
Kieker: A Framework for Application Performance
Monitoring and Dynamic Software Analysis

— Invited Demo Paper —

André van Hoorn, Jan Waller, and Wilhelm Hasselbring
Software Engineering Group, Christian-Albrechts-University Kiel, 24098 Kiel, Germany

{avh,jwa,wha}@informatik.uni-kiel.de

ABSTRACT
Kieker is an extensible framework for monitoring and an-
alyzing the runtime behavior of concurrent or distributed
software systems. It provides measurement probes for ap-
plication performance monitoring and control-flow tracing.
Analysis plugins extract and visualize architectural models,
augmented by quantitative observations. Configurable read-
ers and writers allow Kieker to be used for online and offline
analysis. This paper reviews the Kieker framework focus-
ing on its features, its provided extension points for custom
components, as well the imposed monitoring overhead.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Monitors, Tracing ; D.2.8 [Software Engineering]: Met-
rics—Performance measures

1. INTRODUCTION
Application-level monitoring and dynamic analysis of soft-
ware systems are a basis for various quality-of-service eval-
uation and reverse-engineering tasks. Example use cases in-
clude the diagnosis of SLO violations, online capacity man-
agement, as well as performance model extraction and cali-
bration. The Kieker framework provides monitoring, analy-
sis, and visualization support for these purposes.

Kieker development started in 2006 as a small tool for
monitoring response times of Java software operations. Since
then, Kieker has evolved into a powerful and extensible dy-
namic analysis framework for Java-based systems, including,
e.g., model extraction and visualization support for depen-
dency graphs, sequence diagrams etc. [1]. Kieker has been
been used for dynamic analysis of production systems in in-
dustry [1, 2]. Recently, monitoring adapters for additional
platforms, such as .NET and COM, have been added. In
2011, Kieker was reviewed, accepted, and published as a rec-
ommended tool by the SPEC Research Group. Since then,
the tool is also distributed as part of SPEC RG’s tool reposi-
tory at http://research.spec.org/projects/tools.html.

Copyright is held by the author/owner(s).
ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA
ACM 978-1-4503-1202-8/12/04.

2. FRAMEWORK AND CORE FEATURES
The Kieker framework is structured into a monitoring and an
analysis part [1]. On the monitoring side, monitoring probes
collect measurements represented as monitoring records,
which a monitoring writer passes to a configured monitor-
ing log or stream. On the analysis side, monitoring readers
import monitoring records of interest from the monitoring
log/stream and pass them to a configurable pipe-and-filter
architecture of analysis plugins. For the mentioned com-
ponents, Kieker already includes a number of implementa-
tions, summarized below. Given the framework’s extensibil-
ity, custom components can be developed easily, if required.

Focusing on application-level monitoring, Kieker includes
monitoring probes for collecting timing and trace informa-
tion from distributed executions of software operations.
Additionally, probes for sampling system-level measures,
e.g., CPU utilization and memory usage, are included.
Kieker supports monitoring logs and streams utilizing file
systems, databases, as well as JMS and JMX queues. A
number of plugins for reconstructing, analyzing, and visual-
izing software architectural models such as calling-dependen-
cy graphs, call trees, and sequence diagrams are included.

3. DYNAMIC ANALYSIS WORKFLOW
Running a dynamic analysis with Kieker requires the in-
strumentation of the software system, as well as the speci-
fication of the monitoring and analysis configuration. Fig. 1
illustrates a typical dynamic analysis workflow with Kieker.

Components of the software system need to be instru-
mented with monitoring probes. Usually, existing monitor-
ing probes and record types are sufficient, but depending on
the required measurement data and involved technologies,
custom monitoring probes and monitoring record types may
be implemented.

In most cases, it is not necessary to implement custom
monitoring writers and readers. File system (with comma-
separated files) or database writers enable direct access to
the monitoring log/stream and collected monitoring records
can be analyzed using standard spread-sheet or statistics
tools. Additionally, collected or queued records can be trans-
ferred to an analysis configuration.

