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ABSTRACT 

Parallel file systems are significant challenges for high 

performance data-intensive system designers due to their 

complexity. Being able to study features and designs before 

building the actual system is an advantage that a simulation model 

can offer. This paper presents a detailed simulation-based 

performance model of the PVFS parallel file system. The model is 

developed using Colored Petri Nets. The goal of the simulation 

model is to provide a tool to examine end-to-end performance of a 

parallel file system and to build a foundation that can be easily 

expanded upon in the future to model many different types of 

parallel file systems. The performance evaluation results of the 

model demonstrate that the model performance behavior is close 

to the expected behavior of the real PVFS file system.   

Categories and Subject Descriptors 

C.4 [Computer Systems Organization]: Performance of Systems 

– Modeling techniques. 

D.2.2 [Software Engineering]: Design Tools and Techniques – 

Petri nets.  

D.4.3 [Operating Systems]: File System Managements. 

General Terms 

Design, Experimentation, Measurement, Performance. 

Keywords 

Colored Petri Net, parallel file system modeling, parallel file 

system simulation, PVFS. 

1. INTRODUCTION AND MOTIVATION 
New processor and clustering technologies allow modern high-

performance computing environments to achieve very high data 

processing power. As a consequence, the I/O workloads of high-

performance computing systems are very specialized and very 

different from normal desktop environments [7]. High-

performance scientific and business applications tend to access 

data in very large blocks and they also tend to access storage 

cooperatively to achieve better overall throughput. 

Due to such high demand on storage systems, large-scale cluster-

based storage systems [2, 13] are often utilized in high 

performance data-intensive computing environments [5, 17]. 

These cluster-based parallel storage systems are usually composed 

of multiple individual storage devices such as direct-attached 

storage devices or Storage Area Network (SAN) devices. These 

individual storage devices together provide the high I/O data rates 

needed by the computing environments but they also add to the 

complexity of the environment and the overhead of environment 

management. This paper describes a simulation modeling 

environment that could allow researchers to fine tune both the 

performance and the management aspects of a parallel storage 

architecture.  

The PVFS file system is chosen to be the candidate for this study. 

PVFS, jointly developed by Clemson University and Argonne 

National Laboratory, is a well-established parallel file system. The 

parallel I/O mechanism utilized by PVFS is also used by many 

other popular parallel file systems. Although lacking some 

advanced features implemented by later-developed parallel file 

systems, PVFS provides a solid foundation to study and 

understand parallel I/O. The PVFS simulation model can be 

extended in future research to provide more advanced features. 

This research utilizes a local file system simulator developed by 

Nguyen and Apon in [10] to simulate the local file system of the 

I/O servers. 

In this research, the well known Petri Nets formalism is utilized to 

simulate and evaluate complex data services in a parallel file 

system. A Colored Petri Net [8] is a graphical oriented language 

for design, specification, simulation and verification of systems. 

This language is particularly well-suited to illustrate and simulate 

systems in which communication and synchronization between 

components and resource sharing are primary concerns [9]. This 

makes it a very good tool for modeling file systems. CPNTools 

[12] is utilized for simulation and analysis.  

The rest of this paper is organized as follows. Section 2 discusses 

related work in the parallel file system simulation research area. 

Section 3 provides a quick overview of the PVFS file system. 

Section 4 presents an I/O workload and performance study of the 

PVFS file system. Section 5 discusses the implementation of the 

simulation model using Colored Petri Nets. Multiple design 

decisions and assumptions are also described in this section. 

Section 6 presents the model performance validation against the 

performance of real file systems. Section 7 concludes the paper. 
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2. RELATED WORK 
Cope et al. [4] develop a simulation toolkit called CODES to help 

system designers with design constraints of exascale storage 

systems. The authors present the capabilities of the simulator that 

assist systems designers in designing and assessing exascale 

storage systems. They also demonstrate the use of CODES to 

evaluate a potentially exascale storage network model and storage 

system. Wang and Kaeli in [14] present ParIOSim, a validated 

execution-driven parallel I/O simulator for network storage 

systems. ParIOSim provides an environment for users to test and 

evaluate different storage architectures and applications. They 

have compared simulator accuracy against measurements on 

different platforms using both synthetic and system-level I/O 

benchmarks. ParIOSim can also be utilized to optimize storage 

system at the application level. Bagrodia et al. [1] describe a 

simulator that can be used to predict the performance of MPI-IO 

programs. Their simulator can be utilized by MPI-IO programs as 

a function of architectural characteristics, caching algorithms, and 

alternative implementations of collective I/O operations. In [6], 

Gaonkar et al. present a multi-formalism model of a Lustre-like 

file system. The model is developed using Mobius, which is a 

multi-paradigm multi-solution comprehensive framework for 

model-based dependability and performance evaluation of 

systems. The authors also analyze the model’s detailed behavior 

and present the results obtained from a simulation study.  

