
Efficient Update Data Generation for DBMS Benchmarks

Michael Frank
University of Passau

Faculty of Computer Science
and Mathematics
Passau, Germany

frank@fim.uni-passau.de

Meikel Poess
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA-94404
meikel.poess@oracle.com

Tilmann Rabl
University of Toronto

Department of Electrical and
Computer Engineering
Toronto, ON, Canada

tilmann.rabl@utoronto.ca

ABSTRACT
It is without doubt that industry standard benchmarks have
been proven to be crucial to the innovation and productiv-
ity of the computing industry. They are important to the
fair and standardized assessment of performance across dif-
ferent vendors, different system versions from the same ven-
dor and across different architectures. Good benchmarks
are even meant to drive industry and technology forward.
Since at some point, after all reasonable advances have been
made using a particular benchmark even good benchmarks
become obsolete over time. This is why standard consortia
periodically overhaul their existing benchmarks or develop
new benchmarks. An extremely time and resource consum-
ing task in the creation of new benchmarks is the devel-
opment of benchmark generators, especially because bench-
marks tend to become more and more complex. The first
version of the Parallel Data Generation Framework (PDGF),
a generic data generator, was capable of generating data for
the initial load of arbitrary relational schemas. It was, how-
ever, not able to generate data for the actual workload, i.e.
input data for transactions (insert, delete and update), in-
cremental load etc., mainly because it did not understand
the notion of updates. Updates are data changes that oc-
cur over time, e.g. a customer changes address, switches
job, gets married or has children. Many benchmarks, need
to reflect these changes during their workloads. In this pa-
per we present PDGF Version 2, which contains extensions
enabling the generation of update data.

Categories and Subject Descriptors
K.6.2 [Management of Computing and Information
Systems]: Installation Management—benchmark, perfor-
mance and usage measurement

General Terms
Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA
Copyright 2012 ACM 978-1-4503-1202-8/12/04 ...$10.00.

Keywords
Benchmark, Data Generation

1. INTRODUCTION
Over the years industry standard benchmarks have proven

to be crucial to the innovation and productivity of the com-
puting industry. They are important to the fair and stan-
dardized assessment of performance across different vendors,
different system versions from the same vendor and across
different architectures. Hence, they are used by system and
software vendors as much as they are used by customers
during their purchase decisions. Vendors use them to dif-
ferentiate their systems‘ performance from those of other
vendors, while they use them internally to monitor systems‘
performance across releases and, in case of software, even
across daily builds. Customers use industry standard bench-
marks to cost effectively compare the performance of sys-
tems. Without benchmarks they would need to invest in
the performance analysis of different systems.

In the last 25 years many industry standard benchmarks
were developed by benchmark consortia. Among these con-
sortia are, most notably, the Standard Performance Evalua-
tion Corporation (SPEC), the Transaction Processing Per-
formance Council (TPC) and the Storage Performance Coun-
cil (SPC). While focusing on slightly different aspects of sys-
tem performance, they all follow a common goal, namely to
develop fair and verifiable standard benchmarks, and to po-
lice and publish results on a large number of systems. In
this paper we focus on those benchmarks that measure per-
formance of database management systems (DBMS).

While the fundamental steps in a DBMS benchmark have
remained the same over the years, namely to load the initial
database and then to run a workload, e.g. transactions or
queries, the complexities of the benchmarks have increased
enormously [11]. For instance, TPC-A, TPC’s first OLTP
benchmark specification, counted 43 pages and used a sin-
gle, simple, update-intensive transaction to emulate update-
intensive database environments. The transaction access
a schema with four tables, all with 1:n relationships. In
comparison TPC-E, TPC’s latest OLTP benchmark spec-
ification counts 286 pages and consists of 10 transactions
emulating the complex operation of a brokerage firm. Its
transactions access a schema with 9 tables and complex re-
lationships.

Each benchmark requires tools to generate datasets for
the initial load and the subsequent workload. In [21] we
have analyzed data generation requirement of today’s com-
plex DBMS environments. While the data dependencies in

169

TPC-A were restricted to foreign-key/primary key relation-
ships and data volumes were in the gigabyes, TPC-E’s data
dependencies are more complex. For the initial load of a
DBMS we have identified three classes of data dependen-
cies: i) intra row dependencies, e.g. the city and zip code of
an address table, ii) intra table dependencies, e.g. the n:1
relation-ships of normalized schemas and iii) inter table de-
pendencies, e.g. Foreign key, primary key relationships. In
[21] we have shown how the Parallel Data Generation Frame-
work (PDGF) can be configured to generate the above data.

Since then we have been working on PDGF based data
generators for TPC-H and a new extract, transform and
load (ETL) benchmark [25] of the Transaction Processing
Performance Council (TPC). This work has revealed that
the above data dependencies also exists in the data sets.
Consider the two tables of a customer management system:

Customer = {C1, C2, ..., Cn} (1)

CustomerAddress = {CA1, CA2, ..., CAn} (2)

with the primary keys C1 and CA1 and the foreign key CA2

to join to C1 of the customer table. Now consider the fol-
lowing workload: For a random customer find his address
and update each field Ci with a likelihood of Li. In case
the customer address key range is dense and static finding
an existing customer and his address is trivial. But what if
the keys are not dense, or we add customers as part of the
workload. Then the key range evolves over time making it
more difficult to pick valid keys, especially in parallel data
generation.

The above scenario is very common in ETL systems as
their main workload is to load data, especially incremental
data that can contain updates to pre-existing data. The
ETL benchmark, currently under development by the TPC,
defines two sets of schemas, one to emulate the source tables
and one to define the target tables. The workload is defined
in terms of transformation that map the input data of the
source tables to the output data of the target tables. As
a result writing a data generator for an ETL benchmark is
very challenging. The update data needs to be generated
deterministically, i.e. for each table one needs to be able to
set the number of new, updated and deleted records.

In this paper we present our extensions to PDGF that en-
able the deterministic generation of intra-table dependencies
and updates for database benchmarking, which were devel-
oped specifically to support TPC’s ETL benchmark devel-
opment. Our main contributions are:

• the principle of a growing permutation, that is basis
for our update generation strategy,

• an extension of our data generation approach to gen-
erate intra-table dependencies,

• the development of a framework for transparent, con-
sistent and repeatable generation of inserts, updates,
and deletes for generated data.

The remainder of this paper is organized as follows: In
the next section we discuss related work, especially data
generators that try to solve similar problems. In Section 3
we briefly review the architecture and design goals of the
PDGF. Section 4, the main contribution of this paper, de-
tails the basic principles of our approach for generating up-
dates and how it is integrated in PDGF. We present some

performance numbers in Section 5, before concluding in Sec-
tion 6.

2. RELATED WORK
Data generation for performance evaluation is part of the

daily business of researchers and DB administrators. Most
of their data generators are special purpose implementations
for a single dataset. The active demand for generic data gen-
eration tools feeds a lively industry in this niche that sells
their generators for hundreds to thousands of dollars. Exam-
ples of commercial tools are Red Gate SQL Data Generator
[22], DTM Data Generator [6], and GS DataGenerator [8].
But still new companies are entering this segment, e.g. Log-
icBlox with their TestBlox software.

