

Parallel File System Measurement and Modeling Using

Colored Petri Nets
Hai Nguyen

University of Arkansas

Fayetteville, Arkansas, USA
1-501-342-2932

hqn01@uark.edu

Amy Apon
Clemson University

Clemson, South Carolina, USA
1-864-656-5769

aapon@clemson.edu

ABSTRACT

Parallel file systems are significant challenges for high

performance data-intensive system designers due to their

complexity. Being able to study features and designs before

building the actual system is an advantage that a simulation model

can offer. This paper presents a detailed simulation-based

performance model of the PVFS parallel file system. The model is

developed using Colored Petri Nets. The goal of the simulation

model is to provide a tool to examine end-to-end performance of a

parallel file system and to build a foundation that can be easily

expanded upon in the future to model many different types of

parallel file systems. The performance evaluation results of the

model demonstrate that the model performance behavior is close

to the expected behavior of the real PVFS file system.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems

– Modeling techniques.

D.2.2 [Software Engineering]: Design Tools and Techniques –

Petri nets.

D.4.3 [Operating Systems]: File System Managements.

General Terms

Design, Experimentation, Measurement, Performance.

Keywords

Colored Petri Net, parallel file system modeling, parallel file

system simulation, PVFS.

1. INTRODUCTION AND MOTIVATION
New processor and clustering technologies allow modern high-

performance computing environments to achieve very high data

processing power. As a consequence, the I/O workloads of high-

performance computing systems are very specialized and very

different from normal desktop environments [7]. High-

performance scientific and business applications tend to access

data in very large blocks and they also tend to access storage

cooperatively to achieve better overall throughput.

Due to such high demand on storage systems, large-scale cluster-

based storage systems [2, 13] are often utilized in high

performance data-intensive computing environments [5, 17].

These cluster-based parallel storage systems are usually composed

of multiple individual storage devices such as direct-attached

storage devices or Storage Area Network (SAN) devices. These

individual storage devices together provide the high I/O data rates

needed by the computing environments but they also add to the

complexity of the environment and the overhead of environment

management. This paper describes a simulation modeling

environment that could allow researchers to fine tune both the

performance and the management aspects of a parallel storage

architecture.

The PVFS file system is chosen to be the candidate for this study.

PVFS, jointly developed by Clemson University and Argonne

National Laboratory, is a well-established parallel file system. The

parallel I/O mechanism utilized by PVFS is also used by many

other popular parallel file systems. Although lacking some

advanced features implemented by later-developed parallel file

systems, PVFS provides a solid foundation to study and

understand parallel I/O. The PVFS simulation model can be

extended in future research to provide more advanced features.

This research utilizes a local file system simulator developed by

Nguyen and Apon in [10] to simulate the local file system of the

I/O servers.

In this research, the well known Petri Nets formalism is utilized to

simulate and evaluate complex data services in a parallel file

system. A Colored Petri Net [8] is a graphical oriented language

for design, specification, simulation and verification of systems.

This language is particularly well-suited to illustrate and simulate

systems in which communication and synchronization between

components and resource sharing are primary concerns [9]. This

makes it a very good tool for modeling file systems. CPNTools

[12] is utilized for simulation and analysis.

The rest of this paper is organized as follows. Section 2 discusses

related work in the parallel file system simulation research area.

Section 3 provides a quick overview of the PVFS file system.

Section 4 presents an I/O workload and performance study of the

PVFS file system. Section 5 discusses the implementation of the

simulation model using Colored Petri Nets. Multiple design

decisions and assumptions are also described in this section.

Section 6 presents the model performance validation against the

performance of real file systems. Section 7 concludes the paper.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA.

Copyright 2012 ACM 978-1-4503-1202-8/12/04...$10.00.

229

2. RELATED WORK
Cope et al. [4] develop a simulation toolkit called CODES to help

system designers with design constraints of exascale storage

systems. The authors present the capabilities of the simulator that

assist systems designers in designing and assessing exascale

storage systems. They also demonstrate the use of CODES to

evaluate a potentially exascale storage network model and storage

system. Wang and Kaeli in [14] present ParIOSim, a validated

execution-driven parallel I/O simulator for network storage

systems. ParIOSim provides an environment for users to test and

evaluate different storage architectures and applications. They

have compared simulator accuracy against measurements on

different platforms using both synthetic and system-level I/O

benchmarks. ParIOSim can also be utilized to optimize storage

system at the application level. Bagrodia et al. [1] describe a

simulator that can be used to predict the performance of MPI-IO

programs. Their simulator can be utilized by MPI-IO programs as

a function of architectural characteristics, caching algorithms, and

alternative implementations of collective I/O operations. In [6],

Gaonkar et al. present a multi-formalism model of a Lustre-like

file system. The model is developed using Mobius, which is a

multi-paradigm multi-solution comprehensive framework for

model-based dependability and performance evaluation of

systems. The authors also analyze the model’s detailed behavior

and present the results obtained from a simulation study.

Zhaobin et al. [16] show that Stochastic Petri Net (SPN) models

can be used to analyze the performance of hybrid I/O Data Grid

storage systems. The authors discuss their implementation of a

typical storage system SPN model. Based on aggregate I/O, they

also simplify the complexity of the model. Their work can be used

to study complex and irregular I/O patterns of Data Grid

applications. Although the primary goal of their research is not

building a parallel file system simulator, the authors develop the

model to support their research. Similar in this respect, to

investigate server-to-server communication in parallel file

systems, Carns et al. [3] develop a parallel file system simulator

using the OMNeT++ simulation framework. Their simulator

provides a representative model of how the modified version of

PVFS performs with the proposed improvements.