Zhaobin et al. [16] show that Stochastic Petri Net (SPN) models 

can be used to analyze the performance of hybrid I/O Data Grid 

storage systems. The authors discuss their implementation of a 

typical storage system SPN model. Based on aggregate I/O, they 

also simplify the complexity of the model. Their work can be used 

to study complex and irregular I/O patterns of Data Grid 

applications. Although the primary goal of their research is not 

building a parallel file system simulator, the authors develop the 

model to support their research. Similar in this respect, to 

investigate server-to-server communication in parallel file 

systems, Carns et al. [3] develop a parallel file system simulator 

using the OMNeT++ simulation framework. Their simulator 

provides a representative model of how the modified version of 

PVFS performs with the proposed improvements. 

3. OVERVIEW OF THE PVFS FILE 

SYSTEM 
PVFS file system is designed to be a robust, scalable, and easy-to-

deploy and use parallel file system for Linux cluster. The file 

system provides high bandwidth for concurrent read/write 

operations from multiple processes to a common file. PVFS was 

also designed to function with standard Unix/Linux file system 

commands. Applications utilizing the standard Unix/Linux I/O 

library can access the PVFS file system without modification and 

recompiling. The PVFS file system is distributed using an open 

source license. These features make PVFS a popular choice for 

researchers at academic institutions and national labs, as well as 

companies. 

PVFS is designed as a client-server system with multiple servers 

called I/O daemons. Although there is no restriction, I/O daemons 

typically run on separate nodes in the cluster. These nodes are 

called I/O nodes and have disks attached to them. Each PVFS file 

is striped across the disks on the I/O nodes. PVFS also has a 

manager daemon that handles only metadata operations such as 

permission checking for file creation, open, close, and remove 

operations. Metadata, in this case, refers to information describing 

the characteristics of a file, such as permissions, file owner and 

group, time stamps, and in the case of parallel file system, the 

distribution of the file data in the cluster. When a client accesses a 

file, the manager provides the locations of the I/O nodes on which 

file data are located. The client uses this information to 

communicate directly with I/O nodes to retrieve the needed data. 

The PVFS manager does not participate in the read/write 

operations. 

 

Figure 1: PVFS file system and typical cluster architecture 

PVFS uses local file systems instead of raw devices to store both 

its file data and metadata. As a result of this design, PVFS file 

data, after being distributed across several I/O nodes, are stored as 

local files within the I/O nodes’ local file system.  

4. PERFORMANCE MEASUREMENT 

STUDY 
The objective of the performance measurement study is to analyze 

the behavior of the PVFS file system. By studying the PVFS file 

system performance we can better understand the level of detail 

needed for the simulation model. 

4.1 Experimental setup 
Performance measurement experiments are executed on a PVFS 

cluster, as shown in Figure 1, with the I/O servers (Dell 

PowerEdge 1850) configured as shown in Table 1. The I/O 

servers are set up to have 5 drives with a RAID 5 configuration. 

The PVFS cluster is located in an isolated environment with 

dedicated resources to minimize extra factors that affect 

performance study. The primary I/O testing suite used in the 

following experiments is iozone [11]. 

Table 1: Experimental test bed configuration 

Processors Dual Intel Xeon processors at 2.8GHz 

Front side bus 533MHz 

Cache 512KB L2 cache 

Chipset ServerWorks GC LE 

Memory 4GB DDR-2 400 SDRAM 

Drive controller Embedded dual channel Ultra320 SCSI 

RAID controller PERC 4/Di 

Hard drives Fujitsu MAT3147NC 147GB 10,000 rpm 

 

Seagate ST3146707LC 146GB 10,000 rpm 
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The cluster has a total of 4 I/O servers with a total capacity of 

approximately 2 Tbytes. The test PVFS cluster provides adequate 

space for testing and enough I/O servers to run a performance 

validation study. 

4.2 I/O Workload study 
Designed to achieve massive performance by parallelizing I/O 

accesses, PVFS, like any other parallel file system, works best 

with large files, using sequential access with large block size. 

Knowing this, applications running on PVFS file systems are 

configured to take advantage of this behavior as much as possible. 

Using a very large I/O buffer, an application sequentially accesses 

the file system with large block sizes of up to 100 Mbytes. 