There has been quite a lot of research on data genera-
tion for performance benchmarking purposes. An impor-
tant milestone was the paper by Gray et al. [7], the authors
showed how to generate data sets with different distributions
and dense unique sequences in linear time and in parallel.
Fast, parallel generation of data with special distribution
characteristics is the foundation of our data generation ap-
proach.

Most scientific data generators have been built for a single
benchmark as well. Examples of simple data sets (i.e. that
only consists of single tables or or unrelated tables) are Set-
Query [15], TeraSort, MalGen [1], YCSB [5], the Wisconsin
database [2], and Bristlecone [4]. To generate data intra-
and inter-table dependencies – as specified in [21] – the data
generators have to be more sophisticated. For large data sets
two solutions are common: either to re-read the generated
data or to use a per user simulation for the generation. An
examples for the former approach is dbgen [24], the data gen-
erator provided by the TPC for the TPC-H benchmark[17],
another approach was presented by Bruno and Chaudhuri
[3]: it largely relies on scanning a given database to gener-
ate various distributions and interdependencies. Two fur-
ther tools that offer similar capabilities are MUDD [23] and
PSDG [9]. Both feature description languages for the defi-
nition of the data layout and advanced distributions. The
later approach is often realized by graph based models as
presented by Houkjær et al. [10] and Lin et al. [12].

All of these data generators consider the benchmarking
as a two phased procedure, first the data has to be loaded
and then a workload must be processed. Therefore, they
generate a historical load and rely on a workload generator
for queries and updates. However, in some cases the histor-
ical workload also reflects the stream of updates, e.g. in an
history-keeping dimension [14]. This cannot be generated
by either of the generators above.

3. PARALLEL DATA GENERATION
FRAMEWORK

The Parallel Data Generation Framework (PDGF), devel-
oped at the University of Passau, is a generic data generator
for relational data [19]. It was designed to take advantage
of today’s multi-core processors and large clusters of com-
puters to generate exabytes of synthetic data very quickly.
It was originally built for the generation of large, relational
data sets stored as flat files. Since the release of PDGF
Version 1.0 major parts have been extended and many new
functionality has been added.

The most important improvement in PDGF 2.0 is the

170

Figure 1: PDGF Architecture

ability to represent and generate data changes over time.
PDGF 2.0 is capable of performing multiple updates through-
out a benchmark run, like adding, changing and deleting
tuples. This allows the simulation of the natural growth of
a data set over time. Changed data can be generated as
a changed data capture file (CDC file), containing all the
transactions and changes in a specific time interval, or as
a snapshot of the entire table at a specific point in time.
The high data generation speed is achieved by exploiting
multi-core processors running in large clusters using the par-
allelism in pseudo random numbers. PDGF uses a fully
computational approach and is a pure Java implementation
which makes it very portable.

At its core PDGF consists of a set of functions that maps
virtual IDs to row values using hierarchically seeded random
number generators. Currently, PDGF uses 8 Byte integers
for seeds and random numbers.

Each table, each column of a table and each row of a table
have their own deterministic seeds, seeding a corresponding
random number generator with a period of 264 − 1, long
enough to generate petabytes of data. The seeded random
number generators are then used to compute the row values.
This unique seeding approach enables PDGF to quickly gen-
erate any row value for each field of a table independently
and deterministically. Even for large relational schemas with
hundreds of tables, and thousands of columns per table the
total number of seeds for tables and columns is manageable
and can be cached in PDGF. For instance, 1000 tables with
1000 columns each requires a cache of only 7.6 Megabytes.
Dependencies of columns, i.e. intra-row (e.g. ZIP->city),
intra-table (e.g. surrogate key sequence) and inter-table
(e.g. referential integrity) can be resolved without caching
all values or re-reading previously generated data back in.
We extended the seeding strategy to reflect time-related de-
pendencies and will give further details in Section 4.1.

Since the first publication of PDGF we have added many
features and replaced or extended about 80% of its code
base. The result, PDGF 2.0, will be presented in detail in
the following section.

3.1 Architectural Overview
PDGF is designed as a generic data generator for bench-

marking relational database systems. It was built with the
intention to enable a fast generation of non-trivial datasets

as used in TPC-H [18]. As such PDGF was designed with
the following four goals in mind:

• Configurability: PDGF is configurable to generate any
type of schema. The description of the data schema
and the generation output are described by two sepa-
rate XML files.

• Extensibility: PDGF can be extended to allow for
the implementation of future requirements. Nearly
every aspect of PDGF is exchangeable and expand-
able through plugins, enabling a broad band of appli-
cations.

• Scalability: This is achieved by parallelizing data gen-
eration in threads across processor cores, processors
and machines without many thread dependencies to
avoid costly inter-thread communication.

• Efficiency: PDGF efficiently uses all available system
resources while scaling linearly.

Figure 1 presents a high-level overview of PDGF’s archi-
tecture. The controller, depicted on the left side, is the
interface to the user by means of input files and a user inter-
face (UI), which can be either a graphical user interface, a
interactive shell, or a command line interface. The controller
reads meta-data about the schema to be generated, i.e. table
definitions, value distributions, output formats and system
configurations, from two XML files and initiates the meta
scheduler. The meta scheduler organizes the data genera-
tion across multiple machines. It also instantiates the sched-
uler that spawns multiple worker threads (by default one
for each core). The scheduler divides the work and assigns
equal sized, continuous portions of the data to each worker.
The actual data generation is done by so called generators,
which are executed in the worker threads. The workers use
the seeding system to give a correctly instantiated random
number generator to the data generators. These generate
the actual values. To generate non-uniform data the system
features various distributions that can be applied to the ran-
dom numbers. If updates have to be generated, the worker
use the optional update black box to retrieve the correct up-
date ID (see section 4.6). The values are then written to the
output system that writes them to files or any other target.
The output system can further manipulate the data, e.g.
splitting or grouping the generated data into multiple files

171

Figure 2: Example schema

and apply further formatting. As indicated, data generators
and output modules can be replaced or extended by user
defined plugins. The workflow of a data generation process
is as follows:

• Initialization: The controller, guided by the user, loads
and parses the configuration files to determine the sche-
ma and value distributions, and instantiates the sched-
ulers.

• Partitioning: The meta scheduler determines, which
data has to be generated by a particular PDGF in-
stance. The scheduler partitions the workload further
and assigns work units to worker threads,

• Data Generation: For each column the worker invokes
the appropriate data generator that generates the ac-
tual value and forwards the data to the output.

• Data Output: PDGF supports many different output
formats. The output system formats the generated
data as specified in the configuration and writes it to
the specified target, e.g. a file.

The following sections discuss our approaches to meet our
design goals, i.e. configurability, extensibility, scalability,
and efficiency.

3.2 Configurability
PDGF can be controlled by command line parameters, via

the built-in interactive shell or through external components
like a GUI. The data generation in PDGF 2.0 is controlled
by two XML based configuration files: i) the Schema XML
file and ii) the Generation XML file.

