
 
 

ABSTRACT 

A Software Product Line (SPL) is a set of similar software 

systems that share a common set of features. Instead of building 

each product from scratch, SPL development takes advantage of 

the reusability of the core assets shared among the SPL members. 

In this work, we integrate performance analysis in the early 

phases of SPL development process, applying the same reusability 

concept to the performance annotations. Instead of annotating 

from scratch the UML model of every derived product, we 

propose to annotate the SPL model once with generic 

performance annotations. After deriving the model of a product 

from the family model by an automatic transformation, the 

generic performance annotations need to be bound to concrete 

product-specific values provided by the developer. Dealing 

manually with a large number of performance annotations, by 

asking the developer to inspect every diagram in the generated 

model and to extract these annotations is an error-prone process. 

In this paper we propose to automate the collection of all generic 

parameters from the product model and to present them to the 

developer in a user-friendly format (e.g., a spreadsheet per 

diagram, indicating each generic parameter together with guiding 

information that helps the user in providing concrete binding 

values). There are two kinds of generic parametric annotations 

handled by our approach: product-specific (corresponding to the 

set of features selected for the product) and platform-specific 

(such as device choices, network connections, middleware, and 

runtime environment). The following model transformations for 

(a) generating a product model with generic annotations from the 

SPL model, (b) building the spreadsheet with generic parameters 

and guiding information, and (c) performing the actual binding are 

all realized in the Atlas Transformation Language (ATL). 
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1. INTRODUCTION 
A Software Product Line (SPL) is a set of similar software 

systems built from a shared set of assets, which are realizing a 

common set of features satisfying a particular domain. Experience 

shows that by adopting a SPL development approach, 

organizations achieve increased quality and significant reductions 

in cost and time to market [9]. 

An emerging trend apparent in the recent literature is that the SPL 

development moves toward adopting a Model-Driven 

Development (MDD) paradigm. This means that models are 

increasingly used to represent SPL artifacts, which are building 

blocks for many different products with all kind of options and 

alternatives. In previous research [22][23][24] the authors of the 

paper proposed to integrate performance analysis in the early 

phases of the model-driven development process for Software 

Product Lines (SPL), with the goal of evaluating the performance 

characteristic of different products by generating and analyzing 

quantitative performance models. Our starting point was the so-

called SPL model, a multi-view UML model of the core family 

assets representing the commonality and variability between 

different products. We added another dimension to the SPL 

model, annotating it with generic performance specifications (i.e., 

using parameters instead of actual values) expressed in the 

standard UML profile MARTE [18]. Such parameters appear as 

variables and expression in the MARTE stereotype attributes. 

In order to analyze the performance of a specific product running 

on a given platform, we need to generate a performance model for 

that product by model transformations from the SPL model with 

generic performance annotations. In our research, this is done in 

three big steps: a) instantiating a product model with generic 

performance parameters from the SPL model; b) binding the 

generic parameters to concrete values provided by the user and c) 

generating a performance model for the product from the model 

obtained in the previous step.  The model transformation (a) was 

developed in our previous work [22][23]; step (b) represents the 

contribution of this paper; and the PUMA transformation (c) for 

generating performance models from annotated UML models has 

been developed previously in our research group [27]. 

Since step (b) requires input from the user, it is implemented by 

two transformations, as shown in Fig. 1: the first collects all the 

generic parameters that need to be bound to concrete values from 

the automatically generated product model and presents them to 

the  developer   in  a user-friendly  spreadsheet   format, while  the 
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second performs the actual binding to concrete values provided by 

the developer.  The list of annotation parameters presented to the 

developer contains not only the parameter name and the model 

elements it belongs to, but also some guiding information to help 

the user in providing concrete values, as explained in more detail 

in section 3.2. 

Performance is a runtime property of the deployed system and 

depends on two types of factors: some are contained in the design 

model of the product (generated from the SPL model) while 

others characterize the underlying platforms and runtime 

environment. Performance models need to reflect both types of 

factors. Woodside et al. proposed the concept of performance 

completions to close the gap between abstract design models and 

external platform factors [26]. Performance completions provide a 

means to extend the modeling constructs of a system by including 

the influence of the underlying platforms and execution 

environments in performance evaluation models. Since our goal is 

to automate the derivation of a performance model for a specific 

product from the SPL model, we propose to deal with 

performance completions in the early phases of the SPL 

development process by using a so-called Performance 

Completion feature (PC-feature) model similar to [13]. The PC-

feature model explicitly captures the variability in platform 

choices, execution environments, different types of 

communication realizations, and other external factors that have 

an impact on performance, such as different protocols for secure 

communication channels and represents the dependencies and 

relationships between them [23]. Therefore, our approach uses 

two feature models for a SPL: 1) a regular feature model for 

expressing the variability between member products (as described 

in Section 2.1), and 2) a PC-feature model introduced for 

performance analysis reasons to capture platform-specific 

variability (as described in Section 2.3).  

We propose to include the performance impact of underlying 

platforms into the UML+MARTE model of a product as 

aggregated platform overheads, expressed in MARTE annotations 

attached to existing processing and communication resources in 

the generated product model. This will keep the model simple and 

still allow us to generate a performance model containing the 

performance effects of both the product and the platforms. Every 

possible PC-feature choice is mapped to certain MARTE 

annotations corresponding to UML model elements in the product 

model. This mapping is realized by the transformation generating 

the parameter spreadsheets, which is providing the user with 

mapping information in order to put the annotation parameters 

needing to be bound to concrete values into context, as described 

in Section 3.2. 

Dealing manually with a large number of performance parameters 

and with their mapping, by asking the developer to inspect every 

diagram in the model, to extract these annotations and to attach 

them to the corresponding PC-features, is an error-prone process. 

