

ABSTRACT

A Software Product Line (SPL) is a set of similar software

systems that share a common set of features. Instead of building

each product from scratch, SPL development takes advantage of

the reusability of the core assets shared among the SPL members.

In this work, we integrate performance analysis in the early

phases of SPL development process, applying the same reusability

concept to the performance annotations. Instead of annotating

from scratch the UML model of every derived product, we

propose to annotate the SPL model once with generic

performance annotations. After deriving the model of a product

from the family model by an automatic transformation, the

generic performance annotations need to be bound to concrete

product-specific values provided by the developer. Dealing

manually with a large number of performance annotations, by

asking the developer to inspect every diagram in the generated

model and to extract these annotations is an error-prone process.

In this paper we propose to automate the collection of all generic

parameters from the product model and to present them to the

developer in a user-friendly format (e.g., a spreadsheet per

diagram, indicating each generic parameter together with guiding

information that helps the user in providing concrete binding

values). There are two kinds of generic parametric annotations

handled by our approach: product-specific (corresponding to the

set of features selected for the product) and platform-specific

(such as device choices, network connections, middleware, and

runtime environment). The following model transformations for

(a) generating a product model with generic annotations from the

SPL model, (b) building the spreadsheet with generic parameters

and guiding information, and (c) performing the actual binding are

all realized in the Atlas Transformation Language (ATL).

Categories and Subject Descriptors

C.4 [Performance of Systems]: modeling techniques,

performance attributes. D.2.4 [Software/Program Verification]:

model checking

General Terms

Performance, Design

Keywords

Model-driven development, performance model, Performance

Completion, ATL, MARTE, SPL, UML.

1. INTRODUCTION
A Software Product Line (SPL) is a set of similar software

systems built from a shared set of assets, which are realizing a

common set of features satisfying a particular domain. Experience

shows that by adopting a SPL development approach,

organizations achieve increased quality and significant reductions

in cost and time to market [9].

An emerging trend apparent in the recent literature is that the SPL

development moves toward adopting a Model-Driven

Development (MDD) paradigm. This means that models are

increasingly used to represent SPL artifacts, which are building

blocks for many different products with all kind of options and

alternatives. In previous research [22][23][24] the authors of the

paper proposed to integrate performance analysis in the early

phases of the model-driven development process for Software

Product Lines (SPL), with the goal of evaluating the performance

characteristic of different products by generating and analyzing

quantitative performance models. Our starting point was the so-

called SPL model, a multi-view UML model of the core family

assets representing the commonality and variability between

different products. We added another dimension to the SPL

model, annotating it with generic performance specifications (i.e.,

using parameters instead of actual values) expressed in the

standard UML profile MARTE [18]. Such parameters appear as

variables and expression in the MARTE stereotype attributes.

In order to analyze the performance of a specific product running

on a given platform, we need to generate a performance model for

that product by model transformations from the SPL model with

generic performance annotations. In our research, this is done in

three big steps: a) instantiating a product model with generic

performance parameters from the SPL model; b) binding the

generic parameters to concrete values provided by the user and c)

generating a performance model for the product from the model

obtained in the previous step. The model transformation (a) was

developed in our previous work [22][23]; step (b) represents the

contribution of this paper; and the PUMA transformation (c) for

generating performance models from annotated UML models has

been developed previously in our research group [27].

Since step (b) requires input from the user, it is implemented by

two transformations, as shown in Fig. 1: the first collects all the

generic parameters that need to be bound to concrete values from

the automatically generated product model and presents them to

the developer in a user-friendly spreadsheet format, while the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA.

Copyright 2012 ACM 978-1-4503-1202-8/12/04…$10.00.

109

second performs the actual binding to concrete values provided by

the developer. The list of annotation parameters presented to the

developer contains not only the parameter name and the model

elements it belongs to, but also some guiding information to help

the user in providing concrete values, as explained in more detail

in section 3.2.