3. OVERVIEW OF THE PVFS FILE

SYSTEM
PVFS file system is designed to be a robust, scalable, and easy-to-

deploy and use parallel file system for Linux cluster. The file

system provides high bandwidth for concurrent read/write

operations from multiple processes to a common file. PVFS was

also designed to function with standard Unix/Linux file system

commands. Applications utilizing the standard Unix/Linux I/O

library can access the PVFS file system without modification and

recompiling. The PVFS file system is distributed using an open

source license. These features make PVFS a popular choice for

researchers at academic institutions and national labs, as well as

companies.

PVFS is designed as a client-server system with multiple servers

called I/O daemons. Although there is no restriction, I/O daemons

typically run on separate nodes in the cluster. These nodes are

called I/O nodes and have disks attached to them. Each PVFS file

is striped across the disks on the I/O nodes. PVFS also has a

manager daemon that handles only metadata operations such as

permission checking for file creation, open, close, and remove

operations. Metadata, in this case, refers to information describing

the characteristics of a file, such as permissions, file owner and

group, time stamps, and in the case of parallel file system, the

distribution of the file data in the cluster. When a client accesses a

file, the manager provides the locations of the I/O nodes on which

file data are located. The client uses this information to

communicate directly with I/O nodes to retrieve the needed data.

The PVFS manager does not participate in the read/write

operations.

Figure 1: PVFS file system and typical cluster architecture

PVFS uses local file systems instead of raw devices to store both

its file data and metadata. As a result of this design, PVFS file

data, after being distributed across several I/O nodes, are stored as

local files within the I/O nodes’ local file system.

4. PERFORMANCE MEASUREMENT

STUDY
The objective of the performance measurement study is to analyze

the behavior of the PVFS file system. By studying the PVFS file

system performance we can better understand the level of detail

needed for the simulation model.

4.1 Experimental setup
Performance measurement experiments are executed on a PVFS

cluster, as shown in Figure 1, with the I/O servers (Dell

PowerEdge 1850) configured as shown in Table 1. The I/O

servers are set up to have 5 drives with a RAID 5 configuration.

The PVFS cluster is located in an isolated environment with

dedicated resources to minimize extra factors that affect

performance study. The primary I/O testing suite used in the

following experiments is iozone [11].

Table 1: Experimental test bed configuration

Processors Dual Intel Xeon processors at 2.8GHz

Front side bus 533MHz

Cache 512KB L2 cache

Chipset ServerWorks GC LE

Memory 4GB DDR-2 400 SDRAM

Drive controller Embedded dual channel Ultra320 SCSI

RAID controller PERC 4/Di

Hard drives Fujitsu MAT3147NC 147GB 10,000 rpm

Seagate ST3146707LC 146GB 10,000 rpm

230

The cluster has a total of 4 I/O servers with a total capacity of

approximately 2 Tbytes. The test PVFS cluster provides adequate

space for testing and enough I/O servers to run a performance

validation study.

4.2 I/O Workload study
Designed to achieve massive performance by parallelizing I/O

accesses, PVFS, like any other parallel file system, works best

with large files, using sequential access with large block size.

Knowing this, applications running on PVFS file systems are

configured to take advantage of this behavior as much as possible.

Using a very large I/O buffer, an application sequentially accesses

the file system with large block sizes of up to 100 Mbytes.

Observations were made of I/O workloads on multiple PVFS file

systems in a shared production environment with about 276

Tbytes of total capacity. The breakdown of I/O workload

percentage is shown in Table 2. Pure random I/O in Table 2

includes I/O accesses that are less than 10Kbytes in size and have

random access pattern. Large block size sequential I/O includes

I/O accesses that are bigger than 1Mbytes in size and have

sequential access pattern. Sequential I/O accesses with size

smaller than 1Mbytes and I/O accesses with mix pattern are

presented in the second category.

Table 2: Workload breakdown in a Production environment

Pure random I/O 0.00028%

Mix random I/O and sequential I/O 2.047%

Large block size sequential I/O 97.952%

From the real-world workload breakdown, it is clear that pure

random I/O occupies a very small amount of workload on the

parallel file system. Sequential workloads with very large block

size occupy a majority of the total workload. PVFS and other

parallel file systems are designed for this type of workload. Of

course, the I/O access pattern on a file system depends on the user

of the file system. However, if one should choose to use PVFS for

pure small files and a random access workload, the performance

of the parallel file system will degrade. Sequential I/O workloads

and mixed workloads are selected for study and evaluation in the

simulation model.

