VI). In practice, it is hardly the case that the
distribution with best response time for a specific (MD, VI)
setup will be optimal for other setups, as well. For the im-
age processing example, offloading less computational parts
on the Motorola Droid results in better interaction times,
because its CPU capability is lower. In addition, the type
of workload a user inputs to such an application will impact
performance dramatically. Imagine how the response time
varies for a panorama application, where instead of submit-
ting 3 images of 100kB each, a user sends 6 images of 500kB
each. Both times spent in executing image processing algo-
rithms and transferring data remotely become much higher.

To summarize, we identify relevant factors that impact
the performance estimation of a modular mobile-cloud ap-
plication in an (MD, VI) setup: (a) the application distribu-
tion scheme, (b) the workload size and intensity, and (c) the
resource variations observed between (MD, VI) and logged
setups for which the application was previously run. Given
the variability of these factors, the problem becomes com-
plex and requires one to understand what are the application
demands for a specific resource and how they are impacted
by workload types. In addition, one must find correlations
between application demands and the resource variations of
the (MD, VI) setup compared to logged setups, to under-
stand which distribution scheme would indeed provide the
best response time. We discuss the relevant factors and their
correlations in Section 3, after introducing the current state

259

of the art in Section 1.1 and modular mobile-cloud applica-
tions in Section 2. We conclude in Section 4.

1.1 State of the art
Performance modeling and estimation is studied especially

for distributed and multi-tier applications. A preferred ap-
proach is based on queuing models of complex networked ser-
vices. Stewart and Shen [9] predict throughput and mean re-
sponse time based on performance profiles and M/G/1 queu-
ing expressions. Urgaonkar et al. [10] describe a complex
queuing network model for multi-tier applications. Their
approach requires extensive calibration, but can be used for
dynamic capacity provisioning, performance prediction, bot-
tleneck identification and admission control. In [11], the au-
thors look into performance modeling of virtualized resource
allocation, based on probabilistic relationships between vir-
tualized CPU allocation and application response time.

Another direction focuses on workload modeling. In Mag-
pie [1], the authors exploit knowledge of application archi-
tecture to determine the resource demands of different trans-
action types. Stewart et al. [8] propose a model for perfor-
mance prediction based on the nonstationarity character of
transactions types, by relying solely on lightweight passive
measurements. Rolia et al. [4] proposes a resource demand
modeling approach, while others attempt to diagnose perfor-
mance changes by comparing request flows from two execu-
tions [5], or to estimate performance for embedded systems
based on discrete event simulations [3].

Some work has also been done in modeling and estimat-
ing performance in the context of mobile devices. In [6], the
authors introduce a method based on linear regression and
clustering to predict performance requirements of mobile de-
vices tasks using hardware resource utilizations and input
data. However, to the best of our knowledge all the exist-
ing performance models for mobile devices address only sce-
narios where applications are entirely run locally. Instead,
we are tackling the performance estimation problem for dis-
tributed applications between mobile devices and cloud in-
stances.

2. MOBILE-CLOUD APPLICATIONS
Mobile-cloud applications are cloud applications enabled

to run on mobile platforms, by distributing their components
between virtual instances and a mobile device. As with mo-
bile applications, the user requires spontaneous and faster
interactions for mobile-cloud applications, as well. Since ap-
plications are different in their resource demands, there is
no unique distribution scheme that maximizes performance
for all. Therefore, to add flexibility in how applications are
distributed, we propose an architectural model that applies
the modularity principle [7]. According to it, applications
are organized as sets of processing modules that communi-
cate with each other, each module encompassing a logical
functionality or a set of highly cohesive functionalities.

Let us assume an application is composed of N modules,
M = {Mi|i = 1, 2, ..., N}, as in Figure 1a. M1 represents
the entry point in the application and the minimal code
that needs to be installed on the mobile device that al-
lows the user to start an interaction. Typically, M1 im-
plements the application user interface, while the remaining
modules implement main logical functionalities. The com-
munication between modules is modeled as a directed acyclic
graph (DAG), where a module Mi issues requests to all the

M1

M3

M2

M5

M4

M1

M3

M2

M5

M4
MD VI

M1

M3

M2

M5

M4
MD VI

M1

M3

M2

M5

M4

MD VI

a) Example of modular application b) Possible configuration X

c) Possible configuration Y d) Possible configuration Z

Figure 1: Abstract example of modular application and pos-
sible distribution partitionings between MD and VI.

modules Mj it logically depends on, i 6= j, until it reaches
the last module MN . In the simplest case, each such re-
quest is processed exactly once and the result is sent in re-
verse order until it reaches M1, which then returns it to the
user. More complex processing is possible when a request
can visit a module multiple times. As an example, consider
a keyword search which triggers queries on different tables
in a database. In the sequential case, each request is issued
once the processing of the previous request has finished. The
more complex parallel case is not currently addressed.