Performance is a runtime property of the deployed system and

depends on two types of factors: some are contained in the design

model of the product (generated from the SPL model) while

others characterize the underlying platforms and runtime

environment. Performance models need to reflect both types of

factors. Woodside et al. proposed the concept of performance

completions to close the gap between abstract design models and

external platform factors [26]. Performance completions provide a

means to extend the modeling constructs of a system by including

the influence of the underlying platforms and execution

environments in performance evaluation models. Since our goal is

to automate the derivation of a performance model for a specific

product from the SPL model, we propose to deal with

performance completions in the early phases of the SPL

development process by using a so-called Performance

Completion feature (PC-feature) model similar to [13]. The PC-

feature model explicitly captures the variability in platform

choices, execution environments, different types of

communication realizations, and other external factors that have

an impact on performance, such as different protocols for secure

communication channels and represents the dependencies and

relationships between them [23]. Therefore, our approach uses

two feature models for a SPL: 1) a regular feature model for

expressing the variability between member products (as described

in Section 2.1), and 2) a PC-feature model introduced for

performance analysis reasons to capture platform-specific

variability (as described in Section 2.3).

We propose to include the performance impact of underlying

platforms into the UML+MARTE model of a product as

aggregated platform overheads, expressed in MARTE annotations

attached to existing processing and communication resources in

the generated product model. This will keep the model simple and

still allow us to generate a performance model containing the

performance effects of both the product and the platforms. Every

possible PC-feature choice is mapped to certain MARTE

annotations corresponding to UML model elements in the product

model. This mapping is realized by the transformation generating

the parameter spreadsheets, which is providing the user with

mapping information in order to put the annotation parameters

needing to be bound to concrete values into context, as described

in Section 3.2.

Dealing manually with a large number of performance parameters

and with their mapping, by asking the developer to inspect every

diagram in the model, to extract these annotations and to attach

them to the corresponding PC-features, is an error-prone process.

This paper proposes a model transformation approach to automate

the collection of all the generic parameters that need to be bound

to concrete variables from the annotated product model,

presenting them to the user in a user-friendly format.

We claim that the proposed technique for handling annotation

parameters is user-friendly after comparing it with another

approach used in earlier phases of our research, where the binding

information was given as a set of couples {<generic_parameter>,

<concrete_value>} created manually by the developer, after

careful inspection of the generated UML model to extract all the

parameters. The older approach required a lot of work from the

developer and was error prone. The parameter file produced by

hand contained no context information and no guidelines.

The proposed technique is illustrated with an e-commerce case

study. The e-commerce SPL can generate a distributed application

that can handle either business-to-business (B2B) or business-to-

consumer (B2C) systems.

The paper is organized as follows: section 2 presents the domain

engineering process where the SPL model, the regular feature

model and the PC-feature model are constructed; section 3

presents the model transformations for generating a product model

with concrete performance specifications; related work is

discussed in section 4; and section 5 presents the conclusions.

2. DOMAIN ENGINEERING PROCESS
The SPL development process is separated into two major phases:

1) domain engineering for creating and maintaining a set of

reusable artifacts and introducing variability in these software

artifacts, so that the next phase can make a specific decision

according to the product‟s requirements; and 2) application

engineering for building family member products from reusable

artifacts created in the first phase instead of starting from scratch.

The SPL assets created by the domain engineering process of

interest for our research are represented by a multi-view UML

design model of the family, called the SPL model, which

Focus of the paper

Application engineering

User

Domain engineering UML+MARTE+PL
SPL Model

Feature model

M2MT: Generate
Parameter

Spreadsheet

Diagnosis
Performance

Feedback

M2MT: Instantiate
Specific Product

Model

LQN
Solver

User enters
concrete

values

Concrete
Annotations
Spreadsheet

M2MT: Perform
Binding

UML+ MARTE
Product Model

M2MT: PUMA
Transformation

Feature
Configuration

Product Model
with Generic
Annotations

Parameter
Spreadsheet

LQN Performance
Model

Performance
Results

PC-Feature model

Figure 1. Approach for deriving a product performance model.

110

represents a superimposition of all variant products [22][23]. The

creation of the SPL model employs two separate profiles: a

product line profile introduced by Gomaa [12] for specifying the

commonality and variability between products, and the MARTE

profile for performance annotations. Another important outcome

of the domain engineering process is the feature model used to

represent commonalities and variabilities between family

members in a concise taxonomic form. Additionally, we create a

PC-feature model to represent the variability space of

performance completions.