Observations were made of I/O workloads on multiple PVFS file 

systems in a shared production environment with about 276 

Tbytes of total capacity. The breakdown of I/O workload 

percentage is shown in Table 2. Pure random I/O in Table 2 

includes I/O accesses that are less than 10Kbytes in size and have 

random access pattern. Large block size sequential I/O includes 

I/O accesses that are bigger than 1Mbytes in size and have 

sequential access pattern. Sequential I/O accesses with size 

smaller than 1Mbytes and I/O accesses with mix pattern are 

presented in the second category. 

Table 2: Workload breakdown in a Production environment 

Pure random I/O 0.00028% 

Mix random I/O and sequential I/O 2.047% 

Large block size sequential I/O 97.952% 

 

From the real-world workload breakdown, it is clear that pure 

random I/O occupies a very small amount of workload on the 

parallel file system. Sequential workloads with very large block 

size occupy a majority of the total workload. PVFS and other 

parallel file systems are designed for this type of workload. Of 

course, the I/O access pattern on a file system depends on the user 

of the file system. However, if one should choose to use PVFS for 

pure small files and a random access workload, the performance 

of the parallel file system will degrade. Sequential I/O workloads 

and mixed workloads are selected for study and evaluation in the 

simulation model. 

4.3 I/O performance study with different file 

sizes and block sizes 
This measurement study is to observe the I/O behavior of the 

PVFS file system when the file size and block size change. First, 

sequential I/O write performance is examined using a set of small 

to large size files (from 4Kbytes to 1Gbytes). The results for the 

sequential I/O write measurement experiments are presented in 

Figure 2.  The I/O write throughput at small file sizes is less than 

I/O throughput at larger file sizes. This observation shows that the 

I/O performance is not at peak level until file size is equal to or 

greater than 2Mbytes. There are multiple factors contributing to 

this behavior. The first factor is the nature of PVFS. PVFS is a 

parallel file system. Files stored in a PVFS file system are divided 

into multiple stripes using a default stripe size of 64Kbytes and 

are distributed across multiple I/O servers. By striping file 

contents across multiple servers, a client machine can access 

several pieces of file data at the same time. For a small file, this 

mechanism creates some overhead which causes the I/O 

performance to become lower until the file size is large enough to 

obtain the full advantage of the workload parallelization as shown 

in Figure 2. In these experiments, the smallest file that uses all I/O 

servers is 4*64K, or 256Kbytes. A second factor is the file system 

synchronization. PVFS synchronizes the local file system in the 

I/O nodes when it closes the file, forcing data to be written to 

disk. For a small file, the delay-write mechanism utilized by Linux 

provides little benefit and thus the I/O performance is affected 

until the file size is large enough to obtain the full advantage of 

the delay-write mechanism. The file size where the I/O 

performance becomes stable is a function of a numerous other 

factors including the local file system buffer size, the local file 

system dirty page ratio threshold, and the PVFS stripe size. For 

this particular testing PVFS cluster, that file size is approximately 

2Mbytes. 

 

Figure 2: Sequential write performance experiment 

The results for the sequential I/O read measurement experiments 

are presented in Figure 3. The read experiments use a similar set 

of files, and the block sizes vary the same way as with write 

experiments. However, these measurements show that for a fixed 

block size and a sequential workload the I/O read performance is 

not directly affected by file size.  Unlike writes, reads in PVFS are 

implemented as read operations on the local file system in the I/O 

nodes and utilize the Linux buffer cache.  For sequential 

workloads, fetching of whole blocks of the local file system and 

the buffer cache causes whole blocks to be loaded into memory 

from disk independently of the read request size. The throughput 

is then limited by the transfer of data across the network.       

 

Figure 3: Sequential read performance experiment 
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According to the read and write measurement results, after the file 

size becomes large enough, the PVFS I/O performance does not 

change. After reaching this stable file size, the I/O performance is 

then affected by the block size of the I/O operations. However, the 

I/O performance drops sharply when the file size reaches the 

physical memory capacity of the machine. This behavior is caused 

by memory reclaiming and swapping, which in turn causes disk 

thrashing, leading to I/O performance degradation. 

Based on these performance characteristics, 512Mbytes is selected 

to be the standard file size for all models in the performance 

study. It is large enough to have stable performance but smaller 

than the physical memory capacity of the test machines. 