Given the DAG representation of a modular application,
we define a partitioning between the mobile device MD and
the virtual instance VI as two non-overlapping sets of mod-
ules that cover all application modules, PMD and PV I , re-
spectively. Therefore, PMD ∪ PV I = M and PMD ∩ PV I = ∅.
Examples of possible partitionings are shown in Figures 1b–
d. In [2] we have investigated how distribution partitionings
impact application performance, especially when user inputs
and number of requests per module change over time. This
confirms the need to understand the performance modeling
problem for mobile-cloud applications.

3. HOW TO MODEL PERFORMANCE OF
MOBILE-CLOUD APPLICATIONS?

In the context of modular mobile-cloud applications, we
define a distribution setup as a (MDx, V Iy) pair, such that
MDx ∈ MD = {MDx|x = 1, 2, ..., X} and V Iy ∈ VI =
{V Iy|y = 1, 2, ..., Y }, where MD and VI represent sets of di-
verse mobile devices and cloud instances, respectively. Our
goal is to identify and model relevant application and in-
frastructure parameters, in order to accurately estimate the
application’s response time in a specific such setup.

First, we account for logged measurements of application
executions in different setups (e.g. (MD1, V I2) = (HTC
Desire, Amazon EC2-Small)) and distributions (e.g. M1,2,3

on the mobile device and the remaining modules remote),
to identify the application demands for the underlying re-
sources. Second, we need to characterize how the new setup
(e.g. (MD2, V I3) = (Motorola Droid, Amazon EC2-Large))
differs from the logged setups in terms of resources. Third,
it is important to characterize workload size and intensity,
and to understand how these factors can be correlated in a
unified model.

3.1 Identifying application demands for un-
derlying resources

To understand how resource demanding a modular appli-
cation is, we represent it as a network of M queues Q1, ...,

260

Q1

Q2 Q4

Q3 Q5

1 - p2

p2

p5p3

0.5 * (1 - p3)

0.5 * p4

0.5 * p4

0.5 * (1 - p1)

0.5 * (1 - p1) 0.5 * (1 - p3)

IN

Figure 2: Modeling the example modular application using
a network of queues.

QM . Each queue represents a specific application module
and the underlying platform it runs on. When a request
arrives at module Mi, it triggers one or more requests to
modules Mj it depends on; recall the example of a keyword
search that triggers multiple queries at different database ta-
bles. In our queueing model, we capture this by allowing a
request to make multiple visits to a queue during its overall
execution, and by introducing a transition from each queue
to its predecessor. Figure 2 represents the queue model for
the application in Figure 1a. After processing at queue Qj ,
a request follows one of two paths based on the applica-
tion communication model. Either it returns to one of the b
queues from which it received the request, Qi, with proba-
bility

pj
b

, or it proceeds to one of the c queues to which it de-

pends on, Qk, with probability 1−pi
c

. In practice, we cannot
associate exact values to these probabilities, since applica-
tion dataflows for different inputs or factors can be different.
However, with enough collected measurements, we can com-
pute aggregated medians of request visits per module and
assign their values to the corresponding probabilities.

Let Si denote the service time of a request at Qi, 1 ≤
i ≤ M , and Wi the waiting time from Qi to one of the c
queues it depends on. By using these basic queue properties
and logged measurements from previous runs, we can model
and identify the application demands for specific underlying
resources. The service time at Qi represents the execution
time of module Mi, which is a measure of the CPU demand
per module. The waiting time from Qi is equivalent with the
time required to transfer data to a subsequent queue, thus an
expression of the network demand. By comparing the total
service time with the total waiting time, we can understand
how much of the total response time is spent performing
computational tasks and transferring data, respectively.

Open problems. The queue network naturally models CPU
and bandwidth resources. However, especially on mobile
platforms, memory is a scarce resource that needs to be ac-
counted for. One possible model extension is to assign to
each application module a network of queues, where each
queue corresponds to a specific resource. This way, by es-
timating the utilizations at the queues, we can understand
how memory impacts application performance.