2.1 Feature Model
The feature models are used in our approach to represent two

different variability spaces. This section describes the regular

feature model representing functional variabilities between

products. An example of feature model of an e-commerce SPL is

represented in Fig. 2 in the extended FODA notation, Cardinality-

Based Feature Model (CBFM) [11]. Since the FODA notation is

not part of UML, the feature diagram is represented in the source

model taken as input by our ATL transformation as an extended

UML class diagram, where the features and feature groups are

modeled as stereotyped classes and the dependencies and

constraints between features as stereotyped associations. For

instance, the two alternative features Static and Dynamic are

mutually exclusive and so they are grouped into an exactly-one-of

feature group called Catalog. In addition to functional features,

we add to the diagram another type of features characterizing

design decisions that have an impact on the non-functional

requirements or properties. For example, the architectural decision

related to the location of the data storage (centralized or

distributed) affects performance, reliability and security, and is

represented in the diagram by two mutually exclusive quality

features. This type of feature related to a design decision is part of

the design model, not just an additional PC-feature required only

for performance analysis.

This feature model represents the set of all possible combinations

of features for the products of the family. It describes the way

features can be combined within this SPL. A specific product is

configured by selecting a valid feature combination from the

feature model, producing a so-called feature configuration based

on the product‟s requirements. To enable the automatic derivation

of a given product model from the SPL model, the mapping

between the features contained in the feature model and their

realizations in a reusable SPL model needs to be specified, as

shown in the next section. Also, each stereotyped class in the

feature model has a tagged value indicating whether it is selected

in a given feature configuration or not.

2.2 SPL Model
The SPL model should contain, among other assets, structural and

behavioural views which are essential for the derivation of

performance models. It consists of: 1) structural description of the

software showing the high-level classes or components, especially

if they are distributed and/or concurrent; 2) deployment of

software to hardware devices; 3) a set of key performance

scenarios defining the main system functions frequently executed.

Note that since the SPL model is generic, covering many products

and containing variation points with variants, the MARTE

annotations need to be generic as well. We use MARTE variables

as a means of parameterizing the SPL performance annotations;

such variables (parameters) will be assigned (bound to) concrete

values during the product derivation process.

The functional requirements of the SPL are modeled as use cases.

Use cases required by all family members are stereotyped as

«kernel». The variability distinguishing the members of a family

from each other is explicitly modeled by use cases stereotyped as

«optional» or «alternative»; such use cases are also annotated

with the name of the feature(s) requiring them (given as

stereotype attributes). This is an example of mapping between

features and the model elements realizing them. The structural

view of the SPL is presented as a class diagram and variabilities

are modeled in the same manner as the use case diagram (i.e.,

stereotyped as kernel, optional or alternative). For more details

about the SPL use case and class diagrams see [22][24].

The behavioural SPL view is modeled as sequence diagrams for

each scenario of each use case of interest. Fig. 3 illustrates the

kernel scenario BrowseCatalog. «GaAnalysisContext» is a

MARTE stereotype indicating that the entire interaction diagram

is to be considered for performance analysis. Its tag indicates a list

of annotation variables representing context analysis parameters:

{contextParams = $N1, $Z1, $ReqT, $FSize, $Blocks}

purchaseOrder

catalog

static dynamic

delivery

invoices

on-lineDisplay

printedInvoice

e-commerceKernel

customer

businessCustomer

homeCustomer

payment

customerAttractions

promotions

membershipDiscount

sales

customerInquiries

helpDesk callCenter

shippingType

normal express

packageSlip

internationalSale

dataStorage

electronic

shipping

distributed centralized

creditCard

check

debitCard

switchingMenu

severalLanguage

currencyConversion

tariffsCalculation

I/ELaws

security

<1-1><1-1>

<1-3>

<1-1>

<1-3>
<1-3>

<1-4>

<1-2>

<1-2>

<1-2>

Features composition rules:

• switchingMenu requires debitCard and creditCard

• switchingMenu requires debitCard and check

• switchingMenu requires creditCard and check

•electronic requires on-lineDisplay

• shipping requires printedInvoices

Figure 2. Feature model of the e-commerce SPL.