5. IMPLEMENTATION OF THE 

SIMULATION MODEL 
The first and foremost goal for a parallel file system is to achieve 

massive I/O throughput. This is done by providing access to 

multiple I/O resources in parallel. PVFS as well as many other 

parallel file systems implements this by utilizing multiple 

connected local file systems as foundation. The simulation model 

for the parallel file system is developed using a similar concept. It 

utilizes multiple connected local file system simulation models as 

its foundation. It interfaces with higher level applications and 

provides them the response time associated with each I/O request. 

The implementation of the simulation model is presented in a top 

down fashion, from application level down to the local file system 

level, and each level is described using Colored Petri Nets. 

5.1 Assumptions and model limitations 
Similar to the local file system simulation model, the parallel 

simulation is also divided into an I/O read model and an I/O write 

model. Read operations and write operations are simulated 

separately to simplify the complexity of simulating a parallel file 

system. 
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A key difference between a parallel file system and a local file 

system is the network component. Since parallel file systems use 

the network to simultaneously access multiple local file system at 

the same time, a parallel file system simulation model must 

contain a network model. Although the network simulation model 

is an important component in the parallel file system simulation 

model, it only serves as a transport from the client model to the 

server model. The network model does not need to model every 

network operation in detail [15]. A single-server queuing model is 

used to simulate network end-to-end performance. 

The number of I/O servers in a PVFS cluster is determined at the 

time the cluster is built. After the cluster goes into production, the 

number of I/O servers is generally fixed. Although, under some 

circumstances, I/O servers can be added or removed from the 

cluster, this procedure usually causes the original data on the 

cluster to be destroyed. For the simulation model, the PVFS 

cluster has four I/O servers.  

5.2 File read model implementation 
From the application standpoint, reading a file basically divides 

the file into smaller manageable blocks and reads them into 

memory. Reading a file from a parallel file system is a 

straightforward extension of reading a file from a local file 

system. The operation is divided into three main components: the 

client component, the network component and the server 

component.  

 

5.2.1 File read model client component 
At the application level, the model is simple. A loop breaks 

the needed file into multiple blocks of read requests and passes 

the list of these blocks to the client simulation component. The 

client component processes the data, and then passes the data 

requests to the network component. The result of the read 

operation is an array of data passed back from the network model. 

The Petri net for the application level is simple and not shown. 

The implementation of the client component could be 

described as dividing the block of read requests into a list of 

payloads and passing this list to the network component to send 

over the network to the server component. The number of 

payloads depends on the number of I/O servers in the file system. 

The Petri net implementation of the client component with four 

I/O servers is presented in Figure 4. Payloads are created by 

striping request data into multiple chunks according to the file 

system’s stripe size parameter. The stripe size in PVFS usually is 

64 Kbytes. The default distribution of data chunks in a payload is 

done using a round-robin mechanism.  

After the payloads are created, the client component prepares the 

packets before sending them to the network component. This 

process represents the network stack on the client computer. 

While this process could be considered a part of the network 

component, it uses physical resources on the client machine and 

thus is more closely related to the client component. In taking the 

payloads and building network packets around them, the client 

component adds the network identifications of the I/O servers to 

the network packets. The network component will later use this 

PACKET

PACKET PACKET PACKET PACKET

PACKET

PACKET PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

PACKET

input ();
output (outdst);
action
(1);

input ();
output (outdst);
action
(2);

[id=1] [id=2] [id=3] [id=4]

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(3);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(4);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(5);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(6);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(7);

[id=1] [id=2] [id=3] [id=4]

input ();
output (outdst);
action
(8);

[id=1] [id=2] [id=3] [id=4]

(id, bf, dst) (id, bf, dst)

(id, bf, dst) (id, bf, dst)

(id, bf, dst) (id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

InIn

(id, bf, outdst)

(id, bf, dst)

InIn

(id, bf, outdst)

(id, bf, dst)

InIn

(id, bf, dst)

(id, bf, dst)

InIn InIn InIn InIn InIn

OutOutOutOutOutOutOutOut

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)
(id, bf, dst)
(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst) (id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst) (id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

(id, bf, outdst) (id, bf, outdst) (id, bf, outdst) (id, bf, outdst) (id, bf, outdst) (id, bf, outdst)

(id, bf, dst)(id, bf, dst)(id, bf, dst)(id, bf, dst)(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(id, bf, dst)

 

Figure 5: PVFS read - network transmission model 

233



 

 

information to deliver the packets to the correct I/O servers. For 

an I/O read operation, the client component only sends read 

requests to the servers. Read requests are very small and will not 

need to be broken down into smaller fragments. After the network 

packets are created, they are sent to the network device buffer.  

