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ABSTRACT
Efficiency in supercomputing has traditionally focused on
execution time. In early 2000’s, the concept of total cost of
ownership was re-introduced, with the introduction of effi-
ciency measure to include aspects such as energy and space.
Yet the supercomputing community has never agreed upon a
metric that can cover these aspects completely and also pro-
vide a fair basis for comparison. This paper examines the
metrics that have been proposed in the past decade, and
proposes a vector-valued metric for efficient supercomput-
ing. Using this metric, the paper presents a study of where
the supercomputing industry has been and where it stands
today with respect to efficient supercomputing.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—measurement techniques, performance attributes;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Design, Measurement, Performance, Standardization

Keywords
Energy efficiency, TOP500, Green500, SPECpower

1. INTRODUCTION
Efficiency in supercomputing has traditionally focused on

definitions based on execution time and is often conflated
with performance. It is commonly measured in terms of a
calculation rate such as floating point operations per second
(FLOPS) or instructions per second. In fact, this type of
metric is conveniently used to define a supercomputer [36].
For example, the TOP500 project [39] ranks computers by
how quickly each can solve the LINPACK benchmark [6];
the first 500 are called “supercomputers”. The LINPACK
benchmark has a fixed number of algorithmic steps to take
for a given problem size, thus the quoted MFLOPS metric
is a reference to number of such steps per second.
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In early 2000’s, the concept of total cost of ownership
(TCO) was re-introduced into the supercomputing commu-
nity, with the introduction of efficiency measure to include
aspects such as energy, space, reliability, and availability.
All of these had been considered before, but were seemingly
of less importance prior to this. There was a concern that
we were designing new supercomputers with little consider-
ation for the overall TCO. Many of the current leaders in
the current TOP500 list consume multiple megawatts to just
run the LINPACK benchmark, costing agencies like U.S. De-
partment of Energy one million U.S. dollars per megawatt
per year. As a result, there has been a substantial increase
in the interest in pursuing efficient supercomputing.

An immediate question is how to quantify efficiency in su-
percomputing [16]. One possible metric is the performance-
power ratio. For example, the Green500 project [13] re-
ranks TOP500 supercomputers by LINPACK performance
per watt (or equivalently, algorithmic steps per joule), re-
ferred to as FLOPS/W. However, this “miles per gallon”
type of metric is criticized as being inappropriate for rank-
ing supercomputers, due to its inability to track machines by
size which may or may not reflect the total capability [36].

Today, the supercomputing community is still searching
for an appropriate metric that can cover all major aspects
of efficiency, while providing a fair basis for comparison [7].
This paper presents our journey in this search, focused on
including both time and energy into the metric. We noticed
that the struggle is not strictly limited to the supercomput-
ing community. The enterprise server industry, for example,
is also searching for a similar metric [8]. As a result, new
metrics have been proposed. We observed a trend shared by
many new metrics: shifting from a scalar-valued metric to a
vector-valued metric, which inspired our work in this paper.

The contribution of this paper is a vector-valued metric for
efficient supercomputing. The metric consists of two scalars,
one for performance and the other for energy efficiency, in
order to reflect the view that energy is as important as per-
formance. Using the metric, the paper presents a study of
where the supercomputing industry has been and where it
stands today with respect to efficient supercomputing. In
fact, the paper is more concerned about the dimensionality
of the metric space, trying to make a case for vector metric.
It is less concerned about the measurement rules for acquir-
ing each scalar value. As we will see later, this decoupling
allows us to plug into the real measurement results from
various sources to conduct the analysis.

The rest of the paper is organized as follows. We first
present an overview of the metrics proposed in the past
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decade and analyze their trends in Section 2. We then
present a vector-valued metric, focusing on performance and
energy efficiency in Section 3. We delay the introduction of
the new metric until we provide a historical basis and enough
groundwork to enable the the reader to judge the improve-
ments offered. Following that, we discuss in details the use of
the metric to study the historical trend of computer systems
with respect to efficient supercomputing in Section 3.2. As
an illustration, we compare the new ranking produce by the
metric with the TOP500 list and the Green500 list. Finally,
we conclude the paper in Section 4.