The schema XML file describes the schema of the data
set to be generated, how values for a certain table columns
should be generated, the relationship between table columns
and the distributions of table values.

Listing 1 shows the schema configuration file for the schema
introduced in Figure 2. It starts with the definition of three
properties prop, i.e. SF, Size Emp and SizeAcc. Support
for multiple properties was added in PDGF 2.0 for an eas-
ier adaption of table sizes and in order to express non-linear
growth between tables. However, properties can be deployed
to parameterize the configuration. After the properties are
defined the project seed is set. This seed is the root seed.
By changing it the complete data set will change. After
the seed the default random number generator is specified.
It is possible to specify different random number generator
implementations for different parts of the generated data.
The definition of the schema follows. It defines three re-
lations: employee, account and customer. Each relation is
represented by a table tag. Within each table tag single at-
tributes are defined using field tags. They define generators,
distributions and references.

1 <schema name=”mySchema”>
2 <prop name=”SF” type=”long ”>10</prop>
3 <prop name=”Size Emp” type=”long ”>50</prop>
4 <prop name=”Size Acc ” type=”long ”>200∗SF</prop>
5 <seed>1234567890</ seed>
6 <rng name=”PdgfDefaultRandom”/>
7 <t ab l e name=”employee”>
8 <s i z e>SF ∗ Size Emp</ s i z e>
9 < f i e l d name=”e i d ” type=”INTEGER”>

10 <generator name=”pdgf . generator . IdGenerator ”/>
11 </ f i e l d>
12 < f i e l d name=”jobcode ” type=”INTEGER”>
13 <s i z e>20</ s i z e>
14 <generator name=”pdgf . generator . PermuteJobID”/>
15 </ f i e l d>
16 </ tab l e>
17 <t ab l e name=”account ”>
18 <s i z e>S ize Acc</ s i z e>
19 < f i e l d name=”a id ” type=”INTEGER”>
20 <generator name=”IdGenerator ”/>
21 </ f i e l d>
22 < f i e l d name=”a manager id” type=”INTEGER”>
23 <generator name=”pdgf . generator . PermuteJobID”>
24 <r e f e r en c e>
25 <t ab l e>employee</ tab l e>< f i e l d>jobcode</ f i e l d>
26 </ r e f e r e n c e>
27 </ generator>
28 </ f i e l d>
29 < f i e l d name=”a c i d ” type=”INTEGER”>
30 <generator name=”Defau l tRe f e renceGenerator”>
31 <r e f e r en c e>
32 <t ab l e>customer</ tab l e>< f i e l d>c u s t i d</ f i e l d>
33 </ r e f e r e n c e>
34 </ generator>
35 </ f i e l d>
36 </ tab l e>
37 <t ab l e name=”customer ” type=”update ”>
38 <s i z e>SF∗100</ s i z e> < !−− i n i t i a l t a b l e s i z e−−>
39 <newPercentage>20</newPercentage>
40 <updatePercentage>75</ updatePercentage>
41 <de l e t ePe r centage>5</ de l e t ePe r cen tage>
42 < !−−s i z e of each update batch−−>
43 <UpdateSize>50 ∗ SF</UpdateSize>
44 <updateFirstID>1</updateFirstID>
45 <updateLastID>3</updateLastID>
46 < f i e l d name=”c i d ” type=”INTEGER”>
47 <updatePercentage>0</ updatePercentage>
48 <generator name=”pdgf . generator . IdGenerator ”/>
49 </ f i e l d>
50 < f i e l d name=”name” type=”INTEGER”>
51 <updatePercentage>0</ updatePercentage>
52 <generator name=”pdgf . generator . D i c tL i s t ”>
53 < f i l e>d i c t s /Given−Names . d i c t</ f i l e>
54 </ generator>
55 </ f i e l d>
56 < f i e l d name=”address ” type=”INTEGER”>
57 <updatePercentage>0 .25 ∗ 100</updatePercentage>
58 . . .</ f i e l d>
59 </ tab l e>
60 </schema>

Listing 1: Schema Configuration File

To enable the specification of complex relations between
tables and virtual tables, we have added a second XML con-
figuration file, the Generation XML file. Virtual tables are
not generated, but used for referencing instead. The genera-
tion XML file defines how data structures are defined, what
scheduler strategy to use, and how to perform the final pro-
cessing before the generated data is either directly stored in
a database, written to flat files or XML files. See Listing 2
for an example of a Generation XML file for the example of
Figure 2. Flat files can be specified using a template, which
is in-line Java code and compiled at runtime. For examples
see Listing 2 line 9 and 20.

172

1 <p r o j e c t>
2 <s ch edu l e r name=”Defau l tSchedu le r ”></ sch edu l e r>
3 <output name=”CSVRowOutput”>
4 <sortByRowID>t rue</sortByRowID>
5 <d e l im i t e r> |</ d e l im i t e r><!− f i l e f i e l d s epa ra to r>
6 <outputDir>output /</ outputDir>
7 <f i l eEnd ing> . txt</ f i l eEnd ing>
8 <f i l eTemp la t e>t ab l e . getName () +

f i l eEnd ing</ f i l eTemp la t e>
9 </ output>

10 <schema name=”mySchema”>
11 <t ab l e name=”account”>
12 <s ch edu l e r name=”UpdateScheduler”/>
13 <output name=”CSVRowOutput”>
14 <sortByRowID>t rue</sortByRowID>
15 <de l im i t e r> |</ d e l im i t e r>
16 <outputDir>output/</ outputDir>
17 <f i l eEnd ing> . txt</ f i l eEnd ing>
18 <f i l eTemp la t e>”Batch ”+(updateID+1)
19 +”/ ”+tab l e . getName ()+f i l eEnd ing</ f i l eTemp la t e>
20 </ output>
21 </ tab l e>
22 </schema>
23 </ p r o j e c t>

Listing 2: Generation Configuration File

PDGF’s template approach is very flexible. PDGF 2.0
features a TemplateOutput plugin, allowing the specification
of the exact formating of generated information within the
XML file using plain Java code. Despite the mixture of XML
and Java code this approach has many benefits for the con-
figuration file writers. They do not require a Java SDK or an
integrated development environment (IDE) to be installed
to create a new or adapt an output plugin. This is especially
useful if PDGF is running on a server and is controlled re-
motely using e.g. a terminal session. Using the Template-
Output, PDGFs output formating can be quickly and easily
adapted by using any available text editor. During runtime
the Java code is extracted from XML, compiled and loaded
entirely in memory using the Javassist framework, which is
itself written entirely in Java. As real bytecode is generated,
there is no performance penalty using this approach instead
of writing a dedicated output plugin class. The Java in XML
template concept can also be applied to generators, speed-
ing up their testing and development. However, writing a
dedicated plugin class is still the preferred way of extending
PDGF, as such a class can be reused and they offer better
configurability and better access to PDGF’s internal APIs.

Both XML files are validated by the framework on a mod-
ular basis. This means that XML subtrees are parsed di-
rectly by the modules that need the information. Plugin
writers can easily extend the XML node parser for their
components. An example can be seen in in Listing 3.