111

By convention, we use names starting with „$‟ for all MARTE

variables to distinguish them from other identifiers and names.

The workload of a scenario is defined as a stream of events

driving the system; a workload may be open or closed.

«GaWorkloadEvent» {pattern=$Patt}

Sequence diagram variability that distinguishes between the

behaviour of different features is expressed by extending the alt

and opt fragments with the stereotypes «AltDesignTime»

«OptDesignTime», respectively. For example, the alt fragment

stereotyped with «AltDesignTime» {VP=Catalog} gives two

choices based on the value of the Catalog feature (Static or

Dynamic); more specifically, each one of its Interaction Operand

has a guard denoting the feature Static or Dynamic. An alternative

feature that is rather complex and is represented as an extending

use case, can be also modeled as an extended alt operator that

contains an Interaction Use referring to an Interaction

representing the extending use case. Note that regular alt and opt

fragments that are not stereotyped represent choices to be made at

runtime, as defined in UML.

Each lifeline whose role is an active object is stereotyped as

«PaRunTInstance», providing an explicit link at the annotation

level between a role in a behavior definition (a lifeline) and the

runtime instance of a process or thread (active object). For

example, the tag {instance=CBrowser} indicates the name of

runtime instance of a process executing the lifeline role, while the

tag {host=$CustNode} indicates the physical node from the

deployment diagram on which the instance is running. In this

case, the host is given by the generic parameter $CustNode, which

will be bound later to a concrete host name.

Conceptually, a scenario represented by a UML sequence diagram

is composed of units of execution named steps. MARTE defines

two kinds of steps for performance analysis: execution step

(stereotyped «PaStep») and communication step (stereotyped

«PaCommStep»). «PaStep» may be applied to an Execution

Occurrence (represented as a thin rectangle on the lifeline) or to

the message that triggers it. For instance, in Fig. 3, the message

getList is stereotyped as an execution step:

«PaStep» {hostDemand = ($CatD, ms),

 respT = (($ReqT, ms), calc)}

where hostDemand indicates the execution time required by the

step, given by the variable $CatD in time units of milliseconds.

The attribute respT corresponds to the response time of the

scenario starting with this step; the variable $ReqT will save the

calculated response time in milliseconds. The same message
getList is also stereotyped as a communication step:

«PaCommStep» { msgSize = ($MReq, KB),

commTxOvh = ($GetLSend, ms),

commRcvOvh = ($GetLRcv, ms)}}

where the message size is the variable $GetL in KiloBytes. The

overheads for sending and receiving this particular message are

the variables $GetLSend and $GetLRcv, respectively, in milli-

seconds. We propose to annotate each communication step (which

corresponds to a logical communication channel) with the CPU

overheads for transferring the respective message: commTxOvh

for transmitting (sending) the message and commRcvOvh for

receiving it. Eventually, these overheads will be added in the

performance model to the execution demands of the two

execution hosts involved in the communication (one for sending

and the other for receiving the respective message).

Since performance analysis depends on the software to hardware

allocation, another structure diagram, which is not usually

represented in the SPL models, has to be created in our approach.

2.3 SPL Performance Completion
In SPL, different members may vary from each other in terms of

their functional requirements, quality attributes, platform choices,

«kernel»

«PaRunTInstance»

{instance = CatServer,

host=$CatNode}

:Catalog

«kernel-abstract-vp»

«PaRunTInstance»

{instance=CBrowser,

host=$CustNode}

:CustomerInterface

«optional »

«PaRunTInstance»

{instance = CatDB,

host=$DTopNode}

:StaticStorage

«GaAnalysisContext» {contextParams= $N1, $Z1, $ReqT, $FSize, $Blocks}

catalogInfo

«PaCommStep»

{msgSize=($CatI,KB)}

sd Browse Catalog

getList

«GaWorkloadEvent»