4.3 I/O performance study with different file

sizes and block sizes
This measurement study is to observe the I/O behavior of the

PVFS file system when the file size and block size change. First,

sequential I/O write performance is examined using a set of small

to large size files (from 4Kbytes to 1Gbytes). The results for the

sequential I/O write measurement experiments are presented in

Figure 2. The I/O write throughput at small file sizes is less than

I/O throughput at larger file sizes. This observation shows that the

I/O performance is not at peak level until file size is equal to or

greater than 2Mbytes. There are multiple factors contributing to

this behavior. The first factor is the nature of PVFS. PVFS is a

parallel file system. Files stored in a PVFS file system are divided

into multiple stripes using a default stripe size of 64Kbytes and

are distributed across multiple I/O servers. By striping file

contents across multiple servers, a client machine can access

several pieces of file data at the same time. For a small file, this

mechanism creates some overhead which causes the I/O

performance to become lower until the file size is large enough to

obtain the full advantage of the workload parallelization as shown

in Figure 2. In these experiments, the smallest file that uses all I/O

servers is 4*64K, or 256Kbytes. A second factor is the file system

synchronization. PVFS synchronizes the local file system in the

I/O nodes when it closes the file, forcing data to be written to

disk. For a small file, the delay-write mechanism utilized by Linux

provides little benefit and thus the I/O performance is affected

until the file size is large enough to obtain the full advantage of

the delay-write mechanism. The file size where the I/O

performance becomes stable is a function of a numerous other

factors including the local file system buffer size, the local file

system dirty page ratio threshold, and the PVFS stripe size. For

this particular testing PVFS cluster, that file size is approximately

2Mbytes.

Figure 2: Sequential write performance experiment

The results for the sequential I/O read measurement experiments

are presented in Figure 3. The read experiments use a similar set

of files, and the block sizes vary the same way as with write

experiments. However, these measurements show that for a fixed

block size and a sequential workload the I/O read performance is

not directly affected by file size. Unlike writes, reads in PVFS are

implemented as read operations on the local file system in the I/O

nodes and utilize the Linux buffer cache. For sequential

workloads, fetching of whole blocks of the local file system and

the buffer cache causes whole blocks to be loaded into memory

from disk independently of the read request size. The throughput

is then limited by the transfer of data across the network.

Figure 3: Sequential read performance experiment

231

According to the read and write measurement results, after the file

size becomes large enough, the PVFS I/O performance does not

change. After reaching this stable file size, the I/O performance is

then affected by the block size of the I/O operations. However, the

I/O performance drops sharply when the file size reaches the

physical memory capacity of the machine. This behavior is caused

by memory reclaiming and swapping, which in turn causes disk

thrashing, leading to I/O performance degradation.

Based on these performance characteristics, 512Mbytes is selected

to be the standard file size for all models in the performance

study. It is large enough to have stable performance but smaller

than the physical memory capacity of the test machines.

5. IMPLEMENTATION OF THE

SIMULATION MODEL
The first and foremost goal for a parallel file system is to achieve

massive I/O throughput. This is done by providing access to

multiple I/O resources in parallel. PVFS as well as many other

parallel file systems implements this by utilizing multiple

connected local file systems as foundation. The simulation model

for the parallel file system is developed using a similar concept. It

utilizes multiple connected local file system simulation models as

its foundation. It interfaces with higher level applications and

provides them the response time associated with each I/O request.

The implementation of the simulation model is presented in a top

down fashion, from application level down to the local file system

level, and each level is described using Colored Petri Nets.

5.1 Assumptions and model limitations
Similar to the local file system simulation model, the parallel

simulation is also divided into an I/O read model and an I/O write

model. Read operations and write operations are simulated

separately to simplify the complexity of simulating a parallel file

system.

bf

bf

bf

bf

bf

(id, bf, dst)

tbfbf^ t̂bf

sort INT.lt bf

[]

bf

(id, bf, dst)

bf4bf3bf2bf1

bf4

bf3

bf2

bf1

[]

bf4

[]

[]

[]

bf3bf2bf1

sort INT.lt bf4

bf4

sort INT.lt bf3

bf3

sort INT.lt bf2sort INT.lt bf1

bf2bf1

bf

1`1

next

fl bf::fl

@+processingdelay

@+wiredelay

@+wiredelay

[length bf4 > 0][length bf3 > 0][length bf2 > 0][length bf1 > 0]

Create payload

Create payload

[length bf = iosize]

BUFFER

BUFFER

PACKET

Out
BUFFER

[]

BUFFER

In
BUFFER

Out
PACKET

BUFFERBUFFERBUFFERBUFFER

BUFFERBUFFERBUFFERBUFFER

[]

BUFFER

IOD3

[]

BUFFER

IOD2

[]

BUFFER

IOD1

[]

BUFFER

BUFFER

1

INT

In
FILE

In

Out

In

Out

Create payload

(1, bf1, 0) (2, bf2, 0) (3, bf3, 0) (4, bf4, 0)

1 1`[]@01 1`[]@01 1`[]@01 1`[]@01 1`[]@0

1 1`1

1

Figure 4: PVFS read - client model

232

A key difference between a parallel file system and a local file

system is the network component. Since parallel file systems use

the network to simultaneously access multiple local file system at

the same time, a parallel file system simulation model must

contain a network model. Although the network simulation model

is an important component in the parallel file system simulation

model, it only serves as a transport from the client model to the

server model. The network model does not need to model every

network operation in detail [15]. A single-server queuing model is

used to simulate network end-to-end performance.

The number of I/O servers in a PVFS cluster is determined at the

time the cluster is built. After the cluster goes into production, the

number of I/O servers is generally fixed. Although, under some

circumstances, I/O servers can be added or removed from the

cluster, this procedure usually causes the original data on the

cluster to be destroyed. For the simulation model, the PVFS

cluster has four I/O servers.

5.2 File read model implementation
From the application standpoint, reading a file basically divides

the file into smaller manageable blocks and reads them into

memory. Reading a file from a parallel file system is a

straightforward extension of reading a file from a local file

system. The operation is divided into three main components: the

client component, the network component and the server

component.