This paper proposes a model transformation approach to automate 

the collection of all the generic parameters that need to be bound 

to concrete variables from the annotated product model, 

presenting them to the user in a user-friendly format. 

We claim that the proposed technique for handling annotation 

parameters is user-friendly after comparing it with another 

approach used in earlier phases of our research, where the binding 

information was given as a set of couples {<generic_parameter>, 

<concrete_value>} created manually by the developer, after 

careful inspection of the generated UML model to extract all the 

parameters. The older approach required a lot of work from the 

developer and was error prone. The parameter file produced by 

hand contained no context information and no guidelines. 

The proposed technique is illustrated with an e-commerce case 

study. The e-commerce SPL can generate a distributed application 

that can handle either business-to-business (B2B) or business-to-

consumer (B2C) systems. 

The paper is organized as follows: section 2 presents the domain 

engineering process where the SPL model, the regular feature 

model and the PC-feature model are constructed; section 3 

presents the model transformations for generating a product model 

with concrete performance specifications; related work is 

discussed in section 4; and section 5 presents the conclusions. 

2. DOMAIN ENGINEERING PROCESS 
The SPL development process is separated into two major phases: 

1) domain engineering for creating and maintaining a set of 

reusable artifacts and introducing variability in these software 

artifacts, so that the next phase can make a specific decision 

according to the product‟s requirements; and 2) application 

engineering for building family member products from reusable 

artifacts created in the first phase instead of starting from scratch. 

The SPL assets created by the domain engineering process of 

interest for our research are represented by a multi-view UML 

design  model   of   the   family,  called  the   SPL   model,   which 
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represents a superimposition of all variant products [22][23]. The 

creation of the SPL model employs two separate profiles: a 

product line profile introduced by Gomaa [12] for specifying the 

commonality and variability between products, and the MARTE 

profile for performance annotations. Another important outcome 

of the domain engineering process is the feature model used to 

represent commonalities and variabilities between family 

members in a concise taxonomic form. Additionally, we create a 

PC-feature model to represent the variability space of 

performance completions. 

2.1 Feature Model 
The feature models are used in our approach to represent two 

different variability spaces. This section describes the regular 

feature model representing functional variabilities between 

products. An example of feature model of an e-commerce SPL is 

represented in Fig. 2 in the extended FODA notation, Cardinality-

Based Feature Model (CBFM) [11]. Since the FODA notation is 

not part of UML, the feature diagram is represented in the source 

model taken as input by our ATL transformation as an extended 

UML class diagram, where the features and feature groups are 

modeled as stereotyped classes and the dependencies and 

constraints between features as stereotyped associations. For 

instance, the two alternative features Static and Dynamic are 

mutually exclusive and so they are grouped into an exactly-one-of 

feature group called Catalog. In addition to functional features, 

we add to the diagram another type of features characterizing 

design decisions that have an impact on the non-functional 

requirements or properties. For example, the architectural decision 

related to the location of the data storage (centralized or 

distributed) affects performance, reliability and security, and is 

represented in the diagram by two mutually exclusive quality 

features. This type of feature related to a design decision is part of 

the design model, not just an additional PC-feature required only 

for performance analysis.  

This feature model represents the set of all possible combinations 

of features for the products of the family. It describes the way 

features can be combined within this SPL. A specific product is 

configured by selecting a valid feature combination from the 

feature model, producing a so-called feature configuration based 

on the product‟s requirements. To enable the automatic derivation 

of a given product model from the SPL model, the mapping 

between the features contained in the feature model and their 

realizations in a reusable SPL model needs to be specified, as 

shown in the next section. Also, each stereotyped class in the 

feature model has a tagged value indicating whether it is selected 

in a given feature configuration or not. 

2.2 SPL Model 
The SPL model should contain, among other assets, structural and 

behavioural views which are essential for the derivation of 

performance models. It consists of: 1) structural description of the 

software showing the high-level classes or components, especially 

if they are distributed and/or concurrent; 2) deployment of 

software to hardware devices; 3) a set of key performance 

scenarios defining the main system functions frequently executed. 

Note that since the SPL model is generic, covering many products 

and containing variation points with variants, the MARTE 

annotations need to be generic as well. We use MARTE variables 

as a means of parameterizing the SPL performance annotations; 

such variables (parameters) will be assigned (bound to) concrete 

values during the product derivation process. 

The functional requirements of the SPL are modeled as use cases. 

Use cases required by all family members are stereotyped as 

«kernel». The variability distinguishing the members of a family 

from each other is explicitly modeled by use cases stereotyped as 

«optional» or «alternative»; such use cases are also annotated 

with the name of the feature(s) requiring them (given as 

stereotype attributes). This is an example of mapping between 

features and the model elements realizing them. The structural 

view of the SPL is presented as a class diagram and variabilities 

are modeled in the same manner as the use case diagram (i.e., 

stereotyped as kernel, optional or alternative). For more details 

about the SPL use case and class diagrams see [22][24]. 

The behavioural SPL view is modeled as sequence diagrams for 

each scenario of each use case of interest. Fig. 3 illustrates the 

kernel scenario BrowseCatalog. «GaAnalysisContext» is a 

MARTE stereotype indicating that the entire interaction diagram 

is to be considered for performance analysis. Its tag indicates a list 

of annotation variables representing context analysis parameters: 

{contextParams = $N1, $Z1, $ReqT, $FSize, $Blocks} 
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Figure 2. Feature model of the e-commerce SPL.  
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By convention, we use names starting with „$‟ for all MARTE 

variables to distinguish them from other identifiers and names.  

The workload of a scenario is defined as a stream of events 

driving the system; a workload may be open or closed.  

