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ABSTRACT

Modern multicore platforms allow system administrators to
reduce the costs of the IT infrastructure by consolidating
heterogeneous workloads on the same physical machine. To
this end, it is important to develop efficient profiling tech-
niques and accurate performance predictions to avoid violat-
ing service-level objectives. In this work we present Tresa, a
novel tool to automatically characterize workloads and ac-
curately estimate the execution time of different consolida-
tions. These results can be used to optimize consolidations
depending on service-level objectives.

Categories and Subject Descriptors

D.4.8 [Operating Systems]: Performance—Modeling and
Prediction

General Terms

Management, Measurement, Performance

Keywords

Workload consolidation, performance modeling

INTRODUCTION

Administrators of large data centers and cloud computing
platforms often struggle to consolidate sets of heterogeneous
workloads on the same physical machine in order to maxi-
mize resource utilization without violating service-level ob-
jectives, such as maximum execution time. This problem is
often challenging because performance interference between
consolidated workloads may significantly affect their execu-
tion time [1].

In this work we present Tresa, a tool that helps system ad-
ministrators choosing how to consolidate workloads by pro-
viding precise predictions of their execution time. The novel
scientific contributions are:

1. a workload characterization technique based on stan-
dard, low-overhead tools (i.e., iostat, mpstat, sar, and
vmstat) available on prevailing UNIX-like systems;

1.
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Figure 1: Screenshot of Tresa: interface of the black-
box profiler.

2. amathematical model based on queueing theory, solved
using mean-value analysis;

3. a tool to automate workload characterization and to
predict the average execution time of different consolida-
tions.

2. TRESA

The graphical interface of Tresa presents 4 tabs (i.e., mon-
itor, report, estimate, and choose) that allow users to
characterize workloads and to choose consolidations that
optimize throughput without exceeding a given maximum
execution time.

Figure 1 shows the monitor tab, which provides an inter-
face to our black-box profiler. Users have to specify how to
start the workload and choose the duration of the warm-up
phase and of the observation interval. Tresa profiles the
execution of a single instance of the specified program and
stores all relevant runtime metrics.

In the report tab, users can visualize all collected values
and derived metrics. This data is internally used by Tresa
to compute the resource demands of a single program, which
are the inputs to our queueing network model. Tresa uses
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Figure 2: Measured and predicted iteration time of consolidations of DaCapo benchmarks.

mean-value analysis to precisely predict the execution time
of consolidations of various workloads.

The estimate tab generates detailed charts (used in Sec-
tion 3) of the predicted execution time for homogeneous and
heterogeneous consolidations, that is, consolidations involv-
ing a single class, respectively multiple classes, of workloads.

Finally, the choose tab provides a high-level view of all
predictions, organized in a table format. By selecting a max-
imum execution time, it is possible to highlight the consoli-
dations that lead to the highest throughput without violat-
ing the constraint on execution time.

3. EVALUATION

We evaluate our predictions on an IBM Power 750 Express
server, with a single processor board hosting 8 cores running
at 3.00GHz and 64GB of RAM. The system runs AIX 6.1
(64 bit) and IBM J9 JVM SR8-FP1 (64 bit). The observed
applications are benchmarks from the DaCapo 9.12' suite,
executed in a loop within the same JVM process and with
external concurrency set to 1. The warm-up phase has a
duration of 2 minutes and the profiling interval is 3 minutes.

Figure 2(a) reports the average iteration time of homoge-
neous consolidations of an increasing number of instances of
lusearch. As predicted by our tool, consolidations of up to
5 instances of lusearch do not noticeably affect the iteration
time. After 5 instances, the iteration time starts increasing
because all cores are used most of the time (i.e., the CPU
utilization is close to 100%).

Figure 2(b) illustrates the average iteration time of het-
erogeneous consolidations of 4 instances of sunflow with
an increasing number of instances of batik. In this case,
up to 3 instances of batik can be consolidated with 4 in-
stances of sunflow without significantly affecting the iter-
ation time. For both benchmarks, our predictions closely
match the measured iteration time, with a maximum error
of 8.1%.

To evaluate the overall quality of our predictions, we con-
ducted an exhaustive set of experiments of homogeneous and
heterogeneous consolidations. Across 160 considered homo-
geneous consolidations, the average prediction error is only
6.0%, while it is 8.4% across 400 considered heterogeneous
consolidations.

!'Website: http://dacapobench.org/
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4. RELATED WORK

Wood et al. developed Sandpiper [5], which implements
two profiling approaches, (1) a black-box approach (i.e., fully
OS- and application-agnostic), and (2) a gray-box approach
exploiting OS- and application-level statistics. Moreover,
in [4] the authors use a regression-based model to profile and
predict application resource requirements in a virtualized en-
vironment. Lu et al. [2] developed a profiling methodology
that viewed the problem of physical resource utilization as
the source of a separation problem in digital signal process-
ing, and designed a directed factor graph (DFG) to success-
fully model the dependence relationships among different
resources (CPU, memory, disk, network) across virtual and
physical layers.

In general, little is known about prediction of execution
time for consolidations of multiple classes of workloads. To
the best of our knowledge, the only theoretical methodology
that focuses on this problem is the one presented in [3]. We
depart from prior work by applying the theoretical method-
ology in [3] to solve the difficult problem of predicting per-
formance in a multicore system where multiple programs are
consolidated.
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