5.2.1 File read model client component
At the application level, the model is simple. A loop breaks

the needed file into multiple blocks of read requests and passes

the list of these blocks to the client simulation component. The

client component processes the data, and then passes the data

requests to the network component. The result of the read

operation is an array of data passed back from the network model.

The Petri net for the application level is simple and not shown.

The implementation of the client component could be

described as dividing the block of read requests into a list of

payloads and passing this list to the network component to send

over the network to the server component. The number of

payloads depends on the number of I/O servers in the file system.

The Petri net implementation of the client component with four

I/O servers is presented in Figure 4. Payloads are created by

striping request data into multiple chunks according to the file

system’s stripe size parameter. The stripe size in PVFS usually is

64 Kbytes. The default distribution of data chunks in a payload is

done using a round-robin mechanism.

After the payloads are created, the client component prepares the

packets before sending them to the network component. This

process represents the network stack on the client computer.

While this process could be considered a part of the network

component, it uses physical resources on the client machine and

thus is more closely related to the client component. In taking the

payloads and building network packets around them, the client

component adds the network identifications of the I/O servers to

the network packets. The network component will later use this

PACKET

PACKET PACKET PACKET PACKET

PACKET

PACKET PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

input ();
output (outdst);
action
(1);

input ();
output (outdst);
action
(2);

[id=1] [id=2] [id=3] [id=4]

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(3);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(4);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(5);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(6);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(7);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(8);

[id=1] [id=2] [id=3] [id=4]

(id, bf, dst) (id, bf, dst)

(id, bf, dst) (id, bf, dst)

(id, bf, dst) (id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

InIn

(id, bf, outdst)

(id, bf, dst)

InIn

(id, bf, outdst)

(id, bf, dst)

InIn

(id, bf, dst)

(id, bf, dst)

InIn InIn InIn InIn InIn

OutOutOutOutOutOutOutOut

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst) (id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst) (id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst) (id, bf, outdst) (id, bf, outdst) (id, bf, outdst) (id, bf, outdst) (id, bf, outdst)

(id, bf, dst)(id, bf, dst)(id, bf, dst)(id, bf, dst)(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

Figure 5: PVFS read - network transmission model

233

information to deliver the packets to the correct I/O servers. For

an I/O read operation, the client component only sends read

requests to the servers. Read requests are very small and will not

need to be broken down into smaller fragments. After the network

packets are created, they are sent to the network device buffer.

In addition to sending read requests to the I/O servers, the client

component also receives data being sent back from the I/O

servers. From the network device receiving buffer, the client

component gathers the network packets. It assembles the data

from these network packets received from different I/O servers

into the requested result and sends it back to the application.

5.2.2 File read model network component
The network component provides the transportation for the data

packets from the client to the I/O servers. Since only end-to-end

performance characteristics of the network component are needed,

the network component does not model switches and routers in

detail. Instead, the network component is designed using a

multiplexer model. The client packets are examined and routed to

the correct I/O servers.

When the result data are sent back to the clients, a similar

mechanism is used. The server component, depending on the

origin of the data, will send data packets back to the original

requested client. The network component examines the packets

and routes them to the correct clients. The Petri Net models of the

sending and the receiving network components for PVFS file read

operation are presented in Figure 5 and Figure 6.

5.2.3 File read model server component
I/O servers are where the actual I/O operations are performed.

Each PVFS file system has multiple I/O servers that work

independently in parallel to provide large I/O bandwidth that a

single local file system could never achieve.

Each I/O server, similar to the client side, has a network layer to

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)(id, bf, dst)
(id, bf, dst)(id, bf, dst)

bfbfbfbfbfbf

(id, bf, dst)

bfbf

(id, bf, dst)

pk
pk

pkpk

pkpkpkpk

[dst=8][dst=7][dst=6][dst=5][dst=4][dst=3][dst=2][dst=1]

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

Out
BUFFER

PACKET

In
PACKET

In
PACKET

In
PACKET

In
PACKET

In In In In

Out Out Out Out Out Out Out Out

Figure 6: PVFS read - network receiving model

In
PACKET

In

Read

entry

FILE

Read

exit

BUFFER

PACKET
FILE

[]

FILE

[]

FILEWDST

INT

1

INT

Out
PACKET

Out

PACKET

FILE

[]

FILE

[]

FILE

[]

FILE

[]

FILE

[]

FILE

[]

[dst=1]

S1

Local file systemLocal file system

[(iosize <= stripesize andalso length bf = iosize)

orelse (iosize <= clientnum*stripesize andalso length bf = stripesize)

orelse (length bf > 0 andalso length bf mod stripesize = 0 andalso length bf = iosize div clientnum)]

EncapsulateEncapsulate

[dst=2]

[length fl > 0]

[length fl > 0]

[dst=3]

[length fl > 0]

[dst=4]

[length fl > 0]

[dst=5]

[length fl > 0]

[dst=6]

[length fl > 0]

[dst=7]

[length fl > 0]

[dst=8]

[length fl > 0]

(id, bf, dst)

bf

(0, bf, dst)

(id, bf, dst)

fl̂ ^[bf]fl

fl

fl̂ ^[bf]
fl

fl

(fl, 1) (fl, 2)

(fl, dst)

fl

next

1`1

dst

(0, bf, dst)

(0, bf, dst)(id, bf, dst)

fl̂ ^[bf]fl

fl

(fl, 3)

dst

[]

[]

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

fl̂ ^[bf]fl

fl

[]

(id, bf, dst)

(fl, 4)

(id, bf, dst)

(fl, 5)

(id, bf, dst)

(fl, 6)

(id, bf, dst)

(fl, 7)

fl̂ ^[bf]fl

fl

[]

(id, bf, dst)

(fl, 8)

1

1`[]@0

1

1`[]@0

1 1`1

1

1`[]@0 1

1`[]@0 1

1`[]@0

1

1`[]@0 1

1`[]@0
1

1`[]@0

Figure 7: PVFS read - server model

234

process network packets from the network component. A network

packet, after arriving at the I/O server, is examined and

categorized into different receive buffers, using a first-come-first-

served (FCFS) mechanism. This process is designed following the

same implementation in the real system. Each client has its own

receive buffer.