«GaWorkloadEvent» {pattern=$Patt} 

Sequence diagram variability that distinguishes between the 

behaviour of different features is expressed by extending the alt 

and opt fragments with the stereotypes «AltDesignTime» 

«OptDesignTime», respectively. For example, the alt fragment 

stereotyped with «AltDesignTime» {VP=Catalog} gives two 

choices based on the value of the Catalog feature (Static or 

Dynamic); more specifically, each one of its Interaction Operand 

has a guard denoting the feature Static or Dynamic. An alternative 

feature that is rather complex and is represented as an extending 

use case, can be also modeled as an extended alt operator that 

contains an Interaction Use referring to an Interaction 

representing the extending use case. Note that regular alt and opt 

fragments that are not stereotyped represent choices to be made at 

runtime, as defined in UML. 

Each lifeline whose role is an active object is stereotyped as 

«PaRunTInstance», providing an explicit link at the annotation 

level between a role in a behavior definition (a lifeline) and the 

runtime instance of a process or thread (active object). For 

example, the tag {instance=CBrowser} indicates the name of 

runtime instance of a process executing the lifeline role, while the 

tag {host=$CustNode} indicates the physical node from the 

deployment diagram on which the instance is running. In this 

case, the host is given by the generic parameter $CustNode, which 

will be bound later to a concrete host name. 

Conceptually, a scenario represented by a UML sequence diagram 

is composed of units of execution named steps. MARTE defines 

two kinds of steps for performance analysis: execution step 

(stereotyped «PaStep») and communication step (stereotyped 

«PaCommStep»). «PaStep» may be applied to an Execution 

Occurrence (represented as a thin rectangle on the lifeline) or to 

the message that triggers it. For instance, in Fig. 3, the message 

getList is stereotyped as an execution step: 

«PaStep» {hostDemand = ($CatD, ms), 

 respT  = (($ReqT, ms), calc)} 

where hostDemand indicates the execution time required by the 

step, given by the variable $CatD in time units of milliseconds. 

The attribute respT corresponds to the response time of the 

scenario starting with this step; the variable $ReqT will save the 

calculated response time in milliseconds. The same message 
getList is also stereotyped as a communication step:  

«PaCommStep» { msgSize = ($MReq, KB), 

commTxOvh = ($GetLSend, ms), 

commRcvOvh = ($GetLRcv, ms)}} 

where the message size is the variable $GetL in KiloBytes. The 

overheads for sending and receiving this particular message are 

the variables $GetLSend and $GetLRcv, respectively, in milli-

seconds. We propose to annotate each communication step (which 

corresponds to a logical communication channel) with the CPU 

overheads for transferring the respective message: commTxOvh 

for transmitting (sending) the message and commRcvOvh for 

receiving it. Eventually, these overheads will be added in the 

performance model to the execution demands of the two 

execution hosts involved in the communication (one for sending 

and the other for receiving the respective message).  

Since performance analysis depends on the software to hardware 

allocation, another structure diagram, which is not usually 

represented in the SPL models, has to be created in our approach. 

2.3 SPL Performance Completion 
In SPL, different members may vary from each other in terms of 

their functional  requirements, quality attributes, platform choices, 
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network connections, physical configurations, and middleware. 

Many details contained in the system that are not part of its design 

model but of the underlying platforms and environment, do affect 

the run-time performance and need to be represented in the 

performance model. Performance completions, as proposed by 

Woodside [26], are a manner to close the gap between the high-

level design model and its different implementations. Performance 

completions provide a general concept to include low-level details 

of execution environment/platform in performance models.  

This subsection covers the variability space of the performance 

completions and represents it through a Performance Completion 

feature model (PC-feature model) similar to [13]. Each feature 

from the PC-feature model shown in Fig. 4 may affect one or 

more performance attributes. For instance, data compression 

reduces the message size and at the same time increases the 

processor communication overhead for compressing and 

decompressing the data. Thus, it is mapped to the performance 

attributes message size and communication overhead through the 

MARTE attributes msgSize, commTxOvh and commRcvOvh, 

respectively. The mapping here is between a PC-feature and the 

performance attribute(s) affected by it, which are represented as 

MARTE stereotype attributes associated to different model 

elements. Table 1 illustrates this type of mapping between PC-

features and the design model, set up through the MARTE 

stereotypes attached to model elements. 

Fig. 4 illustrates a part of the PC-feature model for our case study. 

Adding security solutions requires more resources and longer 

execution times, which in turn has a significant impact on system 

performance. We introduce a PC-feature group called 

secureCommunication that contains two alternative features 

secured and unsecured. The secured feature offers three security 

level alternatives depending on the size of the key used in the 

handshake phase and on the strength of the encryption and 

message digest algorithms used in the data transfer phase, as 

proposed in [15]. Each security level requires different overheads 

for sending and receiving secure messages. These overheads are 

mapped to the communication overheads through the attributes 

commRcvOvh and commTxOvh, which represent the host demand 

overheads for receiving and sending messages, respectively. Since 

not all the messages exchanged in a product need to have the same 

communication overheads, we propose to annotate each individual 

message stereotyped as «PaCommStep» with the processing 

overheads for the respective message: commTxOvh for 

transmitting (sending) it and commRcvOvh for receiving it. In 

fact, these overheads correspond to the logical communication 

channel that conveys the respective message. Eventually, the 

logical channel will be allocated to a physical communication 

channel (e.g., network or bus) and to two execution hosts, the 

sender and the receiver. The commTxOvh overhead will be 

eventually added in the performance model to the execution 

demands of the sender host and commRcvOvh to that of the 

receiver host.      