In addition to sending read requests to the I/O servers, the client 

component also receives data being sent back from the I/O 

servers. From the network device receiving buffer, the client 

component gathers the network packets. It assembles the data 

from these network packets received from different I/O servers 

into the requested result and sends it back to the application. 

5.2.2 File read model network component 
The network component provides the transportation for the data 

packets from the client to the I/O servers. Since only end-to-end 

performance characteristics of the network component are needed, 

the network component does not model switches and routers in 

detail. Instead, the network component is designed using a 

multiplexer model. The client packets are examined and routed to 

the correct I/O servers. 

When the result data are sent back to the clients, a similar 

mechanism is used. The server component, depending on the 

origin of the data, will send data packets back to the original 

requested client. The network component examines the packets 

and routes them to the correct clients. The Petri Net models of the 

sending and the receiving network components for PVFS file read 

operation are presented in Figure 5 and Figure 6. 

5.2.3 File read model server component 
I/O servers are where the actual I/O operations are performed. 

Each PVFS file system has multiple I/O servers that work 

independently in parallel to provide large I/O bandwidth that a 

single local file system could never achieve.  

Each I/O server, similar to the client side, has a network layer to 
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process network packets from the network component. A network 

packet, after arriving at the I/O server, is examined and 

categorized into different receive buffers, using a first-come-first-

served (FCFS) mechanism. This process is designed following the 

same implementation in the real system. Each client has its own 

receive buffer. 

The server component, following a FCFS order, takes read 

requests from the receive buffers and sends them to the local file 

system model [10]. The requests are sent in chunks of 64 Kbytes 

by default. If the PVFS file system is built with a different stripe 

size, this chunk size is changed. The local file system on the I/O 

server performs a sequential read operation. Since the I/O server 

component takes a read request from the receive buffers using 

FCFS order, the read request chunks are mixed together. The next 

chunk of read requests may not be from the same client as the 

chunk before it. Two different clients rarely try to read the same 

file at the same location. This causes the read requests stream sent 

to the local file system to have a distinctive pattern of multiple 

interleaved streams of sequential read requests. Each stream may 

start at a random location. The Petri Net model for the server 

component for PVFS file read operation with eight clients is 

presented in Figure 7. 

After the read requests pass through the local file system 

component, this component returns the result. At this step, the I/O 

server component sends these data through a network packet 

creation process that is similar to the client component. When the 

client component sends the read requests over the network, the 

size of these read requests are relatively small and can fit within a 

standard frame. The result data, however, do not. They need to be 

divided into multiple segments along with attached headers and 

network addresses. The segment size of a packet is limited by the 

MTU of the network. Usually, in a Gigabit Ethernet network, the 

MTU is set to 1500. This means that a network packet maximum 

size is 1500 bytes. 

5.3 File write model implementation 
From the application standpoint, writing a file to a parallel file 

system is an extension of writing a file to a local file system. The 

application level model is very similar to the I/O read model. The 

operation is divided into three main components: the client 

component, the network component and the server component. 

The Petri Net implementation of the application level model is 

simple and is not presented due to space limitations. 

5.3.1 File write model client component 
The top level of the file write model client component is simple. 

The file data to be written to disk are broken into multiple blocks 

of write requests. These write requests are passed to the client 

simulation component. The client component processes the data, 
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and then sends the packaged data to the network component. The 

result of the write operation is a series of return codes received 

from the network model.  

The implementation of the client component for the file write 

operation is quite similar to the client component of the file read 

operation. However, write requests not only contain requests to 

write data to disk but also contain the actual data needed to be 

written. The client component needs to divide these blocks of data 

into multiple payloads. The number of actual payloads is 

determined by the number of I/O servers in the system. The Petri 

Net model for the PVFS client component is presented in Figure 

8. Payloads are created by striping request data into multiple 

chunks according to the file system’s stripe depth parameter. The 

distribution of data chunks in a payload is done using a round-

robin mechanism. 

After creating the payloads, the client component attaches 

network addresses and control information to the payloads to 

create network packets. Since the packet size depends on the 

MTU of the network, the client component has to split the 

payloads into multiple segments. The packet size for data sending 

from clients to I/O servers is also at the maximum size of 1500 

bytes. 

5.3.2 File write model network component 
The network component model in the file write operation is very 

similar to the network component model in the file read operation. 

There are only some slight differences in the model due to the 

data flow of the operation being different. The network packets 

from the client component are examined, the destination addresses 

are checked, and the packets are routed to the correct receiver. 

The network component provides the transportation for the 

packets and also simulates the wire-delay on the network medium. 