The server component, following a FCFS order, takes read

requests from the receive buffers and sends them to the local file

system model [10]. The requests are sent in chunks of 64 Kbytes

by default. If the PVFS file system is built with a different stripe

size, this chunk size is changed. The local file system on the I/O

server performs a sequential read operation. Since the I/O server

component takes a read request from the receive buffers using

FCFS order, the read request chunks are mixed together. The next

chunk of read requests may not be from the same client as the

chunk before it. Two different clients rarely try to read the same

file at the same location. This causes the read requests stream sent

to the local file system to have a distinctive pattern of multiple

interleaved streams of sequential read requests. Each stream may

start at a random location. The Petri Net model for the server

component for PVFS file read operation with eight clients is

presented in Figure 7.

After the read requests pass through the local file system

component, this component returns the result. At this step, the I/O

server component sends these data through a network packet

creation process that is similar to the client component. When the

client component sends the read requests over the network, the

size of these read requests are relatively small and can fit within a

standard frame. The result data, however, do not. They need to be

divided into multiple segments along with attached headers and

network addresses. The segment size of a packet is limited by the

MTU of the network. Usually, in a Gigabit Ethernet network, the

MTU is set to 1500. This means that a network packet maximum

size is 1500 bytes.

5.3 File write model implementation
From the application standpoint, writing a file to a parallel file

system is an extension of writing a file to a local file system. The

application level model is very similar to the I/O read model. The

operation is divided into three main components: the client

component, the network component and the server component.

The Petri Net implementation of the application level model is

simple and is not presented due to space limitations.

5.3.1 File write model client component
The top level of the file write model client component is simple.

The file data to be written to disk are broken into multiple blocks

of write requests. These write requests are passed to the client

simulation component. The client component processes the data,

(id, bf, 0)@+networkdelay

(id, bf, 0)

(4, bf4, 0)(3, bf3, 0)(2, bf2, 0)

(1, bf1, 0)

bf4bf3bf2bf1

[]

[][]

[]

bf4bf3bf2bf1

bf4bf3
bf2bf1

sort INT.lt bf4sort INT.lt bf3sort INT.lt bf2sort INT.lt bf1

bf4

[]

1`1

sort INT.lt bf

bf

tbfbf^ t̂bf

bf

bf3bf2bf1

next

bf

fl bf::fl

@+processingdelay

Encapsulate (2)Encapsulate Encapsulate (4)Encapsulate (3)

[length bf = iosize]

Create payload

Create payload

Out
PACKET

PACKET

BUFFERBUFFER
BUFFERBUFFER

BUFFER BUFFERBUFFER BUFFER

BUFFER

[]

BUFFER

BUFFER

[]

BUFFER

BUFFER

BUFFERBUFFERBUFFER

1

INT

IOD2

[]

BUFFER

IOD3

[]

BUFFER

[]

BUFFER

BUFFER

In
FILE

In

Out

Create payload

Encapsulate (3) Encapsulate (4)Encapsulate Encapsulate (2)

OutOut

IOD1

InIn

1 1`[]@0

1 1`1

1 1`[]@0 1 1`[]@0

1

1 1`[]@0

1 1`[]@0

Figure 8: PVFS write - client model

235

and then sends the packaged data to the network component. The

result of the write operation is a series of return codes received

from the network model.

The implementation of the client component for the file write

operation is quite similar to the client component of the file read

operation. However, write requests not only contain requests to

write data to disk but also contain the actual data needed to be

written. The client component needs to divide these blocks of data

into multiple payloads. The number of actual payloads is

determined by the number of I/O servers in the system. The Petri

Net model for the PVFS client component is presented in Figure

8. Payloads are created by striping request data into multiple

chunks according to the file system’s stripe depth parameter. The

distribution of data chunks in a payload is done using a round-

robin mechanism.

After creating the payloads, the client component attaches

network addresses and control information to the payloads to

create network packets. Since the packet size depends on the

MTU of the network, the client component has to split the

payloads into multiple segments. The packet size for data sending

from clients to I/O servers is also at the maximum size of 1500

bytes.

5.3.2 File write model network component
The network component model in the file write operation is very

similar to the network component model in the file read operation.

There are only some slight differences in the model due to the

data flow of the operation being different. The network packets

from the client component are examined, the destination addresses

are checked, and the packets are routed to the correct receiver.

The network component provides the transportation for the

packets and also simulates the wire-delay on the network medium.

The Petri Net model for the sending and the receiving network

component for PVFS file write are similar to the network model

utilized in PVFS file read described in section 5.2.2 and are not

presented due to space limitation.