Each type of physical communication channel stereotyped 

«GaCommHost» has different capacity for the amount of 

information that can be transmitted over it. As the channel‟s 

capacity increases, the latency time for transmitting data over this 

Table 1. Mapping of PC-features to affected performance 

attributes 

 

PC-feature Affected 

Performance 

Attribute

MARTE  

Stereotype

MARTE 

Attribute

secureCommunication Comm. overhead PaCommStep commRcvOvh
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Channel Latency
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Comm. overhead

PaCommStep msgSize

commRcvOvh
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Figure 4. Part of the Performance-Completion feature model of the e-commerce SPL. 
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channel decreases. Our example provides three different 

communication channels with three alternative connections for the 

Internet. The capacity and latency for each physical channel type 

are mapped to the attributes capacity and blockT of the stereotype 

«GaCommHost». 

Data compression requires extra operations that increase the 

processing time, but at the same time compression helps reducing 

the use of resources, such as hard disk space or communication 

channel bandwidth. Data compression/decompression is adding an 

overhead when sending and receiving a message, which is 

mapped to the attributes commTxOvh and commRcvOvh, 

respectively. However, compression also reduces the amount of 

data to be transferred and thus decreases the delivery time (e.g., a 

compression algorithm may reduce the size of data to 60% [13]).  

Thus, the amount of compressed data transmitted over a physical 

channel is mapped to the attribute msgSize. Another 

communication mechanism that affects the delivery time of a 

message is whether the communication is with or without 

guaranteed delivery [13]; the effect is mapped to the 

commTxOverhead attribute. 

The PC-feature group platformChoice includes different types of 

middleware such as CORBA, Web-services, etc., which will 

affect also the communication overheads. We may either map 

their effect to the commTxOvh and commRcvOvh attributes, or 

may use MARTE external operations described below. 

MARTE provides specifically the concept of “external operation 

calls” to represent resource operations that are not explicitly 

modeled within the UML design model, but may have an impact 

on performance. The stereotype «PaStep» has two attributes: a) 

extOpDemands, an ordered set of identifiers for operations by 

external services which are demanded by this Step, in a form 

understood by the performance environment, and b) extOpCount, 

an ordered set of number of requests made for each external 

operation during one execution of the Step, listed in the same 

order as the demands. Examples of such external calls are 

middleware operations or disk operations hidden in database calls. 

Different types of external devices are represented in the PC-

feature model by the feature externalDeviceType. Each device 

offers different operations times with different execution times. 

The invocation of such operations is represented by the attributes 

extOpDemands and extOpCount of an execution step. 

It is important to note that the MARTE annotation contain both 

performance-affecting attributes of the product we want to 

analyze, as well as environment/platform characteristics. For 

instance, the CPU execution times of different scenario steps are 

indicated by the attributes hostDemand of «PaStep». The size of a 

message from a sequence diagram represented by the attribute 

msgSize is a property of the software product, which may be 

modified by properties of the communication channel, such as 

compression/decompression. The product model obtained by the 

transformation presented in the next section includes both the 

performance attribute contained directly in the design model and 

the platform/environment factors corresponding to PC-features. 

In order to automate the process of generating a user-friendly 

representation of the generic MARTE parameters that need to be 

bound to concrete values, the mapping between the PC-features 

and the performance attributes they affect needs to be specified, as 

shown in the next section. Also, each stereotyped class 

representing a feature in the PC-feature model has a tagged value 

indicating the list of the attributes it affects. For instance, the PC-

feature DataCompression affects the attribute list {msgSize, 

commTxOvh, commRcvOvh}.  

3. MODEL TRANSFORMATION 

APPROACH 
The derivation of a specific UML product model with concrete 

performance annotations from the SPL model with generic 

annotations requires three model transformations: a) transforming 

the SPL model to a product model with generic performance 

annotations, b) generating spreadsheets for the user containing 

generic parameters and guiding information for the specific 

product, c) performing the actual binding by using the concrete 

values provided by the user. We have implemented these model 

transformations in the Atlas Transformation Language (ATL). We 

handle two kind of generic parametric annotations: a) product-

specific (due to the variability expressed in the SPL model) and 

platform-specific (due to device choices, network connections, 

middleware, and runtime environment). 

3.1 Product Model Derivation  
This subsection describes briefly the first model transformation 

for generating a product model with generic performance 

annotations from the SPL model, which was developed by the 

authors in previous work [22][23][24]. 

Our derivation approach uses the mapping technique previously 

proposed in [24] to set up the mapping between a functional 

feature from the feature model and the model element(s) realizing 

the feature in the SPL model (both in the structural and 

behavioural views). 

The derivation process is initiated by specifying a given product 

through its feature configuration (i.e., the legal combination of 

features characterizing the product). The second step in the 

derivation process is to select the use cases realizing the chosen 

features. The product class diagram is derived in the third step in a 

similar way to the use case diagram. The final step of the product 

derivation is to generate the sequence diagrams corresponding to 

different scenarios of the chosen use cases. Each such scenario is 

modeled as a sequence diagram, which has to be selected from the 

SPL model and copied to the product one. The PL variability 

stereotypes are eliminated after binding the generic roles 

associated to the lifelines of each selected sequence diagram to 

specific roles corresponding to the chosen features. For instance, 

the sequence diagram BrowseCatalog has the generic alternate 

role CustomerInterface which has to be bound to a concrete role, 

either B2BInterface or B2CInterface to realize the features 

BusinessCustomer or HomeCustomer, respectively. However, the 

selection of the optional roles is based on the corresponding 

features. For instance, the generic optional role StaticStorage is 

selected if the feature Static Catalog is chosen. More details about 

the derivation approach and the mapping of functional features to 

model elements are presented in our previous work [24]. 

The outcome of this model transformation is a product model 

where the variability related to SPL has been resolved based on 

the chosen feature configuration. However, the performance 

annotations are still generic and need to be bound to concrete 

values. 
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3.2 Generating User-Friendly Representation 
The generic parameters of a product model derived from the SPL 

model are related to different kind of information: a) product-

specific resource demands (such as execution times, number of 

repetitions and probabilities of different steps); b) software-to-

hardware allocation (such as component instances to processors); 

and c) platform/environment-specific performance details (also 

called performance completions). The user (i.e., performance 

analyst) needs to provide concrete values for all generic 

parameters; this will transform the generic product model into a 

platform-specific model describing the run-time behaviour of the 

product for a specific run-time environment. 

