
Apache Hadoop Performance-Tuning Methodologies and

Best Practices
 Shrinivas B. Joshi

Advanced Micro Devices, Inc.
7171 Southwest Pkwy
Austin, TX 78735 USA

shrinivas.joshi@amd.com

ABSTRACT

Apache Hadoop is a Java based distributed computing framework

built for applications implemented using MapReduce

programming model. In recent years, Hadoop technology has

experienced an unprecedented growth in its adoption. From

single-node clusters to clusters with well over thousands of nodes,

Hadoop technology is being used to perform myriad of functions

– search optimizations, data mining, click stream analytics,

machine learning to name a few. Although setting up Hadoop

clusters and building applications for Hadoop is a well understood

area, tuning Hadoop clusters for optimal performance is still a

black art. In this demo paper, we will attempt to provide the

audience with a holistic approach of Hadoop performance tuning

methodologies and best practices. We discuss hardware as well as

software tuning techniques including BIOS, OS, JVM and

Hadoop configuration parameters tuning.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of systems

General Terms
Performance

Keywords
Performance tuning, Apache Hadoop, Map-Reduce

1. INTRODUCTION
Users who have deployed and tried tuning their Hadoop [1]

clusters for the first time will certainly attest to the fact that

optimizing Hadoop clusters is a daunting task. Apart from the

nature and implementation of Hadoop jobs, hardware, network

infrastructure, OS, JVM, and Hadoop configuration properties all

have a significant impact on performance and scalability. Using

TeraSort as a reference workload, this demo paper attempts to

educate the audience on challenges involved in performance-

tuning of Hadoop setup, tuning best practices, empirical data on

effect of various tunings on performance, and some future

directions.

2. CHALLENGES
Hadoop is a large, complex framework involving a number of

entities interacting with each other across multiple hardware

systems. Performance of Hadoop jobs is sensitive to every

component of the cluster stack - Hadoop configuration, JVM, OS,

network infrastructure, underlying hardware, and possibly BIOS

settings. Hadoop supports a large number of configuration

properties and a good chunk of these can potentially impact

performance. As with any large software system, diagnosing

performance issues is a complicated task.

3. EXPERIMENT SETUP
For the purpose of this study we used two different Hadoop

cluster configurations.

3.1 Cluster A
The first cluster, Cluster A, has following configuration:

• 7 data nodes, 1 name node: 2 chips/6 cores per chip,

AMD OpteronTM 12435 @2.6GHz

• 16GB DDR2 800 RAM per node

• 6 x 1TB Samsung SpinpointF3 7200 rpm disks

• Ubuntu 11.04 Server x64, Oracle JDK6 update 25 x64

• TeraSort dataset size – 64 GB

3.2 Cluster B
The second cluster, Cluster B, has following configuration:

• 5 data nodes: 2 chips/4 cores per chip, AMD Opteron
TM 2356 @2.3GHz

• 1 name node: 4 chips/4 cores per chip: AMD Opteron
TM 8356 @2.6GHz

• 64GB DDR2 667 and DDR2 800 RAM

• 6 x 1TB Samsung SpinpointF3 7200 rpm disks

• Ubuntu 11.04 Server x64, Oracle JDK6 update 25 x64

• TeraSort dataset size – 1 TB

While presenting empirical data we highlight performance

improvements on the cluster that demonstrated bigger gains

amongst the two clusters.

4. PERFORMANCE TUNING

4.1 Hadoop Configuration Tuning
This section contains guidelines on Hadoop configuration

parameters tuning procedure.

1 © 2012 Advanced Micro Devices, Inc. AMD, the AMD Arrow

logo, AMD Opteron and combinations thereof are trademarks of

Advanced Micro Devices, Inc. HyperTransport is a trademark

of HyperTransport Technology Consortium.

Copyright is held by the author/owner(s).

ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA.

ACM 978-1-4503-1202-8/12/04.

241

Using maximum possible map and reduce slots, identify the

optimal number of disks that maximizes I/O bandwidth. On

Cluster A, we noticed more than 50% performance improvement

while using 5 hard disks as compared to using only 1 hard disk.

Experiment with different HDFS block sizes. You may have to re-

evaluate optimal block size after other tunings mentioned in

subsequent sections. Identify Java heap usage and garbage

collections characteristics (GC) of Hadoop framework processes

and tune their JVM settings accordingly. On the Hadoop

configuration parameter tuning side, start with biggest payoff

properties such map output compression and JVM reuse policy. In

our experience, enabling map output compression using LZO

codec has shown better performance. On Cluster B, we saw close

to 30% performance improvement by enabling LZO based map

compression as compared to no compression. If you have short

running map tasks, enable JVM reuse policy. If memory is not a

bottleneck, try to eliminate map-side spills by tuning io.sort.mb
Hadoop property. At the least, try to reduce the number of spills.