The Petri Net model for the sending and the receiving network 

component for PVFS file write are similar to the network model 

utilized in PVFS file read described in section 5.2.2 and are not 

presented due to space limitation. 

5.3.3 File write model server component 
The file write server component is built upon the local write 

model. A network packet, after arriving at the I/O server, is 

processed and sent to the local file write model. The server creates 

a receive buffer for each client sending in requests. It also 

examines the network packets and moves the request data into the 

correct buffers using FCFS mechanism. This process is designed 

to follow the same implementation as in the real system.  

Since each packet is limited by the maximum segmentation size of 

the network, the server component combines multiple packet data 

into the original request sent by the client. Unlike the file read 

server model, the file write server model does not attempt to 

combine the original request into 64Kbytes chunk. Instead it 

combines the fragmented data into the original request and sends 

it to the local file write model [10]. Because of this, the block 

sizes of the write requests sent to the local file write model are not 

fixed. PVFS relies on the delay write mechanism of the local file 

system to combine multiple different small write requests into big 

and sequential write requests. The local file system on the I/O 

server performs the write operation. Since the server model sends 

the write requests to the local file system model as it receives in a 

FCFS order, the block size of the write requests are quite random. 

Even though, the write requests could be in sequential order, the 

block sizes of the requests are not. This creates a distinctive I/O 

access pattern. The Petri Net model for PVFS file write server 

model is presented in Figure 9. After read requests pass through 

the local file system component, it returns the result data read 

from disk. 

(id, bf, dst)(id, bf, dst)(id, bf, dst)

(id, bf, dst)

(fl, 8)
(fl, 7)

(fl, 6)(fl, 5)

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

(id, bf, dst)

(fl, 4)

(fl, 3)

(id, bf, dst)

(fl, 2)

(id, bf, dst)

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

[]

fl

fl

fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

next

1`1 dst

dst

[]

(0, bf, dst)

bf

fl

(fl, dst)

(fl, 1)

fl

fl fl̂ [̂sort INT.lt tbf]

[]

tbf

tbf

tbf

tbfbf^ t̂bf

(id, bf, dst)

[length fl > 0]

[dst = 8]

[length fl > 0]

[dst = 7]

[length fl > 0]

[dst = 6]

[length fl > 0]

[dst = 5]

[length fl > 0]

[dst = 3]

[length fl > 0]

[dst = 4]

[length fl > 0]

[dst = 2]

[length fl > 0]

Local File System

[dst = 1]

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

[]

FILE

BUFFER

[]

BUFFER

1

INT

INT

Out
PACKET

[]

FILE

FILEWDST

Write

exit

BUFFER

[]

FILE

BUFFER

[]

BUFFER

In
PACKET

In

Out

Local File System

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`[]@0

1 1`1
1 1`[]@0

1

1 1`[]@0

 

Figure 9: PVFS write - server model 

236



 

 

6. PARALLEL FILE SYSTEM 

SIMULATION MODEL PERFORMANCE 

VALIDATION 
This section presents the performance validation of the simulation 

model for a PVFS file system. Because PVFS is a parallel file 

system, the number of clients accessing the file system at the same 

time is important. The file system is designed to provide a massive 

I/O bandwidth and throughput by allowing multiple I/O servers to 

work with multiple clients at the same time.  

6.1 Validation setup 
In order to validate the entire Petri Net file system model against 

real-world data, the model hardware parameters, such as memory 

delay, execution speed, function overhead, and disk speed, are 

measured using kernel traces directly from the machines on which 

the experiments are executed. The performance parameters of the 

network stack on the client and server machines are also measured 

using kernel traces. Network performance parameters on the wire 

are recorded using network monitoring tools, including ping, 

traceroute and packet sniffer. The PVFS file system model is 

implemented with four I/O servers. The performance validations 

are executed starting with one client accessing the file system. The 

number of clients is increased until the number of clients equals 

eight. The number of clients is determined from observing the real 

file system under the validation workload. By using from one to 

eight clients (double the number of servers) accessing the file 

system simultaneously, the file system level of stress is enough to 

demonstrate many interesting aspects of the file system 

performance. We present the performance results of one, four, and 

eight clients experiments in this paper.  

6.2 Sequential workload performance 

validation 
Simulations are run several times, and the average results are used 

to compare with iozone benchmark results running on the test 

system. The simulation experiments are run using synthetic I/O 

requests simulating sequential I/O. The I/O requests are grouped 

into similar block-size configurations of the iozone benchmark.  