PDGF’s internal seeding strategy, parallelization, and ref-
erence generation is encapsulated in what we refer to as a
black box. The plugin API and the configuration files hide
the internals and make it therefore relatively simple to write
a custom plugin. While PDGF abstracts from paralleliza-
tion details as much as possible for certain plugin types,
some parallelization details have to be considered. This is
for example the case for scheduling and output plugins since
these are synchronization points within the framework.

3.3 Extensibility
Since we aimed to built a generic data generator, extensi-

bility is a paramount design goal. Therefore, our implemen-

1 public class MyOwnGenerator extends Generator {
2 private String myOwnNodeValue;
3 boolean required =false , used=true;
4 public MyOwnGenerator() {
5 super("My�first�generator");
6 }
7

8 public void nextValue(AbstractPDGFRandom rng ,
GenerationContext gc,

9 FieldValueDTO fv) {
10 fv.setValue (myOwnNodeValue);
11 }
12

13 protected void initStage0_configParsers(){
14 addNodeParser(new Parser(required , used ,

"myOwnNode", this , "someDescription") {
15 protected void parse(Node node){
16 myOwnNodeValue=node.getTextContent();
17 if(myOwnNodeValue.isEmpty ())
18 error("must�not�be�empty!");
19 }});
20 }}

Listing 3: Example of Simple Generator
Implementation

tation allows for all major parts of PDGF to be extended
and replaced by custom plugins. For each module a corre-
sponding superclass within the pdgf.plugin package exists.
To implement a custom plugin this superclass can be ex-
tended. PDGF automatically imports all plugins that are
stored in its plugin folder. Alternatively, plugins can be
loaded with command line arguments and during runtime.
To use a custom plugin in the schema configuration file, its
fully qualified class name needs to be specified. This can be
seen in Listing 1 line 10.

Every plugin is part of a parent/child(s) structure, which
resembles the XML Document Object Model tree. This
makes accessing and navigating the internal data structure
very easy and intuitive. A properties API allows for vari-
able assignment and simple arithmetic calculations within
the XML file. This can be seen in Listing 1. PDGF sup-
ports long, double and date values, non-nested brackets and
the four basic operations {+,−, ∗, /} . Properties can be
nested as shown in Listing 1, where the value of property
Size Acc is dependent of property SF multiplied by 200.

3.4 Scalability
Traditionally the generation of synthetic data scales very

nicely as long as there are no synchronization points between
processes/threads. Hence, the goal for PDGF was to reduce
synchronization between processes/threads to an absolute
minimum. However, some synchronization is still required.
The most notable synchronization points are those to shared
resources like the hard disk. All synchronization critical data
structures are cloned for each thread. PDGF’s computa-
tional approach of data generation in general provides for
a synchronization, cache and disk/network read access free
way of generating data. PDGF does not rely on an underly-
ing database management system or other caching facilities
to store intermediate values or resolving data interdepen-
dencies. This allows linear scalability across processor cores
and systems, as every worker thread and instance of PDGF
generates its own data partition without the need of waiting
for intermediate results of other parts or control communi-
cation between them. This is especially important in shared

173

nothing architectures where the exchange of data between
nodes is very expensive.

3.5 Efficiency
The same strategies that enable the scalability are respon-

sible for the efficiency of the framework. Every complex data
structure is an organization of the relations between its en-
tities. To generate a relation, one must know the value of
the related entity. With an computational approach disk
and network access can be avoided by computing values.
When comparing the amount of CPU cycles required e.g.
for hard disk access to the amount of cycles required to
(re-)calculate the value on demand in nearly all cases the
(re-)calculation is much cheaper. The same is true for in
memory cache structures. The costs for maintaining e.g. a
LRU cache data structure outweighed its benefits of avoid-
ing (re-)calculation. This may not be true for every data
set one wishes to generated, but for most cases this is true.
The only value caching strategy of PDGF is to cache the
last generated value of each generator for intra tuple de-
pendencies. PDGF’s ability to utilize all available compute
resources and avoiding idle times due to synchronization are
providing it with an outstanding efficiency.

4. COMPUTATIONAL APPROACH TO
DATA GENERATION

As long as there are no dependencies between data val-
ues, PDGF can compute each data value completely inde-
pendent. Even in the presence of data dependencies there is
no need to scan for values or cache referenced values, as each
value can be recalculated by reseeding the random number
generators. The underlying principle is a series of mapping
steps. Each data value in the data set has a virtual unique
key similar to an virtual address in a database system. With
this key the data value can be addressed. The addressing
in a table can be done the same way as in a 2 dimensional
matrix, each cell can be identified with the table’s columns
and rows. The complete key K of a value consists of three
identifiers:

K : (table ID, column ID, row ID)

To track changes of the values over time PDGF 2.0 uses
an additional attribute, the update ID. The resulting key
consists of four identifiers:

K : (table ID, column ID, update ID, row ID)

The update ID addresses an abstract time unit. If the
time component is not required the update ID is always set
to zero. Otherwise the range of legitimate update IDs is
specified in the schema configuration file (an example can
be seen in Listing 1, line 45-46). All values addressed by
a key are usually derived from a random number that is
generated by a permutation or a random number genera-
tor (RNG). Both, the permutation and the RNG require an
initial value, i.e. a seed, to initialize their internal state.
PDGFs data generation approach requires the permutation
or random number generator to deterministically generate
the random number for a given seed and key. Based on this
key a value generator deterministically generates the con-
crete value. That means that a repeated computation of a

Figure 3: PDGF’s Seeding Strategy

value will always lead to the same result. Since the values
are derived from a random number, the RNG or permu-
tation must always start from the same internal state, i.e.
from the same seed. This assures that the generation uses
the same stream of random numbers for a repeated genera-
tion of the same values. PDGF uses the following steps to
deterministically generate a value for a certain key K:

1 generate a unique seed S for K, S → K,

2 seed a random number generator with S

3 pass the seeded RNG to the value generator which is re-
sponsible to generate the actual value

4 the generator uses the provided RNG to generate the re-
quired amount of random numbers and calculates the con-
crete value

The seed is generated using the deterministic seeding strat-
egy which will be discussed in detail in the next section. The
value generator uses the generated random numbers to de-
terministically generate a value, a very common generator is
a dictionary lookup: the line number is calculated by com-
puting the modulo of the random number. This is also used
in the example in Listing 1, line 53 (the DictList generator).

4.1 Seeding Strategy
In PDGF the mapping of a key to the corresponding seed

is realized by a hierarchical seeding strategy. Basically, mul-
tiple random number generators are chained. In Figure 3
this hierarchical organization can be seen. To generate the
random number of a certain field in the data set the seed for
the relevant field has to be calculated. Starting from a single
master seed (see listing 1 line 5) for the complete data set
(project) the table RNG generates a series of seeds one for
every table. Each table seed seeds a new RNG which is used
to generate seeds for every column. With the column seed
the update RNG is seeded which in turn seeds the row RNG.
The row RNG then generates a seed for every field, which
is used to seed the value generator which deterministically
generates the final value.