Choosing concrete values to be assigned to the generic 

performance parameters of type (a) is not a simple problem. In 

general, it is difficult to estimate quantitative resource demands 

for each step in the design phase, when an implementation does 

not exist and cannot be measured yet. Several approaches are used 

by performance analysts to come up with reasonable estimates in 

the early design stages: expert experience with previous versions 

or with similar software, understanding of the algorithm 

complexity, measurements of reused software, measurements of 

existing libraries, or using time budgets. As the project advances, 

early estimates can be replaced with measured values for the most 

critical parts. Therefore, it is helpful for the user of our approach 

to keep a clearly organized record for the concrete values used for 

binding in different stages of the project. For this reason, we 

proposed to automate the collection of the generic parameters 

from the model on spreadsheets, which will be provided to the 

user. 

The parameters of type (b) are related to the allocation of software 

components to processors available for the application. For 

example, Fig. 5 shows a part of the deployment diagram to be 

used for the scenario BrowseCatalog. The user has to decide for a 

product what is the actual hardware configuration and how to 

allocate the software to processing nodes. The MARTE stereotype 

«RunTInstance» annotating a lifeline in a sequence diagram 

provides an explicit connection between a role in the behaviour 

model and the corresponding runtime instance of a component. 

The attribute host of this stereotype indicates on which physical 

node from the deployment diagram the instance is running. Using 

parameters for the attribute host enable us to allocate each role (a 

software component) to an actual hardware resource. The 

transformation collects all these hardware resources and 

associates their list to each lifeline in the spreadsheets. The user 

decides on the actual allocation by choosing a processor from this 

list. For instance, the user may decide to allocate the role 

ProductDisplay to the actual processing node CatalogNode. 

The performance effects of variations in the platform/environment 

factors (such as network connections, middleware, operating 

system and platform choices) are included into our model by 

aggregating the overheads caused by each factor and by attaching 

them via MARTE annotations to the affected model elements. As 

already mentioned, the variations in platform/environment factors 

are represented in our approach through the PC-feature model (as 

explained in the previous section). A specific run-time instance of 

a product is configured by selecting a valid PC-feature 

combination from the PC-feature model. We define a PC-feature 

configuration as a complete set of choices of PC-features for a 

specific model element. For instance, a PC-feature configuration 

for a given message could be {MediumSecurity, Compressed, 

CORBA, withoutGuaranteedDelivery}. 

 

It is interesting to note that a PC-feature has impact on a subset of 

model elements in the model, but not necessarily on all model 

elements of the same type. For instance, the PC-feature 

securedCommunication affects only certain communication 

channels in a product model, not all of them. Hence, a PC-feature 

needs to be associated to certain model element(s), not to the 

entire product. This mapping is set up through the MARTE 

performance specifications annotating the affected model 

elements in the product model, as described in section 2.3. 

Dealing manually with a huge number of performance annotations 

by asking the developer to inspect every diagram in the generated 

product model, to extract the generic parameters and to match 

them with the PC-features is an error-prone process. We propose 

to automate the process of collecting all generic parameters that 

need to be bound to concrete values from the product model and 

to associate each PC-feature to the model element(s) it may affect, 

then present the information to the developer in a user-friendly 

format.  We generate a spreadsheet per diagram, indicating for 

each generic parameter some guiding information that helps the 

user in providing concrete binding values.  

An example of such guiding information is the different 

overheads for sending and receiving secure messages. For 

instance, in [15] overhead data is provided for three security 

levels (low, medium and high): the handshake overhead is 

(10.2ms, 23.8 ms, 48.0 ms), and the data transfer overhead per KB 

of data is (0.104 ms, 0.268 ms, 0.609 ms). For instance, we used 

this data as guiding information in Fig. 6. For instance, the 

overhead for sending a message with low security level is 

(5.1+0.052*msgsize) and for receiving is (5.1+0.052*msgsize). 

For a given SPL, the performance analyst may tailor the guiding 

information to the platform and environment intended for 

performance analysis. 

The process of generating the spreadsheets takes place after a 

specific product model is derived from the SPL model. Due to the 

large semantic gap between the source and target models of the 

transformation, we follow the example ”Microsoft Office Excel 

Extractor” [7] from the Eclipse/ATL website, which applies the 

principle of separation of concerns and breaks the transformation 

into a series of simpler transformations. This transformation series 

enables us to get some control over the order in which to navigate 

the ATL source models. The process is composed of four different 

model transformations:  

a) From a specific UML product model into a Table model that 

contains several tables, one for each sequence diagram; each 

parametric performance annotation is represented as a table row; 

«GAExecHost»

ProductDBNode

«GAExecHost»

CustomerNode

«GAExecHost»

CatalogNode

«GACommHost»

Cust&CatNode

{capacity=($Cap1, KB/ms) 

blockT=($Lat1, ms)}

«GACommHost»
Cat&ProDBNode

{capacity=($Cap2, KB/ms) 

blockT=($Lat2, ms)}

Figure 5. Part of a product deployment diagram. 
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b) From the Table model into a SpreadsheetMLSimplified model 

that represents (as the name says) a simplified subset of the 

spreadsheetML XML used by Microsoft to import/export Excel 

workbook‟s data from/to XML;  

c) From the SpreadsheetMLSimplified into an XML model;  

d) The XML model created in the previous step is re-written as an 

XML file which can be directly opened by Microsoft Excel.  