{pattern=(closed (population=$N1),

(extDelay=$Z1))}

«PaStep» {hostDemand=($ CatD, ms),

respT=($ReqT,ms),calc)}

«PaCommStep» {msgSize = ($FSize

*0.2,KB), commTxOvh = ($GetLSend,ms),

commRcvOvh = ($GetLRcv, ms)} }}

«optional »

«PaRunTInstance»

{instance = CatDB,

host=$ProDBNode}

:ProductDB

«optional »

«PaRunTInstance»

{instance = CatDB,

host=$ProDisNode}

:ProductDiplay

alt [Static]

[Dynamic]

«AltDesignTime» {VP=Catalog}

returnData

«PaCommStep»

{msgSize=($RetD,KB),

commTxOvh=($RetDSend,ms),

commRcvOvh=($RetDRcv, ms)}

getData

«PaStep»

{hostDemand=($Blocks*0.9,ms)}

«PaCommStep»

{msgSize=($GetD,KB),

commTxOvh=($GetDSend,ms),

commRcvOvh=($GetDRcv, ms)}

disData

«PaStep»

{hostDemand=($PDisD,ms)}

«PaCommStep»

{msgSize=($DisD,KB),

commTxOvh=($DisDSend,ms),

commRcvOvh=($DisDRcv, ms)}

returnCatList

«PaCommStep»

{msgSize=($RCL,KB)}

getCatList

«PaStep»

{hostDemand=($DToptD,ms)}

«PaCommStep»

{msgSize=($GCatL,KB)}

Figure 3. SPL Scenario Browse Catalog.

112

network connections, physical configurations, and middleware.

Many details contained in the system that are not part of its design

model but of the underlying platforms and environment, do affect

the run-time performance and need to be represented in the

performance model. Performance completions, as proposed by

Woodside [26], are a manner to close the gap between the high-

level design model and its different implementations. Performance

completions provide a general concept to include low-level details

of execution environment/platform in performance models.

This subsection covers the variability space of the performance

completions and represents it through a Performance Completion

feature model (PC-feature model) similar to [13]. Each feature

from the PC-feature model shown in Fig. 4 may affect one or

more performance attributes. For instance, data compression

reduces the message size and at the same time increases the

processor communication overhead for compressing and

decompressing the data. Thus, it is mapped to the performance

attributes message size and communication overhead through the

MARTE attributes msgSize, commTxOvh and commRcvOvh,

respectively. The mapping here is between a PC-feature and the

performance attribute(s) affected by it, which are represented as

MARTE stereotype attributes associated to different model

elements. Table 1 illustrates this type of mapping between PC-

features and the design model, set up through the MARTE

stereotypes attached to model elements.

Fig. 4 illustrates a part of the PC-feature model for our case study.

Adding security solutions requires more resources and longer

execution times, which in turn has a significant impact on system

performance. We introduce a PC-feature group called

secureCommunication that contains two alternative features

secured and unsecured. The secured feature offers three security

level alternatives depending on the size of the key used in the

handshake phase and on the strength of the encryption and

message digest algorithms used in the data transfer phase, as

proposed in [15]. Each security level requires different overheads

for sending and receiving secure messages. These overheads are

mapped to the communication overheads through the attributes

commRcvOvh and commTxOvh, which represent the host demand

overheads for receiving and sending messages, respectively. Since

not all the messages exchanged in a product need to have the same

communication overheads, we propose to annotate each individual

message stereotyped as «PaCommStep» with the processing

overheads for the respective message: commTxOvh for

transmitting (sending) it and commRcvOvh for receiving it. In

fact, these overheads correspond to the logical communication

channel that conveys the respective message. Eventually, the

logical channel will be allocated to a physical communication

channel (e.g., network or bus) and to two execution hosts, the

sender and the receiver. The commTxOvh overhead will be

eventually added in the performance model to the execution

demands of the sender host and commRcvOvh to that of the

receiver host.