This strategy is very efficient since most of the seeds can
easily be cached. The number of tables and columns which
is also the number of their seeds is usually relatively small
and does not change during the generation process. There-
fore, these seeds can be cached. The update ID also changes
only periodically and can therefore be cached as well. Only
the row changes very frequently. Since the seeds are orga-
nized hierarchically it is only necessary to retrieve the low-
est cached seed. With this seed the row RNG is seeded.
These operations are computationally inexpensive. With
the seeded row RNG the random number that is basis for

174

void skip(long step){
seed += step;

}

long next() {
++seed;
long x = seed;
x = x ^ (x >>> 15); // XOR1
x = x ^ (x << 35); // XOR1
x = x ^ (x >>> 4); // XOR1
x = 4768777513237032739L * x; // MWCG
x = x ^ (x << 17); // XOR2
x = x ^ (x >>> 31); // XOR2
x = x ^ (x << 8); // XOR2

return x;
}

Listing 4: Counter-PRNG Hash Function

the value generation can be generated. A problem arises
during reference computation. If a reference must retrieve
the value from row 1000, a normal RNG had to be seeded
and called 1000 times to retrieve the 1000th random number
in the random number stream. This would be to costly. The
problem can be solved if the RNG is capable to jump to the
n-th random number in the random number stream without
calculating all n-1 values before. The function to directly
jump to a certain position in the random number stream is
called skip ahead. The random number generator algorithm
has to directly support this function.

4.2 PRNG
The deterministic generation of data relies largely on the

properties of pseudo random number generators. To be more
precise, a qualifying random number generator has to satisfy
the following properties:

i) It must be very fast, i.e. computationally inexpensive;
ii) It must be able to generate random values for all number
primitives of Java; iii) It must have a sufficiently long period,
to be able to generate petabytes of data; iv) It must be
statistically sound in its value distribution; and v) It must
support a computationally inexpensive skip ahead function.

Java’s default random number generator does not satisfy
these requirements because of its short period, poor distri-
bution of values, lack of speed and most of all, the missing
skip ahead functionality.

The PRNG used in PDGF generates random numbers by
hashing successive counter values where a seed serves as the
initial counter value. This approach makes skipping ahead
an arbitrary number of values inexpensive as it is only a sin-
gle add operation of two long primitives. The algorithm it-
self, as shown in listing 4, is a combined generator consisting
of two XOR-shift-generators surrounding a multiply-with-
carry-generator. The design of the algorithm was inspired
by the works of Marsaglia [13] and Panneton and L’Ecuyer
[16].

This above default PRNG can be exchanged with any
other PRNG as long as all of the above requirements are
met. In addition it is possible to specify a different PRNG
for each generator.

4.3 Permutations
Pseudo random numbers are not sufficient to generate all

types of complex data. Three examples of data that cannot
be generated by a PRNG presented above are:

1 Streams of unique numbers in a predefined range (for ex-
ample for sampling without replacement),

2 Streams of random numbers with exact distributions (for
example generate 100 random values with exactly 20 times
value “2” and 80 times with value “6” without a counter),
and

3 Inverted random numbers, i.e. generate the position in
the stream of a random number.

A PRNG is a injective mapping function, that means it
maps distinct elements of its domain to distinct element of
its codomain. In general and specifically in the case of our
PRNG, this mapping cannot be reversed, so it is not possible
to map a random number back to its seed.

Unless all generated random numbers are cached, PRNGs
cannot be used for sampling without replacement. However,
permutations can be used for sampling without replacement.
The simplest way of generating a random permutation of
values in a range [0, n] is shuffling an array containing the
numbers 1 to n. This approach is time and memory consum-
ing. The later is a big problem if billions of random numbers
need to be generated. Allocating a sufficiently big array is
inefficient and in some cases even impossible due to memory
or programing language restrictions (in Java the maximum
array size is 231−1. Storing long values in such an array re-
quires 16 gigabyte). A permutation algorithm suitable to be
used in a parallel data generation environment must meet
the following criteria. The permutation function: i) Must
be a computational approach to do the mapping, ii) Must
be reasonable fast (computationally inexpensive), iii) Must
be randomizeable by means of a seed, and iv) Should be
bijective.

A permutation can be used in more complex ways than
just for sampling without replacement if the permutation is
a bijective function. Consider the following example from
listing 1: An employee table E with primary key EeID con-
tains records for all employees of a company. Employee job
types are identified by a numerical field EJobCode within this
table. An account table A has a foreign key Aamanagerid

referencing employees in E through their EeID. However,
only employees are referenced with a specific job type, e.g.
EJobCode=315 representing account managers. Using the
seeding strategy described in 4.1 the EJobCode of an em-
ployee can be easily recomputed if the employee’s Aamanagerid

is known. During the generation of data for the Accounts
table we need to generate employee Aamanagerid that corre-
spond only to employees that are account managers. One
approach would be to pick a random EeID and see whether
this employee is an account manager. If yes, this EeID is
picked. If not, a new EeID is picked. Besides being ineffi-
cient, this approach is not deterministic, especially in par-
allel data generation. Another approach is to cache the em-
ployee table or generate it completely every time. For large
employee tables, this is either very memory intensive or a
computational nightmare.

A computational solution is to use a bijective mapping
function as shown in Figure 4. If the left side in Figure
4 represents the employee IDs (EeID) then the right side is
grouped into blocks of job codes (EJobCode). To determine if
a specific employee, identified with his ID EeID is an account
manager, we compute the permutation for the ID in the

175

Figure 4: Bijective permutation with offset

following way:

X = perm(eID) (3)

If the permutation result X is within a certain block e.g let
the first block [0,2] represent account managers, it is assigned
the EJobCode=315, i.e. the employee job code for account
manager. In Figure 4 this is the case if X is within [0,2]
on the right side of the permutation. To get the EeID for
a random account manager, we select a random number R
from the block of account manages, which is between [0,2]
on the right side and compute the reverse permutation:

eID = inversePerm(R) (4)

Let R be 2, then the inverse permutation for the example
in Figure 4 is 5. Now we know, that the employee with
employee ID (EeID = 5) is an account manager. This way
it is possible to pick (compute) a random employee from
the set of account managers without caching, precalculating
or storing any other information than the total amount of
existing account managers within the employee table. In
the next section we will explain how to compute a bijective
permutation.

4.4 Bijective Permutation
PDGFs implementation of an bijective permutation is bas-

ed on a linear permutation polynomial. It fulfills all the
above required criteria. It is a special case of quadratic per-
mutation polynomials g(x) = ax2+bx+c for the ring Z/pkZ,
with k = 1. In the case k = 1 a must be 0 and b �= 0.
The linear permutation polynomial is therefore defined as
g(x) = bx + c; Z/pZ; b �= 0 and the inverse permutation as
g−1(y) = (x− c) · b−1, where b−1 is the inverse element of b
in Z/pZ. This implies that b−1 · b mod p = 1. The value for
p is the number of elements in the permutation. To define
different permutations polynomial we have to determine dif-
ferent values for b b−1 and c using a seed similar to a PRNG.
In fact our implementation uses the seed to seed a PRNG to
generate random values. For c we choose a positive random
number. Obviously, p is not necessarily a prime number. If
p is not prime, there might not be an inverse element for ev-
ery possible b in Z/pZ. Hence, suitable values for b and b−1

must be found. To find a suitable b, b is chosen randomly
until it satisfies the condition b−1 · b mod p = 1. Without
such a pair of b’s the permutation does not work.