2. RELATED WORK
This section presents an overview of the performance and

energy metrics proposed from the supercomputing commu-
nity to the circuit design community. The emphasis will
be on the type of metric and on the trend of shifting from
a scalar-valued metric to a vector-valued metric. To start
with, we give a general definition of efficiency: efficiency de-
scribes the extent to which effort or resource is well spent for
the intended task. It is a measurable concept, quantitatively
determined by the ratio of output to input.

2.1 Performance Benchmarks
Performance measurement of computer systems has been

a focus of much standardization effort. Multiple industry
consortia formed by competing vendors participate to im-
prove the quality and ease of comparison for a particular
audience [5], e.g., the Transaction Processing Performance
Council (TPC) and the Standard Performance Evaluation
Corporation (SPEC). Each consortium addresses a differ-
ent audience or type of application. For example, TPC
addresses on-line transaction processing and has two active
benchmarks that measure the computer system performance
in terms of transactions per second (TPS).

For supercomputer vendors, the performance on the LIN-
PACK benchmark is currently the de facto standard. The
benchmark solves a dense linear algebra problem. However,
it is criticized as not being representative enough for typical
supercomputer workload. As a result, there emerge efforts
to add other supercomputing relevant benchmarks. For ex-
ample, Graph 500 [11] measures the performance of graph
search in edge traversals per second. SPEC MPI2007 [25]
composes 13 benchmarks from several application domains.
HPCC [15] consists of 7 tests for various system features.

Most standard benchmarks measure performance in terms
of services per unit of time, although the definition of service
is different. SPEC MPI2007 is an exception. It uses the
speedup with respect to a reference machine as the metric
for each benchmark. The final rating, a scalar value, is given
by the geometric mean of these speedups. Of late there
has been a trend towards using suites of benchmarks which
report multiple performance values.

2.2 Energy Benchmarks
Standard energy benchmarks are also emerging. TPC, for

example, augmented all its performance benchmarks with
methods to measure and report energy consumption as joules
per transaction (W/TPS). SPEC currently releases three
benchmarks of this kind. One of them, SPECpower ssj2008,
measures transactions per joule at eleven different load lev-
els [12]. JouleSort [30] represents an academic effort, which
measures the energy required to sort a fixed number of ran-

domly permuted records, reporting it as sorted records per
joule. Poess et al. has a survey [29] comparing energy bench-
marks from major industry consortia.

The proceeding benchmarks are generally service oriented.
There are advocates for hardware oriented benchmarks be-
cause energy consumption strongly depends on workload [14],
system configuration [28] and load level [33]. SWEEP [3] is
one such example. It is an academic attempt to evaluate
the energy efficiency of a server across the workload space
through synthetic workload generation. Molka et al. [23]
have a similar effort but for parallel workload generation.
SERT [18] developed by SPEC is yet another example, and
it targets server-class computer systems.

Most benchmarks measure energy efficiency in terms of
services per unit of energy (i.e., the performance-power ra-
tio). In terms of the trend, both performance and energy
efficiency are reported, although some benchmarks distin-
guish between the primary metric and the secondary ones.
The drive to hardware oriented benchmark will require mul-
tiple energy values to be reported.

For supercomputer vendors, the choices of energy bench-
marks are limited. There is the Green500 project [13] that
uses the LINPACK benchmark to rank supercomputers by
their performance-power ratios starting from November 2007.
This power data was also added to the TOP500 list in June
2008. The performance-power ratio is criticized, because it
is an intensive metric and thus cannot be used to rank super-
computers by size; however, the ratio is useful for ranking
technologies [36].

2.3 Energy Efficiency Metrics
Besides the performance-power ratio (i.e., services per joule),

there are other useful types of energy metrics. One metric is
the average power (i.e., joules per second). Another metric
is the ratio of the energy consumption on the target machine
relative to the reference machine [3], similar to the way the
performance is defined in SPEC MPI2007.

A third metric is PUE (Power Usage Effectiveness) [37].
PUE measures how much of the total electricity used by a
data center goes to the IT equipment, as opposed to being
used on cooling systems and the power infrastructure. PUE
was developed by an IT industry group, The Green Grid
(TGG), in 2007, and is now widely uses. PUE is a percentage
metric, with both input and output measured in the same
dimension, energy.