3.2 Application workload modeling
In mobile-cloud applications, the following observations

about workload hold: (a) workload consists of request-reply
interactions; (b) interactions have a limited number of types
(e.g. browsing, online payment, printing for a ticket ma-
chine application); (c) interaction types influence resource
demands; (d) interaction mix is nonstationary, meaning it
changes over time. Nonstationary processes can be used
to model workloads, but do not address the complementary
problem of workload forecasting. However, as shown in [8] if

accurate forecasts are available, they can be mapped to ac-
curate performance predictions. Therefore, we make the fol-
lowing assumptions prior to formulating a workload model:
(a) all previous application interactions are logged, (b) the
modules CPU utilization and the bandwidth utilization be-
tween them are extracted from the measured execution and
data transfer times.

To capture the application behavior for a specific work-
load, we observe a number of sequential interactions per-
formed by a user over windows of fixed length T. Assuming
that the application can process S interaction types, we de-
note by Si the number of interactions of the i-th type, where
1 ≤ i ≤ S. Ur,Mj is the average utilization of resource r at
module Mj during the monitoring window. This representa-
tion is natural for CPU, because its utilization corresponds
to execution times measured at module level. Instead, for
network resources the average utilization is a property of all
the incoming communication links to module Mj . Therefore,
we define Di,Mj as the average service time of interactions of
type i at module Mj , while for network resources, we need
to replace the service time with the summed waiting time
on all incoming links to Mj . Based on the utilization law,
for each monitoring window and resource r we obtain:∑

i

SiDi,Mj = Ur,MjT (1)

In practice, it is infeasible to obtain accurate service or wait-
ing times Di,Mj . Thus, we consider the approximated costs
of Di,Mj for resource r (i.e. CPU or bandwidth) and de-
note it by Ci,Mj . An approximated utilization U ′r,Mj

and
the corresponding amount of time when resource r is used
by specific application operations, can be computed as

U ′r,Mj
=

∑
i SiCi,Mj

T
T ′r,Mj

=
∑
i

SiCi,Mj (2)

To solve the equation for the approximated costs Ci,Mj ,
several regression methods can be used. Typically, the goal
is either to minimize the absolute error between U ′r,Mj

and
Ur,Mj , or their squared error over each monitoring window.

Open problems. It is worth investigating which regression
methods are most suitable to be used for the application
types we are targeting. Furthermore, an open question is
how the monitoring window size and workload intensities
impact the accuracy of the regression solution.

3.3 Inter- and intra- variations for mobile de-
vices and virtual instances

Further we quantify how different is the current setup,
for which we estimate the application’s response time, from
logged setups, in terms of resources capacities and usages.

Let us denote the current setup Scurrent = (MDc, V Ic)
and the logged setup Slogged = (MDl, V Il). For simplicity
reasons, at this stage we only consider a single logged setup.
In comparing Scurrent and Slogged, two types of resource
variations are used between MDc and MDl, as well as V Ic
and V Il, respectively. We denote by inter-type variation, the
difference between the resources capacities when comparing
distinct mobile devices and EC2 instances, respectively. An
example is given in Table 1, where we want to compute
the resources variation of the (Motorola Droid, EC2-Large)
setup relative to the logged (HTC Desire, EC2-Small) setup.

In practice, the inter-type variation does not accurately
reflect the difference between two distinct mobile devices or

261

Table 1: Resource-based comparison between two setups

LOGGED CURRENT

Resources HTC EC2-S Motorola EC2-L

CPU 1 GHz 1 CU 600 MHz 4 CU

3G HSDPA 7.2 Mbps – 10.2 Mbps –
3G HSUPA 2 Mbps – 5.76 Mbps –

WiFi 802.11 b/g – 802.11 b/g –

virtual instances. For example, a mobile device usually runs
several applications simultaneously, which means it cannot
allocate 100% of the CPU or network capacities for an in-
coming application. Therefore, we define the intra-type vari-
ation to account for the actual resources usages on the un-
derlying infrastructure. It only applies to compare mobile
devices, since in real scenarios a third party has no access to
information about the current resources usages in the cloud.

For instance, let us consider the HTC Desire in Table 1
has 70% CPU usage, while the Motorola Droid has 20%
CPU usage. For a computational intensive application, it
is possible that even though HTC Desire has a larger CPU
capacity, its higher usage compared to the Droid would im-
pact the application performance, making it slower in prac-
tice. We combine the inter- and intra- type variations to
quantify how much faster or slower would the current mo-
bile device be relative to the logged device, while executing
computational modules or transferring data as follows:

Cr =
rAB(MDc) ∗ rUSED(MDc)

rAB(MDl) ∗ rUSED(MDl)
(3)

where rAB is the absolute capacity of the resource r (i.e.
CPU and WiFi / 3G) and rUSED represents how much of
rAB in percentages is already used by other applications. If
Cr < 1, then for the application parts that demand resource
r, MDc would require a longer execution time. The opposite
applies for Cr > 1.