Once valid values are found the algorithm is very simple as
can be seen in Listing 5. There are two important implemen-
tation details. First, Java’s % operator is not a real modulo

perm(x){
y = (x * b + c) mod p
return y;

}

invperm (y){
x=((y - c) * b_inv) mod p
return x;

}

Listing 5: Bijective permutation

but a remainder and cannot be used. Second, the limited
range of values: as PDGF is intended to generate billions
of rows/ID, the multiplication of x and b using long primi-
tive may overflow resulting in a erroneous calculation. Our
implementation, therefore, tests if the values could overflow
and if true uses BigIntegers instead of primitives supporting
numbers greater than Long.MAX_VALUE.

4.5 Growing Offset Permutation
The simple permutations described in Section 4.3 work if

the number of elements is static. However, if the number
of elements varies as, for example for updates in a table,
a more involved approach is needed. Consider the follow-
ing variation of the example illustrated in Section 4.3: Let’s
assume we want to add or remove entries in the customer
table from listing 1 due to common actions such as gain-
ing new customers, removing old customers. These actions
change the number of elements in the permutation which is
not supported by a general permutation.

To solve this problem we have developed a permutation
with flexible number of elements, i.e. a permutation with a
mechanism to add and remove elements without destroying
the existing permutation. We call this permutation growing
offset permutation. The name indicates that our permu-
tation can grow and be reduced by a certain offset. The
offset concept is the same as used in Section 4.3 to identify
employees which are account managers. We define a map-
ping of ID’s on one side to continuous groups of offsets on
the other side of the permutation. The offsets are used to
determine the amount of IDs added and removed from the
permutation. Basis of the growing offset permutation are
multiple instances of bijective permutations. The instances
are organized in a hierarchical structure as shown in Figure
5.

There are practical limitations to the depth of such a hi-
erarchy of bijective permutations. To keep the size man-
ageable we introduced the notion of an abstract time unit
T , which we call generation. During every generation el-
ements can be removed and added. If the likelihood of re-
moving elements from the permutation is higher than the
likelihood of adding elements the growing offset permutation
eventually runs out of elements, i.e. we will have an empty
generation against which no updates are possible. Otherwise
if the likelihood of adding an element is higher the number
of elements will grow. If both, adding and removing, have
equal probability the size will be constant. A generation T
can be seen as a snapshot containing the state of the table
during the time period of length T . The period of a genera-
tions can be specified, e.g. seconds, minutes, days or years,
depending on the desired granularity.

Each generation requires its own instance of a bijective

176

Figure 5: Growing Offset Permutation

permutation. The first generation behaves exactly as a nor-
mal permutation as depicted in Figure 4. On the right hand
side the primary keys of the table can be seen, e.g. employee
identifiers. In generation 0 there are four initial elements.
In the first generation two elements are deleted, two are
changed and two are added. For generation 1, we define
three ranges Delete[1, 2], Change[3,4] and New[5,6]. The
change part will be important later in Section 4.6 and will
be excluded for now. All IDs selected by the permutation
from left to right in the range Delete[1,2] are deleted in gen-
eration 1. In our example these are the IDs {4,1}.

The permutation for generation 2 maps to generation 1
and not directly to the ID range. It also adds an offset, as
the values [1,2] in generation 1 are no longer available since
they were deleted. In Figure 5 generation 2 maps 1 → 1
and 2 → 4 but two elements where removed at generation
1. To address this fact an offset is added to the mapping,
the correct elements in generation 1 are: 1 → (1 + 2) = 3
and 2 → (4 + 2) = 6. To find the real values for 3 and
6 we have to use the first generation’s permutation to the
real ID. As result, ID 2 and 5 are determined to be deleted
in generation 2. The mapping chain for generation 2 is:
1 → 1 + 2 = 3 → 2 and 2 → 4 + 2 = 6 → 5. For generation
3 it is 1 → 4 + 2 = 6 → 8 and 2 → 2 + 2 = 4 → 2 +
2 = 4 → 3. Notice that in the chain for 1 in generation
3 we skip generation 1, as 1 in generation 3 maps to 6 in
generation 2 and 6 is new in generation 2. Therefore it
cannot have a mapping to generation 1 as this ID has not
yet existed in generation 1. This schema guarantees that
deleted ID are not picked again (e.g. for updates) and it
makes it possible to grow permutations in each generation
by adding an arbitrary amount of new elements.

4.6 Update Black Box
In order to encapsulate the evolution of the data over time

PDGF 2.0 features an update black box. The update black
box implements the previously described time-sliced based
data evolution based on the Growing Offset Permutation.
Each abstract time slice is identified by an ID, in the follow-
ing called updateID. Consider the generation of data for a
table containing cutomers records, e.g. c ID, name, address.
The attribute ID uniquely identifies a customer. There can
be three different update actions: new, change, delete. New

customers are inserted into this table with a given likelihood
in a new action. Customers are updated in a change action
that occurs with a certain likelihood. For every change ac-
tion one or more values in the customers tuple change, e.g
the address. Obviously, not all values change always at the
same time. For example the ID will never change and the
name is very unlikely to change, while a fictitious field last
change would change every time. The end of the lifecycle
of a customer record is marked by delete action. When the
record is deleted no more changes can happen to a customer
record and the ID will not be reused again. The update
black box models and manages the lifecycle of all IDs in
one table. For an ID the cycle is: new→new0...n →delete.
As mentioned above, the time granularity is defined by the
length of one time slice that is identified by a update ID.
The time slice is the abstract minimum length of time and
can have an arbitrary fixed-sized duration. In every time
slice a given number of records - identified by their IDs - are
affected by one of the three update actions. For each ac-
tions the correct number of records will be added, changed,
or deleted in each cycle depending on the actions likelihood.
The update black box can calculate the state of every ID for
every time slice. It can therefore decide if a certain ID exists,
is inserted, deleted or updated in this time slice. Further-
more, the update black box can calculate in which time slice
a record was inserted, deleted or updated. This is necessary
to retrieve the current state of a record.

The described update black box is integrated in PDGF 2.0
but can be exchanged/extended through plugins. Key fea-
ture of its implementation is the growing offset permutation
presented before.

4.7 Generation Workflow
In this section we will give a complete overview of the data

generation procedure. In an initial load phase PDGF parses
the XML file, builds its internal representation, validates
and initializes all modules. In the next step the scheduler
selects the next table to generate. The scheduler is responsi-
ble to split the workload among the threads, e.g. in a round
robin fashion. To allow for different scheduling schemes,
PDGF 2.0 features a meta scheduler that enables a specific
scheduler per table. The threads receive work units from the
scheduler. These work units are the description of the next
generation task of a thread. In the most basic example this
is a table ID, the first and the last row of the data partition
that the thread has to generate. Based on this information
the worker constructs the key for the next field, uses the
seeding strategy to obtain the seed, and seeds the genera-
tor’s RNG. Then the thread requests the next value from the
generator. The generator usually uses the provided RNG to
calculate the value. The thread requests all values within
a row from the specified generators and passes them to the
responsible output system. The output system formats the
row and writes it in a file. This is done for all rows in the
partition. After that the thread requests the next work unit
until all data is generated.