The mapping between PC-features and the corresponding 

performance attributes takes place during the transformation (a). 

Each MARTE attribute gets the name of the PC-features that have 

an impact on this attribute attached to it. For instance, the attribute 

msgSize is associated with the PC-feature Data Compressed. 

Another association is between the MARTE attribute host 

annotating a model element of type lifeline and the list of all 

available deployment nodes from the deployment diagram. After 

the user selects a PC-feature combination for each model element, 

he/she can delete the remaining unselected PC-features from the 

spreadsheet, ending up with a small set of rows containing 

annotations that need to be bound to concrete values.  

The transformation handles differently the context analysis 

parameters, which are usually defined by the modeler to be 

carried without binding throughout the entire transformation 

process, from the SPL model to the performance model for a 

product. These parameters can be used to explore the performance 

analysis space. A list of the context analysis parameters are 

provided to the user, who will decide whether to bind them now to 

concrete values, or to use them unbound in MARTE expressions.  

The four transformations are implemented in the Atlas 

Transformation Language (ATL) [1]. An ATL transformation is 

composed of a set of rules and helpers. The rules define the 

mapping between the source and target model, while the helpers 

are methods that can be called from different points in the ATL 

transformation. The rules of the first transformation handle the 

generation of the Table model from the UML product model. A 

few examples of helpers and rules of this transformation are given 

in the Appendix, with extensive comments in natural language. 

A part of the generated spreadsheet for the scenario 

BrowseCatalog is shown in Fig. 5. For instance, the PC-feature 

dataCompression is mapped to the MARTE attribute msgSize 

annotating a model element of type message. As the value of the 

attribute msgSize is an expression $FSize*0.2 in function of the 

context analysis parameter $FSize, it is the user‟s choice to bind it 

at this level or keep it as a parameter in the output it produces.  

The column titled Concrete Value is designated for the user to 

enter appropriate concrete value for each generic parameter, while 

the column Guideline for Value provides a typical range of values 

to guide the user. For instance, if the PC-selection features chosen 

are “secured” with “low security level”, the concrete value entered 

by the user is obtained by evaluating the expression 

(5.1+0.052*msgSize), assuming that the user follows the provided 

guideline. Assuming that the choice for the PC-feature 

dataCompression is “compressed”, the user may decide to 

increase by 4% the existing overhead due to security features. In 

general, the guidelines can be adjusted by the performance analyst 

for a given SPL and a known execution environment. The 

generated spreadsheet presents a user-friendly format for the users 

of the transformation who have to provide appropriate concrete 

values for binding the generic performance annotations. Being 

automatically generated, they capture all the parameters that need 

to be bound and reduce the incidence of errors.  

3.3 Performing the Actual Binding 
After the user selects an actual processor for each lifeline role 

provided in the spreadsheets and enters concrete values for all the 

generic performance parameters, the next model transformation 

takes as input these spreadsheets along with its corresponding 

Figure 6. Part of the generated Spreadsheet for the scenario Browse Catalog. 
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product model, and binds all the generic parameters to the actual 

values provided by the user. The outcome of the transformation is 

a specific product model with concrete performance annotations, 

which can be further transformed into a performance model.  

In order to automate the actual binding process, the generated 

spreadsheets with concrete values are given as a mark model to 

the binding transformation. The mark model concept has been 

introduced in the OMG MDA guide [19] as a means of providing 

concrete parameter values to a transformation. This capability of 

allowing transformation parameterization through mark model 

instances makes the transformation generic and more reusable in 

different contexts.  

To consider the spreadsheets as a mark model for the 

transformation, we apply the same principle of separation of 

concerns and break the transformation into a series of simpler 

transformations as in [7]. Three extra model transformations have 

to be done before performing the actual binding: a) from the 

spreadsheets (XML file) to an XML model; b) from XML model 

to the required syntax in Ecore-based format; c) which is further 

extracted as an XML file that can be accepted by ATL. The main 

transformation to perform the actual binding takes place now, 

after the mark model is ready to be injected into the model 

transformation as an XML file with the required syntax. As an 

example, the helper called by different rules to get the value of an 

attribute is shown in the Appendix. 

4. RELATED WORK 
This section surveys briefly work from literature related to 

software performance engineering in the context of Model-Driven 

Architecture, where the concepts of platform-independent and 

platform-specific models were introduced. Special attention is 

given to work focused on software product lines. 

The Model-Driven Architecture approach is extended in [10] with 

non-functional modeling and analysis concepts by adding new 

models and transformations for validation activities. The concepts 

of platform independent and platform specific are used through 

the new type of models to obtain an accurate validation.   

The concept of performance completions was proposed in [26] to 

close the gap between application design models and external 

platform factors. Performance completions provide a means to 

extend the modeling constructs of a system by including the 

influence of the underlying platforms and execution environments 

in performance evaluation models.    

A model transformation framework is proposed in [25] for 

automatically including the impact of middleware on the 

architecture and the performance of distributed systems. The 

middleware descriptions are presented as a library in the 

framework. Using this library, designers can model the system 

with different types of middleware and then obtain a platform-

specific model. A LQN model build by hand is used for 

performance evaluation.  

An approach for performance prediction of component-base 

software systems in proposed in [2]. The approach based on 

operational analysis of QN models where performance bounds are 

computed without deriving a QN model from the software 

specification. Performance bounds such as system throughput and 

response time are used to answer several performance-related and 

what-if questions such as the bottleneck resource if the platform 

configuration is changed.   

A method for designing parametric performance completions that 

are independent of a specific platform is proposed in [13]. The 

variability in the platforms is described by using a feature model. 

The completions can be instantiated for different environments by 

explicitly coupling the transformations to performance models 

and implementation to add the necessary details to both. 