6.2.1 Single client performance experiment 
In this performance measurement, one client reads and writes to 

the PVFS file system. The result of the I/O read performance in 

the experiment is presented in Figure 10. The error bars are set at 

20%. 

 

Figure 10: Single client read performance 

All points, except the last one, are within or very close to 20% of 

the real-world measurement. Even though the last data point is 

farther away than other data points, it is still a very good result. 

The simulation data points are consistently lower than real-world 

data. The result of the I/O write performance in the experiment is 

presented in Figure 11. The error bars are set at 20%. 

 

Figure 11: Single client write performance 

Like the I/O read result, the I/O write result is also very good. The 

majority of data points are within 20% of the real system 

measurement. Simulation data in this experiment are not 

consistently lower than real-world data as is observed in the I/O 

read result. At small block size, the simulation results are higher 

than real-world data, but at bigger block sizes, the simulation 

results become lower.  

The reason for this model behavior comes from the buffer design 

of the I/O server model. The I/O server has a receive buffer for 

every client sending requests to the server. Data are taken out of 

the buffers using a first-come-first-served (FCFS) order. The 

receive buffers in the real server are implemented using a linked-

list data structure. The larger the buffer, the slower an item in the 

buffer can be accessed. Currently, the buffers of the simulation 

model are implemented to have a fixed operating cost. This means 

that the time it takes to access an item in the buffer stays the same, 

regardless of the size of the buffer. The number of write requests 

needed to write a file when using a small block size is much larger 

than the number of write requests when using a large block size. 

In the simulation model, this does not change the time it takes to 

de-queue requests. This causes the simulation model to run faster 

than the real system at the small block sizes and slower than the 

real system at the large block sizes.  Adding this level to detail to 

the model is an area of future research. 

6.2.2 Four clients performance experiment 
In this experiment, four clients read and write to the PVFS model. 

The result of the I/O read performance in the experiment is 

presented in Figure 12. The error bars are set at 20%. 

With four clients accessing the PVFS file system at the same time, 

we start to notice variations within the data points, especially in 

the real-world data. The simulation data, however, are still very 

consistent. This is because the simulation model has fewer factors 

that affect the result. As more clients access the PVFS file system, 

more outside factors are introduced to the real-world data.  For 

example, with four clients the requests at each I/O server are 

interleaved, creating a highly random and non-sequential access 

pattern.  The access pattern affects the response time of the I/O 
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servers.  Active management of the access pattern at the I/O 

servers is an interesting area of further research. 

 

Figure 12: Four clients read performance 

Even with the increasing variation of the data points, the 

experimental result is still good. The performance behavior is 

similar to what we have observed in previous experiments. The 

last two data points are not within 20% of the real-world data, but 

are still very close. The result of the I/O write performance in the 

experiment is presented in Figure 13. The error bars are set at 

20%. 

 

Figure 13: Four clients write performance 

The I/O write experiment result also has variations. The amount of 

variations is slightly more than in the I/O read experiment. In 

general, the performance behavior is slightly different to what we 

have previously observed. The simulation data points are higher 

than the real-world data points at small block sizes. The 

simulation data points are lower than the real-world data points at 

larger block sizes.  

The simulation data points are still within 20% of the real-world 

data points or close to them. The two data points at smallest block 

sizes are somewhat farther away from the real-world data points. 

6.2.3 Eight clients performance experiment 
In this experiment, eight clients read and write to the PVFS 

model. The result of the I/O read performance in the experiment is 

presented in Figure 14. The error bars are set at 20%. 

When the number of clients simultaneously reading the PVFS file 

system reaches eight clients, we expect the stress level of the file 

system to be very high, and the experiment supports that 

expectation. At this level of stress, even the middle block sizes 

data points, which have stayed very stable until now, start to show 

variations and distortions.  The high level of random and non-

sequential reads due to eight interleaved request causes many data 

points to vary and fall well outside of the 20% error range. The 

biggest changes are at the big block sizes. As the number of client 

increases, the errors at the big block sizes also increase, especially 

at the largest block size. 

 

Figure 14: Eight clients read performance 

As stated in the previous experiment, simulation data points show 

much less variations and distortions. This makes sense, as the 

simulation model has fewer outside factors and does not model 

the interleaved access pattern at the I/O nodes. Simulation 

experiments are also performed under well-controlled and precise 

conditions. The result of the I/O write performance in the 

experiment is presented in Figure 15. The error bars are set at 

20%. 