5.3.3 File write model server component
The file write server component is built upon the local write

model. A network packet, after arriving at the I/O server, is

processed and sent to the local file write model. The server creates

a receive buffer for each client sending in requests. It also

examines the network packets and moves the request data into the

correct buffers using FCFS mechanism. This process is designed

to follow the same implementation as in the real system.

Since each packet is limited by the maximum segmentation size of

the network, the server component combines multiple packet data

into the original request sent by the client. Unlike the file read

server model, the file write server model does not attempt to

combine the original request into 64Kbytes chunk. Instead it

combines the fragmented data into the original request and sends

it to the local file write model [10]. Because of this, the block

sizes of the write requests sent to the local file write model are not

fixed. PVFS relies on the delay write mechanism of the local file

system to combine multiple different small write requests into big

and sequential write requests. The local file system on the I/O

server performs the write operation. Since the server model sends

the write requests to the local file system model as it receives in a

FCFS order, the block size of the write requests are quite random.

Even though, the write requests could be in sequential order, the

block sizes of the requests are not. This creates a distinctive I/O

access pattern. The Petri Net model for PVFS file write server

model is presented in Figure 9. After read requests pass through

the local file system component, it returns the result data read

from disk.

(id, bf, dst)(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(fl, 8)
(fl, 7)

(fl, 6)(fl, 5)

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

(id, bf, dst)

(fl, 4)

(fl, 3)

(id, bf, dst)

(fl, 2)

(id, bf, dst)

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

next

1`1 dst

dst

[]

(0, bf, dst)

bf

fl

(fl, dst)

(fl, 1)

fl

fl fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

(id, bf, dst)

[length fl > 0]

[dst = 8]

[length fl > 0]

[dst = 7]

[length fl > 0]

[dst = 6]

[length fl > 0]

[dst = 5]

[length fl > 0]

[dst = 3]

[length fl > 0]

[dst = 4]

[length fl > 0]

[dst = 2]

[length fl > 0]

Local File System

[dst = 1]

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

1

INT

INT

Out
PACKET

[]

FILE

FILEWDST

Write

exit

BUFFER

[]

FILE

BUFFER

[]

BUFFER

In
PACKET

In

Out

Local File System

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`1
1 1`[]@0

1

1 1`[]@0

Figure 9: PVFS write - server model

236

6. PARALLEL FILE SYSTEM

SIMULATION MODEL PERFORMANCE

VALIDATION
This section presents the performance validation of the simulation

model for a PVFS file system. Because PVFS is a parallel file

system, the number of clients accessing the file system at the same

time is important. The file system is designed to provide a massive

I/O bandwidth and throughput by allowing multiple I/O servers to

work with multiple clients at the same time.

6.1 Validation setup
In order to validate the entire Petri Net file system model against

real-world data, the model hardware parameters, such as memory

delay, execution speed, function overhead, and disk speed, are

measured using kernel traces directly from the machines on which

the experiments are executed. The performance parameters of the

network stack on the client and server machines are also measured

using kernel traces. Network performance parameters on the wire

are recorded using network monitoring tools, including ping,

traceroute and packet sniffer. The PVFS file system model is

implemented with four I/O servers. The performance validations

are executed starting with one client accessing the file system. The

number of clients is increased until the number of clients equals

eight. The number of clients is determined from observing the real

file system under the validation workload. By using from one to

eight clients (double the number of servers) accessing the file

system simultaneously, the file system level of stress is enough to

demonstrate many interesting aspects of the file system

performance. We present the performance results of one, four, and

eight clients experiments in this paper.

6.2 Sequential workload performance

validation
Simulations are run several times, and the average results are used

to compare with iozone benchmark results running on the test

system. The simulation experiments are run using synthetic I/O

requests simulating sequential I/O. The I/O requests are grouped

into similar block-size configurations of the iozone benchmark.

6.2.1 Single client performance experiment
In this performance measurement, one client reads and writes to

the PVFS file system. The result of the I/O read performance in

the experiment is presented in Figure 10. The error bars are set at

20%.

Figure 10: Single client read performance

All points, except the last one, are within or very close to 20% of

the real-world measurement. Even though the last data point is

farther away than other data points, it is still a very good result.

The simulation data points are consistently lower than real-world

data. The result of the I/O write performance in the experiment is

presented in Figure 11. The error bars are set at 20%.

Figure 11: Single client write performance

Like the I/O read result, the I/O write result is also very good. The

majority of data points are within 20% of the real system

measurement. Simulation data in this experiment are not

consistently lower than real-world data as is observed in the I/O

read result. At small block size, the simulation results are higher

than real-world data, but at bigger block sizes, the simulation

results become lower.

The reason for this model behavior comes from the buffer design

of the I/O server model. The I/O server has a receive buffer for

every client sending requests to the server. Data are taken out of

the buffers using a first-come-first-served (FCFS) order. The

receive buffers in the real server are implemented using a linked-

list data structure. The larger the buffer, the slower an item in the

buffer can be accessed. Currently, the buffers of the simulation

model are implemented to have a fixed operating cost. This means

that the time it takes to access an item in the buffer stays the same,

regardless of the size of the buffer. The number of write requests

needed to write a file when using a small block size is much larger

than the number of write requests when using a large block size.

In the simulation model, this does not change the time it takes to

de-queue requests. This causes the simulation model to run faster

than the real system at the small block sizes and slower than the

real system at the large block sizes. Adding this level to detail to

the model is an area of future research.