PUE can be viewed as a measure for energy proportional-
ity [1]. Energy proportionality is originally a design princi-
ple to ensure the energy consumption is proportional to the
executed workload. This paper interprets it as the extent
to which energy is well spent to the services delivered. In
this sense, PUE considers energy to be well spent when it is
consumed by the IT equipment, not by other equipments or
lost during transmission or conversion.

There exist measures to quantify the energy proportional-
ity of a server. For example, Varsamopoulos and Gupta [40]
proposed the IPR metric to measure the power range and the
LDR metric to measure the linearity. Ryckbosch et al. [31]
proposed the EP metric to measure how closely the actual
system approaches the ideal case (i.e., the power consump-
tion is linear to the rate of service). SPECpower ssj2008 in-
cludes some notion of energy proportionality, but does not
explicitly quantify it [31].

For supercomputers, a task force from TOP500, Green500,
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TGG and the EE HPC Working Group [7] have been formed
to develop a stronger set of energy efficiency metric(s). PUE
is taken as an external constraint and held as an independent
variable. The metric of interest is currently workloads per
unit of energy where workloads are to leverage well estab-
lished benchmarks. PUE is considered insufficient because it
only compares energy use relative to the support infrastruc-
ture. As a result, an energy inefficient system may still have
an excellent PUE value if its support infrastructure provides
efficient power delivery and cooling. Some argue that an ab-
solute metric, such as the performance-power ratio, should
be reported as well [26]. Furthermore, while PUE is meant
for tracking datacenter progress over time, it is now mis-used
as a comparison tool between different data centers [38].

2.4 Composite Metrics
A composite metric in this case is the end product of try-

ing to combine both performance and energy efficiency into
a scalar-valued measure. They generally take the multiplica-
tive form of

(performance)α · (energy efficiency)β

with parameters α and β. It is the choice of the parameter
values that make composite metrics seem artificial.

For example, the low-power circuit design community typ-
ically uses a single index to guide design tradeoffs and faces
a similar challenge to simultaneously optimize performance
and power. As a result, researchers have proposed several
metrics. Some of the popular metrics are in the form of
EDn [27] where E is the energy, D is the circuit delay, and n
is a nonnegative integer; for example, the power-delay prod-
uct (PDP, n=0), the energy-delay product (EDP, n=1) [10],
and the energy-delay-squared product (ED2P, n=2) [20].
The larger the n, the more emphasis on performance.

The EDn metric is also used for high-end computer sys-
tems. We see suggestions on using PDP for workstations,
and EDP for servers [4] and supercomputers [32]. Ge et

al. [9] proposed to generalize ED2P as E(1−γ)D2(1+γ), −1 ≤
γ ≤ 1, for computer clusters. Bekas and Curioni [2] argued
that D should be replaced by an application dependent func-
tion of D. Clearly, there is no consensus on the choices for
α and β, if we interpret E and D as the reciprocal of energy
efficiency and performance, respectively.

What may be agreed upon is the value of the multiplica-
tive form. This can be seen from a figure of merit for mobile
devices [19] to the SWaP metric for single servers [22] to a
parameterized utility metric for supercomputers [36]. The
construction principle is to multiply all desired quantities
(such as performance) and divide them by undesired quan-
tities (such as power and size).

3. A VECTOR-VALUED METRIC
This section presents the proposed vector-valued metric

for efficient supercomputing. It starts with the definition of
the metric, followed by illustrations on how the metric can be
used. The trend of efficient supercomputing is analyzed and
a new ranking induced by the metric is compared with the
TOP500 list and the Green500 list. After that, the desired
properties of the metric are listed and discussed.

3.1 The Metric
We view performance and energy efficiency as two sep-

arate dimensions of the efficiency metric. In other words,
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Figure 1: TOP500 in June 2011.

the metric is represented by a two-dimensional vector. We
feel that any composite metric is biased one way or another.
Transparency preserves the context of the data and enables
end users to assess the relevance of the results to their spe-
cific application environments [18].