In case there are no spills, tune io.sort.spill.percent Hadoop
property. On Cluster B, we noticed close to 20% improvement in

performance by avoiding map-side spills and tuning io.sort.factor
property. Try to avoid or eliminate intermediate disk I/O

operations on reduce side by tuning Java heap sizes. If the reduce

functionality is not heap-heavy, try to tune reduce buffer size.

Tuning reduce-side configuration properties offered 6%

improvement in performance on Cluster B. Tune framework-

related resources such as task tracker threads, data node, and name

node handler count.

4.2 JVM Configuration Tuning
In this section we discuss different JVM command-line switches

and their potential impact on performance of Hadoop workloads.

On 64-bit Oracle JDK6 update 25 JVM, compressed pointers are

enabled by default. If you are using an older version of JDK and

compressed pointers are disabled, experiment with enabling them.

Compressed pointers reduce memory footprint. We saw more than

3% improvement in performance by enabling compressed pointers

on Cluster A. Biased-locking feature in Oracle HotSpot JDK

improves performance in situations with un-contended locks.

Given the architecture of Hadoop framework, biased locking

should generally improve performance. On Cluster A, we noticed

more than 5% improvement by enabling biased locking. Oracle

JVM optimizations enabled by command-line flags such as

AggressiveOpts, UseCompressedStrings, and UseStringCache can

have an impact on Hadoop performance. Try experimenting with

these flags. We, however, noticed 2% degradation in performance

by enabling AggressiveOpts flag on Cluster A. Verify whether the

JVM is running out-of-code cache. Increase code cache size if

necessary. Experiment with UseNUMA and UseLargePages JVM

flags. Perform detailed GC log analysis and tuning of the map and

reduce JVM processes. We noticed a 3% improvement in

performance by tuning GC flags on Cluster A.

4.3 OS Configuration Tuning
This section presents information about impact of tuning Linux

OS properties on Hadoop performance.

Certain Linux distributions support EXT4 as the default file-

system type. If you are using another type of file system,

experiment with EXT4 file system. We noticed 9% performance

improvements by using EXT4 file-system over EXT3 on Cluster

A. By default, every file read operation triggers a disk write

operation for maintaining last access time of the file. Disable this

logging using noatime, nodirtaime FS attributes. Experiment with

other FS tuning attributes such as extent, flex_bg, barrier etc. On

Cluster B, we noticed 15% improvement in performance by using

noatime FS attribute. Linux kernels support 4 different types of

I/O schedulers – CFQ, deadline, no-op, and anticipatory.

Experiment with different choices of I/O scheduler, especially

CFQ and deadline. On Cluster B, CFQ scheduler performed 15%

better than deadline scheduler. Linux OS limits such as max open

file descriptors and epoll limits can have an effect on

performance, experiment with these limits. We, however, saw

regression of 1% by increasing open fd limit to 16K from its

default value of 1K on Cluster A.

4.4 BIOS Configuration Tuning
In this section we discuss some of the BIOS parameters that could

potentially impact Hadoop performance.

Native command queuing (NCQ) feature of modern hard drives

helps improve I/O performance by optimizing drive head

movement. Experiment with AHCI option in BIOS, which can be

used to enable NCQ mode. When all the CPU cores on the

hardware are not fully utilized, the processor could be

downgrading CPU frequency and other resources such as

HyperTransportTM links. Experiment with ACPI and other power-

related BIOS options. We noticed 1% performance improvement

by disabling power saving mode in the BIOS. This observation

was made on Cluster A. On some AMD processor-based systems,

NorthBridge frequency and width are dynamically tuned to reduce

power consumption. If memory bandwidth is a bottleneck,

experiment with options that can be used to modify NorthBridge

frequency and width settings. On Cluster A, we noticed 2%

improvement in performance by tuning NorthBridge settings.

Modern AMD processors support a feature called HT assists

(a.k.a. probe filters). This feature reduces traffic on memory

interconnects at the expense of some portion of L3 cache.

Experiment with HT assists settings; disable it if your job is

sensitive to L3 cache size.

5. CONCLUSIONS AND FUTURE WORK
This demo paper discussed some of the best practices in tuning

different components of the software and the hardware stack

running Apache Hadoop framework. We were able to achieve

speed-up factor of 4.2x on Cluster A and 2.1x on Cluster B

running TeraSort workload. Configuration tuning of all the

components of Hadoop stack is an important exercise and can

offer a huge performance payoff. Different Hadoop workloads

will have different characteristics, so it is important to experiment

with different tuning options. We want to perform a similar study

in multi-tenant environments and in the cloud environment. We

want to explore JVM and JDK optimizations targeting peculiar

characteristics of Hadoop framework and the jobs running on top

of it.

6. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/

242

