
Importing PMIF Models into PIPE2 using M2M
Transformation

Pere Bonet
Computing and Maths Department

Universitat de les Illes Balears
07071 Palma de Mallorca, Spain

p.bonet@uib.cat

Catalina M. Lladó
Computing and Maths Department

Universitat de les Illes Balears
07071 Palma de Mallorca, Spain

cllado@uib.cat

ABSTRACT

Model-to-model (M2M) transformation is a key aspect of
model-driven development (MDD), where importing and ex-
porting models fits very well. A queueing network based
metamodel (PMIF) and a Petri net metamodel are specified
using the Eclipse Modelling Framework. The transforma-
tion from PMIF models to Petri net models is then build
using ATL. This paper presents such a transformation and
its integration into PIPE2, a Petri net modelling tool. It
also illustrates the transformation by a simple example.

Categories and Subject Descriptors

B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

Keywords

M2M (model-to-model transformation), Performance mod-
els, Petri Nets, PMIF, Queueing networks

1. INTRODUCTION
Interchange formats have been defined for the interchange

of queueing network models, Petri nets models, and others.
However, there is still scope to extend their application to
multiple formalisms, in particular interchanging models that
can be a Petri net or a queueing network. This way a tool
that analyses Petri nets can import, for example, a queueing
network model and vice-versa.
Model-to-model (M2M) transformation can be done in

many different ways. The advantages of using a transfor-
mation language instead of java-based transformations are
discussed in [4]. Yet still, it has not been much used in
performance engineering.
We present a Queueing Network (QN) based metamodel

(PMIF, Performance Model Interchange Format) and a Petri
net (PN) metamodel that are specified using Eclipse’s EMF
(Eclipse Modeling Framework) and its M2M transforma-
tion using ATL, which is part of EMF and provides a com-
pletely automated process for model to model transforma-
tions. This process needs the source model (which in our
case the PMIF metamodel), the target model (in our case
the PN one), and a transformation code expressed in ATL
language (described by rules).

Copyright is held by the author/owner.
ICPE’12, April 22 – 25, 2012, Boston, Massachusetts, USA
ACM 9781450312028/12/04.

A different approach to multiformalism is offered by Mo-
bius, OsMoSys and SIMTHESys [3]. All of them aim to
provide a methodology and tool support for multi-formalism
models’ design and evaluation, and consider model compo-
sition and multiple solution methods.

2. M2M TRANSFORMATION
Our transformation’s input is a PMIF [5] model, a com-

mon representation for system performance model that fol-
lows the QN paradigm. The PMIF metamodel espeficied in
Eclipse is shown in Fig 1. On the other hand the output
transformation is a PN model that follows the EMF meta-
model shown in Fig 2.

Figure 2: Petri net metamodel

The ATL transformation specifies how a PMIF model is
transformed into a PN model. Each element in the QN has
its correspondent element(s) in the PN. The most impor-
tant elements and their counterparts are described next: (1)
PMIF Servers and WorkUnitServers are nodes that provide
some processing service for one or more Workloads. Its PN
counterpart is a structure composed by a place, which rep-
resents the server queue, a timed transition whose firing rate
is the inverse of the service time of the node, a place which
represents the job exiting the node after having received its
service and the necessary arcs to keep places and transitions
connected. If there is more than one workload in the sys-
tem (see below), this needs to be replicated as many times
as workloads are served by one Server or WorkUnitServer
since tokens are not distinguishable in a PN. This informa-
tion is found in the ServiceRequest elements. (2) A PMIF
OpenWorkload represents a workload with a potentially in-
finite population where transactions or jobs arrive from the

245



Figure 1: PMIF metamodel

outside world, receive service, and exit. The PN represen-
tation of this element consists of a timed transition whose
firing rate is equal to the open workload arrival rate, a place
that represents the arrival of the jobs and an arc connecting
the transition and the place. (3) A PMIF ClosedWorkload
represents a workload with a fixed population that circu-
lates among the Servers, so it is represented in the PN has
a place with the population as its initial marking. A closed
workload has a ThinkDevice or independent delay node (for
example, to model finite collections of users) characterized
by its ThinkTime (average interval of time that elapses be-
tween the completion of a transaction or job and the sub-
mission of the next transaction or job). The ThinkDevice
counterpart is as the server nodes.
Once the ATL transformation is done and we have a PN

model, an XSLT transformation is applied, so the model is
specified with PIPE2’s [1] format, which is a pseudo PNML [2].
The original intention was to use a model to text transfor-
mation. However, all the ones we could find would possibly
work in the Eclipse environment but could not be exported
to be build as part as an existing application as PIPE2. This
way, using PIPE2 we can open a PMIF model, as shown in
Fig. 3. Clearly PIPE2 has been updated so it allows for the
importing option and the transformation process.

3. CASE STUDY AND CONCLUSIONS
As a case study we use the Oracle example described in [6],

with 3 servers (CPU, UserThink and Delay). Its PMIF
model is imported into PIPE2 and the PN seen for this
example in as shown in Fig. 3, only with some transitions
and places moved a little bit so the drawing is clearer (the
transformation output leaves some arcs crossed). In fact,
improving the automatic drawing of the nets is part of our
future work as well as the import of more complex QN mod-
els, for example, allowing for different scheduling policies.
Performance indexes obtained for this example are exactly
as shown in [6], so it demostrates the correct transformation
of our tool.

Figure 3: Oracle case study

Acknowledgments

This work is partially funded by the TIN2010-16345 EIGER
project of the Ministerio de Educacion y Ciencia, Spain.

4. REFERENCES
[1] Platform Independent Petri net Editor 2.

http://pipe2.sourceforge.net/.

[2] PNML, Petri Net Markup Language. www.pnml.org.

[3] E. Barbierato, M. Gribaudo, and M. Iacono. Exploiting
multiformalism models for testing and performance
evaluation in simthesys. In Valuetools, 2011.

[4] V. Cortellessa, S. Di Gregorio, and A. Di Marco. Using
atl for transformations in software performance
engineering: a step ahead of java-based
transformations? In Proc. of the 7th Int. Workshop on

Software and Performance, pages 127–132. ACM, 2008.

[5] C. U. Smith, C. M. Lladó, and R. Puigjaner.
Performance Model Interchange Format (PMIF 2): A
Comprehensive Approach to Queueing Network Model
Interoperability. Performance Evaluation, 67(7):548 –
568, 2010.

[6] C.U. Smith and C. Milsap. Software performance
engineering for Oracle applications: Measurements and
models. In Proc. Computer Measurement Group, Las
Vegas, NV, USA, 7-12 December 2008.

246