4.8 Some Performance Considerations
As mentioned in Section 3.1 scalability and efficiency are

important design goals for PDGF. Hence, during the imple-
mentation of PDGF we constantly watched out for pitfalls
that might cause bad performance. For example, object
allocation and deallocation can be a serious bottleneck, es-

177

pecially in systems automatic garbage collection. We use
reusable data transfer objects for communication between
components, thereby, minimizing allocation and dealloca-
tion overhead.

One problem in parallel data generators is the generation
of ordered output, as the arrival time and thus the order of
generated data for individual threads is not always deter-
ministic. Sorting or synchronizing the write operations of
generated data can easily become a serious bottleneck. One
approach is to block all threads that generated data that
arrives too ”‘early”’ until the right element arrives. This is
very inefficient. In some cases caching can alleviate the in-
efficiency, because it allows fast threads to proceed and sort
within the cache. PDGF features an ordering cache based
on a lock free concurrent SkipListMap data structure. One
is used as a value store for the generated data. A second
SkipListMap is used to build a custom PriorityLock. The
SkipListMap in the PriorityLock is used as a ordered wait
list to put threads into sleep state when they are ahead of
the current sliding window. A housekeeper thread drains the
cache and notifies the thread at the head of the wait list each
time an element is removed from the sorted value cache. Us-
ing this caching and locking schema we can a assure a high
throughput.

5. PERFORMANCE EVALUATION
High data generation speed is of paramount importance

for PDGF 2.0. The data sets that are required for TPC
benchmarks can reach 100 terabytes. They are typically
generated on multi-core systems and in some cases on clus-
ters of multi-core systems. Hence, PDGF 2.0 is required to
scale both up and out with various systems.

High data generation speed is particularly important if
data sets are generated right before benchmark execution.
This helps in implementing an ad-hoc benchmark, because
only the data set characteristics (min, max values, distribu-
tions etc.) are known a-prior, but not the data itself.

We evaluate PDGF 2.0 on a 24 core enterprise level SMP
server. This server has four X5670 Intel Xeon CPUs with six
cores and twelve megabytes cache each. They are clocked
at 2.93 GHz. The server has a total of 140 gigabytes main
memory. Because we do not have access to a sufficiently fast
storage array (24 cores would require about 600 MB/s write
speed), we write all data to \dev\null.

We generate data for an ETL scenario, similar to the
benchmark proposed by Wyatt et. al [25], which is based
on the data model of TPC-E. Specifically, we generate a
Trading table consisting of six columns: i) LastTradeDate,
the date of last completed trading day, ii) SecuritySymbol,
symbol of the security, iii) ClosingPrice, closing price of the
security on LastTradeDate, iv) HighPrice, highest price for
the security on LastTradeDate, v) LowPrice, lowest price
for the security on LastTradeDate and vi) Volume, trading
volume for the security on LastTradeDate. It models daily
trading information of securities on exchanges for multiple
years. The table is sorted by its first column, LastTrade-
Date. SecuritySymbol is a reference (foreign key) to a table
holding securities. However, only references to certain se-
curities qualify. The securities table does not need to be
generated in order to choose qualifying security references.
ClosingPrice and HighPrice are random numbers with a spe-
cific distribution in different ranges and LowPrice and Vol-
ume are intra-column references to ClosingPrice.

For the above table we generate the initial data and 3 up-
date sets, each representing data for one trading day. The
update sets contain two additional fields, because they rep-
resent data from a change data capture (CDC) system. The
first field denotes whether the data is an insert, update or
delete. The second represents a database sequence number,
basically an incrementally increasing ID. The historical data
set includes one record per active security per day between
a start date and end date. Each incremental data sets con-
tains one record per active security. The number of active
securities depend on a scale factor. The abstract schema can
be seen in the table below:

Field Comment

CDC ID 1,2,3,... (update only)
CDC Flag i, u, or d (update only)
Date Sort order
Reference To other table
Number Real with predefined distribution
Number Integer with predefined distribution
Reference Intra-table reference * random number
Reference Intra-table reference * random number

We conduct two experiments. The first tests how well
PDGF scales with the number of processor cores on a given
system. This is tested by generating the data sets for a ficed
scale factor of 1.000.000, which results in a total data set of
18 gigabytes. Starting with a single thread we incrementally
double the number of threads to a maximum of 32. Obvi-
ously, PDGF can only use as many cores as the given number
of threads. Therefore, PDGF is not able to fully utilize the
system with less than 24 threads. Figure 6 shows the gener-
ation time (solid line) and the throughput (dotted line) for
this test. The generation speed scales nicely with the num-
ber of threads up to 8 threads. Starting with 16 threads
scalability flattens out. The maximum throughput of nearly
180 MB/s is achieved with 16 threads. At 32 threads, which
is 8 threads more than the number of physical cores, the
throughput starts decreasing. The sublinear speedup is due
to the synchronization overhead as well as the competition
of generation threads with controlling threads. The update
black box in PDGF 2.0 follows a producer-consumer pattern,
which contains inherent synchronization points and there are
several other threads that contain synchronization points. If
these threads have to compete with the generation threads
the overall throughput can decrease.

To get so some more insights on the synchronization over-
head, we run the same test on a SPARC T3-4 server. This
system has 4 T3 CPUs with 16 cores, each clocked at 1.65
GHz with a cache size of 6 MB. Each core has 8 threads re-
sulting in a total of 512 threads, i.e. virtual processors. The
system had 512 gigabytes of RAM. On this system we chose
a scale factor of 100.000 resulting in 1.8 gigabytes of data.
The result of this test are depicted in Figure 7. On the first
impression the results are surprising. The data generation
scales well up to 32 threads and then slows down dramat-
ically. However, these results verify our previous findings.
As soon as the generation threads compete with the con-
trol threads the generation speed decreases. An interesting
side effect is the better performance of 512 threads. We as-
sume that the thread scheduling works more effective if all
hardware threads are utilized.

In our second experiment we generated three different
data set sizes with 32 threads. We used scale factors 1.000.000,

178

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32
 0

 50

 100

 150

 200

G
en

er
at

io
n

T
im

e
[m

in
]

T
hr

ou
gh

pu
t [

M
B

/s
]

#Threads

Figure 6: Generating 18 Gigabytes with Different Numbers of Threads

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8 16 32 64 128 256 512
 0

 10

 20

 30

 40

 50

 60

G
en

er
at

io
n

T
im

e
[m

in
]

T
hr

ou
gh

pu
t [

M
B

/s
]

#Threads

Figure 7: Generating 1.8 Gigabytes with Different Numbers of Threads

 0

 2

 4

 6

 8

 10

 1 2 4
 0

 20

 40

 60

 80

 100

 120

 140

 160

G
en

er
at

io
n

T
im

e
[m

in
]

T
hr

ou
gh

pu
t [

M
B

/s
]

Scale Factor in Millions

Figure 8: Generating 18-72 Gigabytes with 32
Threads

2.000.000, and 4.000.000; resulting in 18, 36, and 72 giga-
bytes of data. In Figure 8 the generation time (solid line)
and the throughput (dotted line) can be seen for each run.
The throughput is fairly constant at 144 MB/s, consequently
the generation time is directly dependent to the scale factor.
This indicates that it is possible to generate arbitrary large
data sets without decreasing throughput. With 144 MB/s
it would take less than 2 hours to generate data sets of one
terabyte.