Performance and energy efficiency are defined in the typi-
cal way. They are measured in algorithmic steps per second
and per joule, respectively. The metric can be visualized
as a scatter plot, with the x-axis representing performance
and the y-axis representing energy efficiency. The x-axis can
also be viewed as the timeline as performance increases over
time. A similar plot has been used elsewhere [3].

Note that the vector-valued metric assumes that energy is
as important as performance. Furthermore, the two dimen-
sions are separate but not independent. There have been
several studies on characterizing the energy-time tradeoffs
of a supercomputing application. Finally, although the met-
ric cannot be used to create a total order of the computer
systems, it can help generate a partial order.

3.2 The Use of the Metric
As an illustration of the value of the new metric, we first

take the subset of TOP500 systems which have the power
consumption data, and visualize the distribution of their
metric values. The data is from the TOP500 list released in
June 2011 with 186 unique metric values. Figure 1 shows the
distribution of these values. We see that fastest machines
have slightly better energy efficiency in general. As a result,
these machines still remain at the top ranks in the Green500
list. This may ease the concern that energy efficiency is
an intensive quantity, and ranking based on it would favor
smaller-scale (and thus slower) systems. On the other hand,
these systems do not have the highest energy efficiency. In
fact, the energy efficiency of the TOP500 supercomputers
are more similar than different, indicating that many of them
are built with similar technologies.

The figure also shows that there is no clear winner in
two competing designs for an advanced supercomputer. The
CPU-based design achieves over 70% of the computational
capability whereas the GPU-based design only achieves 50%
utilization. GPU-based machines are typically advertised for
their potential energy efficiency, but the low utilization of
the computational capability leads them to have only com-
parable efficiency with CPU-based machines. (Note that the
low utilization for the less powerful systems is due to the use
of slower interconnect.) In the same spirit, there is an ongo-
ing debate in the processor design community as to whether
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Figure 2: TOP10 over time.
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Figure 3: Koomey et al.’s data [17].

slower but more energy efficient “wimpy” processors, aggre-
gated in large numbers, beat “brawny” processors [21, 24].

Figure 2 shows the metric values for the TOP10 supercom-
puters over different time periods from November 2007 until
June 2011. We can see that both performance and energy
efficiency are improved over the years. A similar observation
can be made for the 10 most energy efficient supercomput-
ers. The multi-dimensional improvement is most likely due
to the combined effects of smaller transistor sizes, custom
interconnects and more processing elements [34]. The figure
also seems to suggest that performance and energy efficiency
are improved at similar rates. This observation matches well
with Koomey’s Law [17] described below.

Koomey and his colleagues recently published a study
showing that both performance and energy efficiency tracks
very well with Moore’s Law [17]. Specifically, they found
that the energy efficiency of computation has doubled ev-
ery 1.57 years from 1946 onward. This rate of improvement
is slightly slower than that for personal computers (PCs),
which saw efficiency double every 1.52 years from 1975 to
2009. Performance for PCs is doubled every 1.5 years dur-
ing that time period. For comparison, we plot Koomey et
al.’s data [17] as shown in Figure 3. The figure shows a lin-
ear correlation, meaning that both performance and energy
efficiency are improved at steady rates. This correlation is
quite different from what we see in Figure 1.

In order to make more sense out of the results above,
we plot the metric values of individual servers benchmarked
through SPECpower ssj2008 at the 100% load-level. The
data is from the public records [35] released between De-
cember 2007 and September 2011 with 270 unique metric
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Figure 4: SPECpower ssj2008 @ 100% over time.
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Figure 5: The correlation between energy efficiency
and energy proportionality.

values. Figure 4 shows the result. This figures is similar
to Figure 1 in that systems with higher performance have
similar energy efficiency. The figure also shows that the im-
provement over energy efficiency becomes much slower in
recent years.

Further examination indicates that the energy efficiency
of servers improves at a steady pace but slower than the
performance improvement. A major driving force for the
improvement of energy efficiency is the improvement of en-
ergy proportionality. Figure 5 shows the correlation be-
tween energy efficiency and energy proportionality using the
SPECpower ssj2008 data. We use 1-IPR as the measure for
energy efficiency where IPR is the ratio of the idle power
to the peak power. The figure shows that a more energy
proportional server tends to have a higher energy efficiency.