6.2.2 Four clients performance experiment
In this experiment, four clients read and write to the PVFS model.

The result of the I/O read performance in the experiment is

presented in Figure 12. The error bars are set at 20%.

With four clients accessing the PVFS file system at the same time,

we start to notice variations within the data points, especially in

the real-world data. The simulation data, however, are still very

consistent. This is because the simulation model has fewer factors

that affect the result. As more clients access the PVFS file system,

more outside factors are introduced to the real-world data. For

example, with four clients the requests at each I/O server are

interleaved, creating a highly random and non-sequential access

pattern. The access pattern affects the response time of the I/O

237

servers. Active management of the access pattern at the I/O

servers is an interesting area of further research.

Figure 12: Four clients read performance

Even with the increasing variation of the data points, the

experimental result is still good. The performance behavior is

similar to what we have observed in previous experiments. The

last two data points are not within 20% of the real-world data, but

are still very close. The result of the I/O write performance in the

experiment is presented in Figure 13. The error bars are set at

20%.

Figure 13: Four clients write performance

The I/O write experiment result also has variations. The amount of

variations is slightly more than in the I/O read experiment. In

general, the performance behavior is slightly different to what we

have previously observed. The simulation data points are higher

than the real-world data points at small block sizes. The

simulation data points are lower than the real-world data points at

larger block sizes.

The simulation data points are still within 20% of the real-world

data points or close to them. The two data points at smallest block

sizes are somewhat farther away from the real-world data points.

6.2.3 Eight clients performance experiment
In this experiment, eight clients read and write to the PVFS

model. The result of the I/O read performance in the experiment is

presented in Figure 14. The error bars are set at 20%.

When the number of clients simultaneously reading the PVFS file

system reaches eight clients, we expect the stress level of the file

system to be very high, and the experiment supports that

expectation. At this level of stress, even the middle block sizes

data points, which have stayed very stable until now, start to show

variations and distortions. The high level of random and non-

sequential reads due to eight interleaved request causes many data

points to vary and fall well outside of the 20% error range. The

biggest changes are at the big block sizes. As the number of client

increases, the errors at the big block sizes also increase, especially

at the largest block size.

Figure 14: Eight clients read performance

As stated in the previous experiment, simulation data points show

much less variations and distortions. This makes sense, as the

simulation model has fewer outside factors and does not model

the interleaved access pattern at the I/O nodes. Simulation

experiments are also performed under well-controlled and precise

conditions. The result of the I/O write performance in the

experiment is presented in Figure 15. The error bars are set at

20%.

Figure 15: Eight clients write performance

Even when eight clients write to the PVFS file system at the same

time, with the only exception at the 64Kbytes block size, the

simulation performance behavior is still quite consistent with

what was observed previously. In this experiment, many data

points fall outside of the 20% error range; however, simulation

data points still group together very well, especially for small

block sizes. Even though there are variations among simulation

data points, the magnitude of errors for small block sizes are

relatively the same as earlier results. The magnitude of errors for

large block sizes, however, increases when the number of clients

simultaneously writing to the PVFS file system increases.

238

6.3 Hybrid workload performance validation

Figure 16: Hybrid workload I/O pattern

The simulation experiments are run using sets of I/O requests

traces captured from the real systems. These traces are mix of

random I/Os and sequential I/Os. Figure 16 shows a portion of the

I/O request traces. There are several other traces captured from

multiple client machines but are not shown here.

6.3.1 Single clients performance experiment
In this performance measurement, one client reads and writes to

the PVFS file system. The simulation result is within 20% of the

real-world measurement. The result of the I/O read and I/O write

performance in the experiment are presented in Figure 17. The

write performance result is also within 20% of the real-world

measurement.

Figure 17: Single client read and write performance

6.3.2 Four clients performance experiment
In this performance measurement, four clients simultaneously read

and write to the PVFS file system. The result of the I/O read

performance in the experiment is presented in Figure 18.

Figure 18: Four clients read performance

With four clients accessing the PVFS file system simultaneously,

we start to notice variations within the data points, similar to the

results using a sequential workload. Even with the increasing

variation of the data points, the experiment results are still within

25% of the real-world data but are significantly larger than the

errors in the two clients experiment. The result of the I/O write

performance in the experiment is presented in Figure 19.

Figure 19: Four clients write performance

6.3.3 Eight clients performance experiment
In this performance measurement, eight clients read and write to

the PVFS file system. The result of the I/O read performance in

the experiment is presented in Figure 20.

Figure 20: Eight clients read performance

When the number of clients simultaneously accessing the PVFS

file system reaches eight clients, the stress level of the file system

reaches an expected high level. Similar to the sequential

experiments, data points show variations and distortions. Many

data points have more than 40% errors. The result of the I/O write

performance in the experiment is presented in Figure 21

Figure 21: Eight clients write performance

6.4 Validation summary
In this section, detailed performance validation experiments of the

simulation model of the PVFS file system are presented. The

performance validation utilizes synthetic sequential I/O workload

and traces of real-world data to study the simulation model.

Performance validations are set up with several separate

experiments using different numbers of clients accessing the

PVFS file system. By increasing the number of clients from small

to large, we observe the behavior of the simulation model when

the stress level of the file system increases. For the single client

experiment, the simulation performances are within 20% of the

239

real file system. When the number of clients increases the errors

and variations start to become larger since the stress level on the

file system increases. When the numbers of clients become equal

to or larger than four clients, the variations and distortions

become visible. The simulation data points group together better

than the real-world data points because the affecting factors are

much less in the simulation environment. In general, the

performance behavior is consistent throughout the performance

validation process. The performance validation results are good,

considering that this is a very complex environment, involving a

parallel file system and multiple clients accessing simultaneously.