On the analysis side, a configuration of monitoring readers
and analysis plugins needs to be defined, using the included
pipe-and-filter framework. Once defined, these configura-
tions can be executed with Kieker to analyze previously col-
lected (offline) or incoming (online) monitoring records and
to produce textual output or graphical visualizations.

247

http://research.spec.org/projects/tools.html


Figure 1: Illustration of a typical dynamic analysis workflow utilizing Kieker

4. MONITORING OVERHEAD
Monitoring of software systems imposes a performance over-
head. We performed extensive micro- and macro-bench-
marks to quantify this impact on Java applications. In
Fig. 2, we present the results of such a micro-benchmark to
determine the three portions of the monitoring overhead [1]
and of such a macro-benchmark to quantify the overhead of
monitoring a typical enterprise system, represented by the
SPECjEnterprise™ 2010 industry benchmark.1

On a typical enterprise server machine, our micro-bench-
marks for a single method call reveal a median overhead
of 0.1 µs for instrumentation, 1.0 µs to collect performance
data, and 2.7 µs to write the collected data to a file sys-
tem (Fig. 2 (a)). These results scale linearly with additional
monitored method calls. The macro-benchmark simulates
a typical Java EE application with 40 instrumented classes
and 138 instrumented methods, accessed by approximately
260 concurrent threads. A comparison of the average re-
sponse times without and with active Kieker monitoring re-
veals the average overhead at below 10% (Fig. 2 (b)).

Writing (W)

(a) micro-benchmark

CreateVehicleEJB CreateVehicleWS Purchase Manage Browse

(b) macro-benchmark

Figure 2: Summary of monitoring overhead results

5. CONCLUSION & FUTURE WORK
Kieker is developed and employed for various purposes in
research, teaching, and practice. Application areas include:
performance evaluation, self-adaptation control (e.g., online
capacity management), problem localization, simulation (re-
playing workload traces for driving simulations; measure-
ment and logging of simulation data; analysis of simulation
results), and software reverse engineering (e.g., extraction
of architectural and usage models). In these contexts, our
future work includes the development of additional analy-
sis plugins, e.g., improved support for analyzing concurrent
behavior. In addition to Java, .NET, and COM, we are
working on monitoring support for other platforms, such as
COBOL. Currently, we are developing a Web-based user in-
terface for configuring and running dynamic analyses with
Kieker. A road map is provided on the Kieker home page [3]:
http://www.kieker-monitoring.net

References
[1] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers,

S. Frey, and D. Kieselhorst. Continuous monitoring of soft-
ware services: Design and application of the Kieker frame-
work. TR-0921, Dept. of Computer Science, Univ. of Kiel,
Germany, 2009.

[2] M. Rohr, A. van Hoorn, W. Hasselbring, M. Lübcke,
and S. Alekseev. Workload-intensity-sensitive timing be-
havior analysis for distributed multi-user software systems.
In Proc. Joint WOSP/SIPEW Int. Conf. on Perf. Eng.
(WOSP/SIPEW ’10), pages 87–92. ACM, 2010.

[3] Kieker home page. http://www.kieker-monitoring.net.

This work is partly funded by the German Federal Ministry of Edu-
cation and Research (BMBF) under grant number 01IS10051.

1 SPECjEnterprise is a trademark of the Standard Performance Eval-
uation Corp. (SPEC). The SPECjEnterprise2010 results or findings in
this publication have not been reviewed or accepted by SPEC, there-
fore no comparison nor performance inference can be made against
any published SPEC result. The official web site for SPECjEnter-
prise2010 is located at http://www.spec.org/jEnterprise2010/.

248

http://www.kieker-monitoring.net
http://www.kieker-monitoring.net
http://www.spec.org/jEnterprise2010/

	1 Introduction
	2 Framework and Core Features
	3 Dynamic Analysis Workflow
	4 Monitoring Overhead
	5 Conclusion & Future Work