Unfortunately, we cannot conduct similar analysis to the
TOP500 supercomputers since the list does not report the
idle power of each supercomputer. We conjecture that su-
percomputers have relatively lower (but more similar) en-
ergy proportionality, and therefore the variation of their en-
ergy efficiency is not as significant.

Finally, we want to comment on how the proposed metric
can help create a ranking among supercomputers. Although
the metric is vector-valued and thus cannot create a total
order, it can generate a partial order. We define the partial
order in the typical, mathematical manner. Specifically, sys-
tem A is better than system B if both of its performance and
energy efficiency are higher; otherwise, they are incompara-
ble, meaning each system has different advantages. The par-
tial order among all systems creates a directed acyclic graph
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Table 1: The 10 most efficient supercomputers.
Rank ηT ηE ηT · ηE (ηT , ηE)
1 M1 M109 M1 {M1,M5,M109}
2 M2 M165 M2
3 M3 M430 M5
4 M4 M5 M4 {M2,M22,M54,M165}
5 M5 M54 M10
6 M6 M1 M3
7 M7 M406 M8
8 M8 M407 M6 {M3,M4,M430}
9 M9 M408 M12
10 M10 M22 M7

which can be converted into a layered graph. The layers in
the graph enable us to create a ranking, one rank for each
layer. Table 1 shows this new ranking with respect to other
rankings. The notation Mn means the nth supercomputer
in the TOP500 list. Notations ηT and ηE represent perfor-
mance and energy efficiency respectively. Notation {A,B}
means systems A and B are incomparable.

We see multiple supercomputers at the same rank, mean-
ing that none of them dominates the other in terms of effi-
ciency. For example, there are three systems M1, M5 and
M109 at rank 1. Both M1 and M109 aggregate many low-
power processors whereas M5 uses energy efficient accelera-
tors. M1 delivers the highest performance; M5 and M109 are
more energy efficient. M5 is GPU-based, consisting of 73,278
cores. In contrast, M109 is Cell-based with 8,192 cores. In
other words, although M109 is more energy efficient than
M5, M5 is larger in size and provides higher performance.

One novel aspect of the new ranking is that it identifies
new “middle” classes. Consider Figure 1, a scatter plot of
the TOP500 list with performance as the x-axis and en-
ergy efficiency as the y-axis. System M1 is the rightmost
point in the plot whereas system M109 is the topmost point.
System M5 represents a new class: machine that computes
faster than M109 (the most energy-efficient supercomputer)
and consumes less energy than M1 (the best-performance
supercomputer). Ideally, the multi-dimensional space also
provides a natural mechanism to capture some sense of dis-
tance, for example, the Euclidean distance which can then
be used to cluster systems.

3.3 Further Discussion
In the following we list and briefly discuss a set of desired

properties for a good efficiency metric.

1. Higher is better : This property looks for a “normal-
ized” metric such that it represents efficiency, not inef-
ficiency. There may or may not exist an upper bound
for the metric value.

2. Capture energy proportionality : A consensus in the
community is to define energy efficiency as the useful
IT work per joule where how to measure the usefulness
is not yet agreed upon.

3. Not utilization based : There is an expectation that the
usefulness is not closely dependent on how the com-
puter system is utilized. The 100% system utilization
does not necessarily imply that the progress of the in-
tended task is also at the full speed.

4. Not biased : The hope is to induce a fair comparison.
However, this property is rather subjective. For exam-
ple, some suggest not to favor large-scale machines [16]
whereas others want this favoritism [36].

5. Insightful : A good metric not only identifies the best
system but also finds the distance between two sys-
tems so as to help driving design decisions between
two drastically different design directions.

4. CONCLUSIONS
This paper has examined the metrics to quantify efficient

supercomputing in terms of performance and energy effi-
ciency. Some metrics are driven by industry consortia while
others are borrowed from the low-power circuit design com-
munity. Although there is not yet a consensus in the super-
computing community on what the right efficiency metric
is, there is a trend of shifting from a scalar-valued metric
to a vector-valued metric. We follow the same trend and
propose a vector-valued metric for efficient supercomputing.
Using the metric, the paper presented a study of historical
data and current state of the art with respect to efficient
supercomputing.
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