 

Figure 15: Eight clients write performance 

Even when eight clients write to the PVFS file system at the same 

time, with the only exception at the 64Kbytes block size, the 

simulation performance behavior is still quite consistent with 

what was observed previously. In this experiment, many data 

points fall outside of the 20% error range; however, simulation 

data points still group together very well, especially for small 

block sizes. Even though there are variations among simulation 

data points, the magnitude of errors for small block sizes are 

relatively the same as earlier results. The magnitude of errors for 

large block sizes, however, increases when the number of clients 

simultaneously writing to the PVFS file system increases. 
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6.3 Hybrid workload performance validation 

 

Figure 16: Hybrid workload I/O pattern 

The simulation experiments are run using sets of I/O requests 

traces captured from the real systems. These traces are mix of 

random I/Os and sequential I/Os. Figure 16 shows a portion of the 

I/O request traces. There are several other traces captured from 

multiple client machines but are not shown here. 

6.3.1 Single clients performance experiment 
In this performance measurement, one client reads and writes to 

the PVFS file system. The simulation result is within 20% of the 

real-world measurement. The result of the I/O read and I/O write 

performance in the experiment are presented in Figure 17. The 

write performance result is also within 20% of the real-world 

measurement. 

 

Figure 17: Single client read and write performance 

6.3.2 Four clients performance experiment 
In this performance measurement, four clients simultaneously read 

and write to the PVFS file system. The result of the I/O read 

performance in the experiment is presented in Figure 18.  

 

Figure 18: Four clients read performance 

With four clients accessing the PVFS file system simultaneously, 

we start to notice variations within the data points, similar to the 

results using a sequential workload. Even with the increasing 

variation of the data points, the experiment results are still within 

25% of the real-world data but are significantly larger than the 

errors in the two clients experiment. The result of the I/O write 

performance in the experiment is presented in Figure 19. 

 

Figure 19: Four clients write performance 

6.3.3 Eight clients performance experiment 
In this performance measurement, eight clients read and write to 

the PVFS file system. The result of the I/O read performance in 

the experiment is presented in Figure 20.  

 

Figure 20: Eight clients read performance 

When the number of clients simultaneously accessing the PVFS 

file system reaches eight clients, the stress level of the file system 

reaches an expected high level. Similar to the sequential 

experiments, data points show variations and distortions. Many 

data points have more than 40% errors. The result of the I/O write 

performance in the experiment is presented in Figure 21 

 

Figure 21: Eight clients write performance 

6.4 Validation summary 
In this section, detailed performance validation experiments of the 

simulation model of the PVFS file system are presented. The 

performance validation utilizes synthetic sequential I/O workload 

and traces of real-world data to study the simulation model. 

Performance validations are set up with several separate 

experiments using different numbers of clients accessing the 

PVFS file system. By increasing the number of clients from small 

to large, we observe the behavior of the simulation model when 

the stress level of the file system increases. For the single client 

experiment, the simulation performances are within 20% of the 
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real file system. When the number of clients increases the errors 

and variations start to become larger since the stress level on the 

file system increases. When the numbers of clients become equal 

to or larger than four clients, the variations and distortions 

become visible. The simulation data points group together better 

than the real-world data points because the affecting factors are 

much less in the simulation environment. In general, the 

performance behavior is consistent throughout the performance 

validation process. The performance validation results are good, 

considering that this is a very complex environment, involving a 

parallel file system and multiple clients accessing simultaneously. 

7. CONCLUSION 
This paper presents a set of detailed and hierarchical performance 

models of the PVFS file system using Colored Petri Nets. PVFS 

read operation and PVFS write operation are studied and their 

models are built. Each operation is divided into sub-components: 

client, network and server. The models of these components are 

presented. The current PVFS model is set up to have eight clients 

and four servers. This is equal to a small production file system. 

The model can be extended to have more clients and servers. The 

model currently uses TCP/IP protocol over a Gigabit Ethernet 

network. It can also be modified to simulate a different network 

protocol and different network hardware in future research. The 

model can also be easily modified in a future work to model a 

different parallel file system using the foundation built in this 

research such as PVFS2 or GPFS. The network component model 

can be improved to the model network buffer more accurately as 

well, and can be extended to model different type of network 

hardware. 

The ability to evaluate end-to-end parallel file system performance 

allows many applications for the simulation model. A proof of 

concept study can be performed for a business or scientific 

application using I/O traces with the simulation model. The 

results can be used to determine if the file system is suitable for 

the application. The model can also be used to perform bottle-

neck analysis for a parallel file system. Studying the flow of I/O 

requests from the client to the server and back to the client could 

show which component in a complex parallel file system needs to 

be upgraded to improve performance or does not need to be 

upgraded to avoid cost. 
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