Open problems. In quantifying the inter- and intra- vari-
ations, we made the simplifying assumption that there is
only one logged setup to compare against. In practice, this
is hardly the case and therefore it is important to identify
the logged setup that is closest to the current setup in terms
of its resource capacities and usages. One possible direc-
tion is to treat resources as independent variables and apply
regression-based methods.

3.4 Discussion
Finally, we want to correlate and combine all three factors

discussed (Sections 3.1–3.3) in a unified estimation model.
The queuing model proposed to identify application demands
for underlying resources and the workload model based on
nonstationary interactions combine naturally. In fact, the
workload representation is an extension of the queuing model.
Assuming that an interaction of type j lasts for k windows,
we estimate the time required to execute operations that de-
mand a specific resource r (i.e. computational steps require
CPU, data transfers require bandwidth) over all N applica-
tion modules, by combining the expressions from Eq. (2)

and (3) as follows:

RTr =

k∑
t=1

Ct
r

N∑
j=1

T ′tr,Mj
RT = RTCPU + RTbandwidth (4)

In our current model that only considers CPU and band-
width resources, it is easy to estimate the overall response
time (RT) of an interaction by summing the times required
to perform computational steps at module level (RTCPU)
and to transfer data between modules (RTbandwidth). How-
ever, it requires further study to understand how to encom-
pass additional resources, such as memory.

4. CONCLUSIONS
Modular mobile-cloud applications provide an alternative

architectural model to flexibly distribute applications parts
between a mobile device and a virtual instance to improve
interaction response times. In this paper, we address the
complex problem of estimating what would be the best re-
sponse times for such applications in the case of specific
workloads and mobile-cloud setups, without actually run-
ning them. We discuss how to model the impact of the
application distribution scheme, as well as the workload size
and intensity, and how they can be correlated with the re-
source variations of the given setups against logged setups.
Future work will focus on finalizing a unified and generic
model that encompasses all the above factors and evaluat-
ing its accuracy in real scenarios.

5. REFERENCES
[1] Barham, P., Donnelly, A., Isaacs, R., and Mortier, R. Using

magpie for request extraction and workload modelling. In Proc.
of the 6th Conference on Symposium on Operating Systems
Design and Implementation (2004).

[2] Giurgiu, I., Riva, O., Juric, D., Krivulev, I., and Alonso, G.
Calling the cloud: Enabling mobile phones as interfaces to
cloud applications. In Proc. of the 10th International
Conference on Middleware (2009).

[3] Madl, G., Dutt, M., and Abdelwahed, S. Performance
estimation of distributed real-time embedded systems by
discrete events simulations. In Proc. of the International
Conference on Embedded Software (2007).

[4] Rolia, J., Kalbasi, A., Krishnamurthy, D., and Dawson, S.
Resource demand modeling for multi-tier services. In Proc. of
the 1st International Conference on Performance
Engineering (2010).

[5] Sambasivan, R. R., Zheng, A. X., de Rosa, M., Krevat, E.,
Whitman, S., Stroucken, M., Wang, W., Xu, L., and Ganger,
G. R. Diagnosing performance changes by comparing request
flows. In Proc. of the 8th USENIX Symposium on Networked
Systems Design and Implementation (2011).

[6] Schwarzer, S., Peschlow, P., Pustina, L., and Martini, P.
Automatic estimation of performance requirements for software
tasks of mobile devices. In Proc. of the 2nd International
Conference on Performance Engineering (2011).

[7] Stevens, W., Myers, G., and Constantine, L. Structured
design. In IBM Systems Journal, 13(2) (1974).

[8] Stewart, C., Kelly, T., and Zhang, A. Exploiting
nonstationarity for performance prediction. In Proc. of the
European Conference on Computer Systems (2007).

[9] Stewart, C., and Shen, K. Performance modelling and system
management for multi-component online services. In Proc. of
the 2nd Conference on Networked Systems Design and
Implementation (2005).

[10] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., and
Tantawi, A. An analyical model for multi-tier internet services
and its applications. In Proc. of the International Conference
on Measurement and Modeling of Computer Systems (2005).

[11] Watson, B. J., Marwah, M., Gmach, D., dn Martin Arlitt,
Y. C., and Wang, Z. Probabilistic performance modelling of
virtualized resource allocation. In Proc. of the 7th
International Conference on Autonomic Computing (2010).

262