A queueing model for the performance of Web servers is 

presented in [14]. The model includes the impacts of workloads, 

hardware/software configurations, communication protocols, and 

interconnect topologies. It is implemented in a simulation tool and 

the results are validated with results from a test lab environment. 

A literature survey on approaches that address non-functional 

requirements (NFRs) is presented in [8]. The classification is 

based on software variability, requirements analysis, elicitation, 

reusability, and traceability as well as aspect-oriented 

development. Variability related to SPL is also discussed. 

In the context of SPL, to the best of our knowledge, no work has 

been done to evaluate and predict the performance of a given 

product by generating a formal performance model. Most of the 

work aims to model non-functional requirements (NFRs) in the 

same way as functional requirements. Some of the works are 

concerned with the interactions between selected features and the 

NFRs and propose different techniques to represent these 

interactions and dependencies. 

In [4], the MARTE profile is analyzed to identify the variability 

mechanisms of the profile in order to model variability in 

embedded SPL models. Although MARTE was not defined for 

product lines, the paper proposes to combine it with existing 

mechanisms for representing variability, but it does not explain 

how this can be achieved. A model analysis process for embedded 

SPL is presented in [5] to validate and verify quality attributes 

variability. The concept of multilevel and staged feature model is 

applied by introducing more than one feature models that 

represent different information at different abstraction levels; 

however, the traceability links between the multilevel models and 

the design model are not explained.  

In [3], the authors propose an integrated tool-supported approach 

that considers both qualitative and quantitative quality attributes 

without imposing hierarchical structural constraints. The 

integration of SPL quality attributes is addressed by assigning 

quality attributes to software elements in the solution domain and 

linking these elements to features. An aggregation function is used 

to collect the quality attributes depending on the selected features 

for a given product. 

A literature survey on approaches that analyze and design non-

functional requirements in a systematic way for SPL is presented 

in [16]. The main concepts of the surveyed approaches are based 

on the interactions between the functional and non-functional 

features. 

An approach called Svamp is proposed to model functional and 

quality variability at the architectural level of the SPL [20]. The 

approach integrates several models: a Kumbang model to 

represent the functional and structural variability in the 

architecture and to define components that are used by other 

models; a quality attribute model to specify the quality properties 

and a quality variability model for expressing variability within 

these quality attributes. 

Reference [6] extends the feature model with so-called extra-

functional features representing non-functional features. 

Constraint programming is used to reason on this extended feature 

model to answer some questions such as how many potential 

products the feature model contains. 
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The Product Line UML-Based Software Engineering (PLUS) 

method is extended in [21] to specify performance requirements 

by introducing several stereotypes specific to model performance 

requirements such as «optional» and «alternative performance 

feature». 

Reference [17] handles one of the problems of human interaction 

in the context of SPL; the decision-making process that requires 

humans to answer questions to configure a specific product. They 

propose an approach for automatically optimizing the order of 

questions with every answer. The optimization is done in an 

incremental way and in real-time. 

To the best of our knowledge, ours is the first approach to 

generate automatically a performance model of a product from the 

software model of the family by a chain of model transformations. 

We handle the variability and commonality between the products 

of a family and the variability of the underlying platforms. We 

propose to address the performance impact of the underlying 

platforms as aggregated platform overheads expressed in MARTE 

annotations attached to the affected model elements. This will 

keep the model simple and still allow us to generate a 

performance model containing the performance effects of the 

platforms.  

5. CONCLUSIONS 
This paper is an integral part of a larger research effort to integrate 

performance analysis in the early phases of the development 

process of software product lines. Our goal is to generate 

automatically a performance model for a given product, which can 

be used to analyze its performance. Through performance analysis 

we can gain insight into the run-time performance characteristics 

and thus provide guidance for design choices early in the system 

development.  

SPL development takes advantage of the reusability of the core 

assets shared among the SPL members. When integrating 

performance analysis in the early phases of SPL development, we 

take advantage of the reusability concept applied to performance 

annotations. Instead of annotating from scratch the UML model of 

every automatically derived product, we propose to annotate the 

SPL model once with generic performance annotations. After 

deriving the model of a product from the family model by an 

automatic transformation, the generic performance annotations 

need to be bound to concrete product-specific values provided by 

the developer.  

To the best of our knowledge, our research is the first to tackle 

this problem. Dealing manually with a large number of 

performance parameters and with their mapping to each model 

elements, by asking the developer to inspect every diagram in the 

model, to extract these annotations and to attach them to the 

corresponding PC-features, is an error-prone process. Automating 

the entire process of extracting this information from a product 

model, generating spreadsheets, and performing the actual binding 

make the process of providing concrete values for performance 

variables more user-friendly and less error-prone. It is also more 

efficient and easier to repeat this process every time a new generic 

product model is derived from the SPL model or changes to the 

execution environment happen. The performance characteristics 

of different platforms can be measured and reused for many 

products executed on a variety of runtime environments. Future 

work will use Aspect-Oriented Modeling for including the 

impacts of underlying platforms by presenting each PC-feature in 

the PC-feature model as a generic aspect model that can be reused 

with different applications. 
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Appendix 

Examples of ATL rules and helpers to transform a UML product 

model into a Table model: 

 

-- Rule Interaction2Table transforms each SD 
-- in UML model to a table in Table model 
rule Interaction2Table { 

from interaction : UML!Interaction 
                        (interaction.hasStereotype('GaAnalysisContext')) 
 

-- Define the headers‟ names  
               using { titles_name : Sequence(String) = 
                           Sequence{'Element_Type','Stereotype_Name', 
                           'Attribute_Name','Element_Name', 
                           'PC-feature_Name','Guideline for Value', 
                           'Generic_Parameter', 'Concrete_Value'}; } 
 to table : Table!Table( 
  name <- interaction.name, 

                 rows <- Sequence{title_row, blank_row, 
 

-- create a row for each attribute   
           Sequence{UML!Message.allInstances()-> 
                                 collect(e |thisModule.resolveTemp 
                                 (e,'hostDemand_row'))}, 