7. CONCLUSION
This paper presents a set of detailed and hierarchical performance

models of the PVFS file system using Colored Petri Nets. PVFS

read operation and PVFS write operation are studied and their

models are built. Each operation is divided into sub-components:

client, network and server. The models of these components are

presented. The current PVFS model is set up to have eight clients

and four servers. This is equal to a small production file system.

The model can be extended to have more clients and servers. The

model currently uses TCP/IP protocol over a Gigabit Ethernet

network. It can also be modified to simulate a different network

protocol and different network hardware in future research. The

model can also be easily modified in a future work to model a

different parallel file system using the foundation built in this

research such as PVFS2 or GPFS. The network component model

can be improved to the model network buffer more accurately as

well, and can be extended to model different type of network

hardware.

The ability to evaluate end-to-end parallel file system performance

allows many applications for the simulation model. A proof of

concept study can be performed for a business or scientific

application using I/O traces with the simulation model. The

results can be used to determine if the file system is suitable for

the application. The model can also be used to perform bottle-

neck analysis for a parallel file system. Studying the flow of I/O

requests from the client to the server and back to the client could

show which component in a complex parallel file system needs to

be upgraded to improve performance or does not need to be

upgraded to avoid cost.

8. ACKNOWLEDGMENTS
This research is based upon work supported by the National

Science Foundation under Grant No. 0421099 and Grant No.

0722625.

9. REFERENCES
[1] Bagrodia, R., Docy, S., and Kahn, A. 1997. Parallel

Simulation of Parallel File Systems and I/O Programs. In

Proceedings of the 1997 ACM/IEEE conference on

Supercomputing (CDROM), San Jose, CA, 1997, pp. 1-17.

[2] Carns, P.H., Ligon, III, W.B., Ross, R.B., and Thakur, R.

2000. Pvfs: A Parallel File System for Linux Clusters. In

Proceedings of the 4th annual Linux Showcase &

Conference - Volume 4, Atlanta, Georgia, 2000, pp. 28-28.

[3] Carns, P.H., Settlemyer, B.W., Ligon, III, W.B. 2008. Using

Server-to-Server Communication in Parallel File Systems to

Simplify Consistency and Improve Performance. In

Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, Austin, Texas, 2008, pp. 1-8.

[4] Cope, J., et al. 2011. Codes: Enabling Co-Design of

Multilayer Exascale Storage Architectures. In Proceedings of

the Workshop on Emerging Supercomputing Technologies

2011, Tucson, AZ, 2011.

[5] CERN (Conseil Européen pour la Recherche Nucléaire).

2011. http://www.cern.ch

[6] Gaonkar, S., et al. 2009. Performance and Dependability

Modeling with Mobius. SIGMETRICS Perform. Eval. Rev.,

36:16-21, 2009.

[7] Gorton, I., Greenfield, P., Szalay, A., and Williams, R. 2008.

Data-intensive computing in the 21st century. Computer,

41:30–32, 2008.

[8] Jensen, K. 1996. Coloured Petri nets (2nd ed.): basic

concepts, analysis methods and practical use: volume 1.

Springer-Verlag, London, UK, 1996.

[9] Kristensen, L.M., Christensen, S., and Jensen, K. 1998. The

practitioner’s guide to coloured petri nets. International

Journal on Software Tools for Technology Transfer, 2:98–

132, 1998.

[10] Nguyen, H.Q. and Apon, A. 2011. Hierarchical Performance

Measurement and Modeling of the Linux File System. In

Proceeding of the second joint WOSP/SIPEW international

conference on Performance engineering, Karlsruhe,

Germany, 2011, pp. 73-84.

[11] Norcott, W.D. and Capps, D. 2011. Iozone Filesystem

Benchmark. 2011. http://www.iozone.org

[12] Ratzer, A.V. et al. 2003. CPN Tools for editing, simulating,

and analyzing coloured petri nets. In ICATPN’03:

Proceedings of the 24th international conference on

Applications and theory of Petri nets, pages 450–462, Berlin,

Heidelberg, 2003. Springer-Verlag.

[13] Schmuck, F. and Haskin, R. 2002. GPFS: A Shared-Disk

File System for Large Computing Clusters. In Proceedings of

the 1st USENIX Conference on File and Storage

Technologies, Monterey, CA, 2002, p. 19.

[14] Wang, Y. and Kaeli, D. 2004. Execution-driven simulation

of network storage systems. In Proceedings of the 12th IEEE

International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems

(MASCOTS’04), pages 604–611, Los Alamitos, CA, USA,

2004. IEEE Computer Society.

[15] Zaitsev, D.A. and Shmeleva, T.R. 2011. A Parametric

Colored Petri Net Model of a Switched Network.

International Journal of Communications, Network and

System Sciences, vol. 04, pp. 65-76, 2011.

[16] Zhaobin, L. and Haitao, L. 2007. Modeling and Performance

Evaluation of Hybrid Storage I/O in Data Grid. In Network

and Parallel Computing Workshops, 2007. NPC Workshops.

IFIP International Conference on, 2007, pp. 624-629.

[17] Wellcome Trust Sanger Institute. 2011.

http://www.sanger.ac.

240