In general, these results present the good scalability of
our system. For large SMP systems like our test system the
synchronization overhead is reasonable, but it decreases the
overall speedup at high thread counts. However, this is an

example of a fairly complex relation. Most tables are less
complicated to generate and will therefore have much better
throughput and scalability.

6. CONCLUSIONS
In this paper we have presented our approach to data

generation that makes it possible to generate consistent up-
dates and change data captures. Our approach is based on
the parallel data generation framework, PDGF, Version 1.0.
The new version is PDGF 2.0. Basis of our method is the
exploitation of determinism in random number generation.
To generate unique references to we use invertible permu-
tations. To generate consistent updates we have introduced
the concept of a growing offset permutation which enables
us to keep track of the changes in the database when we
generate update, inserts and deletes. Our experiments show
that the generation scales perfectly with the problem size
and that we can achieve good speedups on large enterprise
class server systems.

For future work we will further extend this concept to gen-
erate verifiable query workloads. For this we will generate
queries using our data generator as references to the base
tables. This way we will be able to pre-compute the query
results and therefore also test the correctness of the system
under test. For this we will combine the deterministic data
generation with our workload generation concept [20].

7. ACKNOWLEDGEMENTS
The authors would like to thank Manuel Danisch for his

help with the implementation of PDGF 2.0. Furthermore,

179

we thank the anonymous reviewers for their valuable input
that helped to improve the quality of the paper.

8. REFERENCES
[1] C. Bennett, R. Grossman, and J. Seidman. MalStone:

A Benchmark for Data Intensive Computing.
Technical report, Open Cloud Consortium, 2009.

[2] D. Bitton, D. J. DeWitt, and C. Turbyfill.
Benchmarking Database Systems: A Systematic
Approach. In VLDB ’83: Proceedings of the 9th
International Conference on Very Large Data Bases,
pages 8–19, San Francisco, CA, USA, November 1983.
ACM, Morgan Kaufmann Publishers Inc.

[3] N. Bruno and S. Chaudhuri. Flexible Database
Generators. In VLDB ’05: Proceedings of the 31st
International Conference on Very Large Databases,
pages 1097–1107. VLDB Endowment, 2005.

[4] Continuent. Bristlecone.
https://bristlecone.svn.sourceforge.net/svnroot/-
bristlecone/trunk/bristlecone/.

[5] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In SoCC ’10:
Proceedings of the 1st ACM Symposium on Cloud
Computing, pages 143–154, New York, NY, USA,
2010. ACM.

[6] DTM Database Tools. Dtm data generator.
http://www.sqledit.com/dg/.

[7] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
P. J. Weinberger. Quickly Generating Billion-Record
Synthetic Databases. In SIGMOD ’94: Proceedings of
the 1994 ACM SIGMOD International Conference on
Management of Data, pages 243–252, New York, NY,
USA, 1994. ACM.

[8] GSApps. Gs data generator.
http://www.gsapps.com/products/datagenerator/.

[9] J. E. Hoag and C. W. Thompson. A Parallel
General-Purpose Synthetic Data Generator. SIGMOD
Record, 36(1):19–24, 2007.

[10] K. Houkjær, K. Torp, and R. Wind. Simple and
Realistic Data Generation. In VLDB ’06: Proceedings
of the 32nd international conference on Very large
data bases, pages 1243–1246. VLDB Endowment, 2006.

[11] K. Huppler. The Art of Building a Good Benchmark.
In TPCTC ’09: First TPC Technology Conference on
Performance Evaluation and Benchmarking, pages
18–30, 2009.

[12] P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske,
S. Cox, C. Rendón, D. Holt, and R. Xiao.
Development of a Synthetic Data Set Generator for
Building and Testing Information Discovery Systems.
In ITNG ’06: Proceedings of the Third International
Conference on Information Technology: New
Generations, pages 707–712, Washington, DC, USA,
2006. IEEE Computer Society.

[13] G. Marsaglia. Xorshift RNGs. Journal Of Statistical
Software, 8(14):1–6, 2003.

[14] R. O. Nambiar and M. Poess. The Making of
TPC-DS. In VLDB ’06: Proceedings of the 32nd
International Conference on Very Large Data Bases,
pages 1049–1058, 2006.

[15] P. E. O’Neil. The Set Query Benchmark. In J. Gray,
editor, The Benchmark Handbook for Database and
Transaction Systems (2nd Edition). Morgan
Kaufmann Publishers, 1993.

[16] F. Panneton and P. L’ecuyer. On the Xorshift Random
Number Generators. ACM Transactions on Modeling
and Computer Simulation, 15(4):346–361, 2005.

[17] M. Poess and C. Floyd. New TPC Benchmarks for
Decision Support and Web Commerce. SIGMOD
Record, 29(4):64–71, 2000.

[18] M. Poess, T. Rabl, M. Frank, and M. Danisch. A
PDGF Implementation for TPC-H. In TPCTC ’11:
Third TPC Technology Conference on Performance
Evaluation and Benchmarking, 2011.

[19] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A
Data Generator for Cloud-Scale Benchmarking. In
TPCTC ’10:Proceedings of the Second TPC
Technology Conference on Performance Evaluation,
Measurement and Characterization of Complex
Systems, pages 41–56, 2010.

[20] T. Rabl, A. Lang, T. Hackl, B. Sick, and H. Kosch.
Generating Shifting Workloads to Benchmark
Adaptability in Relational Database Systems. In R. O.
Nambiar and M. Poess, editors, TPCTC ’09: First
TPC Technology Conference on Performance
Evaluation and Benchmarking, volume 5895 of Lecture
Notes in Computer Science, pages 116–131. Springer,
2009.

[21] T. Rabl and M. Poess. Parallel Data Generation for
Performance Analysis of Large, Complex RDBMS. In
DBTest ’11: Proceedings of the 4th International
Workshop on Testing Database Systems, page 5, 2011.

[22] Red Gate. Sql data generator 2.0.
http://www.red-gate.com/products/sql-
development/sql-data-generator/.

[23] J. M. Stephens and M. Poess. MUDD: a
multi-dimensional data generator. In WOSP ’04:
Proceedings of the 4th International Workshop on
Software and Performance, pages 104–109, New York,
NY, USA, 2004. ACM.

[24] The Transaction Performance Processing Council.
Dbgen. http://www.tpc.org/tpch/.

[25] L. Wyatt, B. Caufield, and D. Pol. Principles for an
ETL Benchmark. In TPC TC ’09: First TPC
Technology Conference on Performance Evaluation
and Benchmarking, pages 183–198, 2009.

180