      Sequence{UML!Message.allInstances()-> 
                 collect(e | thisModule.resolveTemp 
                                (e,'msgSize_row')) }, 
                   Sequence{UML!Message.allInstances()-> 
                              collect(e | thisModule.resolveTemp 
                               (e,'commTxOvh_row')) }, 
                      Sequence{UML!Message.allInstances()-> 
                              collect(e | thisModule.resolveTemp 
                               (e,'commRcvOvh_row')) }} ), 
-- create the title row 

title_row : Table!Row(  
cells <- Sequence{ title_cols }), 

 title_cols : distinct Table!Cell 
                foreach(name in titles_name) 
               (content <- name), 

 

-- create a blank row  
 blank_row : Table!Row( 
               cells <- Sequence{ blank_cols }), 
               blank_cols : Table!Cell( 
               content <- '' “) } 
 
-- Rule Message2Rows collects all the generic tagged values  
-- of the stereotypes «PaStep» or «PaCommStep» extending  
-- model elements of type message and transforms them to a 
-- row in a table  
rule Message2Rows { 

from message : UML!Message  
using { hostDemand_name : Sequence(String)= 

                        Sequence{'Message','PaStep','hostDemand', 
                        message.name,'Application-Annotation', 
                        message.getTagValues('PaStep','hostDemand')}; 
                       msgSize_name : Sequence(String) = 
                        Sequence{'Message','PaCommStep','msgSize', 
                        message.name,  
 

-- call helper “pcFeatureName” to get PC-feature  
-- affects attribute msgSize     
            message.pcFeatureName('PaCommStep','msgSize'), 
 

-- call helper “getTagValues” to get the generic attribute value  
           message.getTagValues('PaCommStep','msgSize')}; 
           commTxOvh_name : Sequence(String) = 
           Sequence{'Message','PaCommStep','commTxOvh', 
           message.name,  
           message.pcFeatureName('PaCommStep','commTxOvh'), 
             message.getTagValues('PaCommStep','commTxOvh')}; 
             commRcvOvh_name : Sequence(String) = 
            Sequence{'Message','PaCommStep','commRcvOvh', 
            message.name}, 
         message.pcFeatureName('PaCommStep','commRcvOvh'), 
        message.getTagValues('PaCommStep','commRcvOvh')};} 

to   hostDemand_row : Table!Row( 
                        cells <- Sequence{hostDemand_cols}), 
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        hostDemand_cols : distinct Table!Cell 
                                      foreach(name in hostDemand_name) 
                                      content <- name), 
                       msgSize_row : Table!Row( 
                        cells <- Sequence{ msgSize_cols }), 
        msgSize_cols : distinct Table!Cell  
                                       foreach(name in msgSize_name) ( 
                       content <- name), 
                       commTxOvh_row : Table!Row( 
                       cells <- Sequence{ commTxOvh_cols}), 
        commTxOvh_cols : distinct Table!Cell 
                                       foreach(name in commTxOvh_name) ( 
                        content <- name), 
        commRcvOvh_row : Table!Row(  
                                    cells <- Sequence{ commRcvOvh_cols}), 
        commRcvOvh_cols : distinct Table!Cell  
                                     foreach(name in commRcvOvh_name) ( 
                      content <- name)} 
 
-- This helper returns the tagged value of the  
-- stereotype's attribute; both stereotype and  
-- attribute name are given as parameters  

helper context UML!Element  def :  
                         getTagValues(stereotype:String,tag:String) :  

                            UML!Element = 
  if       self.getAppliedStereotypes()->   
                         select(e | e.name =stereotype)->notEmpty() 
  then self.getValue(self.getAppliedStereotypes() 
                        ->select(e|e.name=stereotype )->first(),tag) 
                        ->first() 

else ''     endif; 
 
-- This helper returns “true” if the respective model element is 
-- stereotyped with the stereotype name given as a parameter 

helper context UML!Element  def:    
                      hasStereotype(stereotype:String) : 

                            Boolean =  self.getAppliedStereotypes() 
                            -> exists(c|c.name.startsWith(stereotype)); 
 

-- This helper returns the PC-feature name affecting the  
-- respective attribute;both stereotype and attribute name are 
-- given as parameters 
  helper context UML!Element def : 
            pcFeatureName(stereotype:String, name:String):  
                       String = 
  if     self.getAppliedStereotypes() ->  
                       select(e | e.name = stereotype)->notEmpty() 
  then UML!Class.allInstances() ->  
                         select(class|class.getTagValues 
                         ('pc-feature','AttList')=name) -> 
                         collect(c|c.name)->first() 
  else ''            endif; 

 

An Example of a helper from the transformation performing the 

actual binding: 

 
-- This helper returns the value of the attribute „value‟ and gets 
-- as a parameter the value of the attribute „name‟ by checking 
-- all elements in mark model „parameters‟  

helper def : getParameter (variable : String) : String = 
             XML!Element.allInstancesFrom 

                           ('parameters')->select(m|m.name = 'Row')-> 
                          select(a|a.getStringAttrValue('name')= variable) 
                          ->first().getStringAttrValue('value'); 
 
-- This helper is called by the previous one to return the value  
-- of a string attribute. It returns an empty string if the attribute  
-- doesn't exist. 

helper context XML!Element def:      
            getStringAttrValue(attrName : String) : String = 
let   attX :Sequence(XML!Attribute)= self.children  
       ->select(a|a.oclIsTypeOf(XML!Attribute) and     
       a.name = attrName)->asSequence()  in   
if         attX -> notEmpty()   

   then    attX ->first().value 
     else ''                    endif; 
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