Each type of physical communication channel stereotyped

«GaCommHost» has different capacity for the amount of

information that can be transmitted over it. As the channel‟s

capacity increases, the latency time for transmitting data over this

Table 1. Mapping of PC-features to affected performance

attributes

PC-feature Affected

Performance

Attribute

MARTE

Stereotype

MARTE

Attribute

secureCommunication Comm. overhead PaCommStep commRcvOvh

commTxOvh

channelType Channel Capacity

Channel Latency

GaCommHost capacity

blockT

dataCompression Message size

Comm. overhead

PaCommStep msgSize

commRcvOvh

commTxOvh

externalDeviceType Service Time PaStep extOpDemand

messageType Comm. overhead PaCommStep commTxOvh

securityLevel

highSecuritymediumSecuritylowSecurity

secureCommunication

secured unsecured

channelType

LAN Internet PAN

internetConnection

WirelessDSLPower-line

externalDeviceType

diskmonitor

USBDVDCD Hard Disk

<1-1> <1-1>

<1-1>

<1-1>

dataCompression

compressed uncompressed

<1-1><1-1>

<1-1>

messageType

withGuaranteedDelivery withoutGuaranteedDelivery

<1-1>

Enterprise JavaBeans

platformChoice

.NETCORBAWeb-services

<1-1>

Figure 4. Part of the Performance-Completion feature model of the e-commerce SPL.

113

channel decreases. Our example provides three different

communication channels with three alternative connections for the

Internet. The capacity and latency for each physical channel type

are mapped to the attributes capacity and blockT of the stereotype

«GaCommHost».

Data compression requires extra operations that increase the

processing time, but at the same time compression helps reducing

the use of resources, such as hard disk space or communication

channel bandwidth. Data compression/decompression is adding an

overhead when sending and receiving a message, which is

mapped to the attributes commTxOvh and commRcvOvh,

respectively. However, compression also reduces the amount of

data to be transferred and thus decreases the delivery time (e.g., a

compression algorithm may reduce the size of data to 60% [13]).

Thus, the amount of compressed data transmitted over a physical

channel is mapped to the attribute msgSize. Another

communication mechanism that affects the delivery time of a

message is whether the communication is with or without

guaranteed delivery [13]; the effect is mapped to the

commTxOverhead attribute.

The PC-feature group platformChoice includes different types of

middleware such as CORBA, Web-services, etc., which will

affect also the communication overheads. We may either map

their effect to the commTxOvh and commRcvOvh attributes, or

may use MARTE external operations described below.

MARTE provides specifically the concept of “external operation

calls” to represent resource operations that are not explicitly

modeled within the UML design model, but may have an impact

on performance. The stereotype «PaStep» has two attributes: a)

extOpDemands, an ordered set of identifiers for operations by

external services which are demanded by this Step, in a form

understood by the performance environment, and b) extOpCount,

an ordered set of number of requests made for each external

operation during one execution of the Step, listed in the same

order as the demands. Examples of such external calls are

middleware operations or disk operations hidden in database calls.

Different types of external devices are represented in the PC-

feature model by the feature externalDeviceType. Each device

offers different operations times with different execution times.

The invocation of such operations is represented by the attributes

extOpDemands and extOpCount of an execution step.

It is important to note that the MARTE annotation contain both

performance-affecting attributes of the product we want to

analyze, as well as environment/platform characteristics. For

instance, the CPU execution times of different scenario steps are

indicated by the attributes hostDemand of «PaStep». The size of a

message from a sequence diagram represented by the attribute

msgSize is a property of the software product, which may be

modified by properties of the communication channel, such as

compression/decompression. The product model obtained by the

transformation presented in the next section includes both the

performance attribute contained directly in the design model and

the platform/environment factors corresponding to PC-features.

In order to automate the process of generating a user-friendly

representation of the generic MARTE parameters that need to be

bound to concrete values, the mapping between the PC-features

and the performance attributes they affect needs to be specified, as

shown in the next section. Also, each stereotyped class

representing a feature in the PC-feature model has a tagged value

indicating the list of the attributes it affects. For instance, the PC-

feature DataCompression affects the attribute list {msgSize,

commTxOvh, commRcvOvh}.

3. MODEL TRANSFORMATION

APPROACH
The derivation of a specific UML product model with concrete

performance annotations from the SPL model with generic

annotations requires three model transformations: a) transforming

the SPL model to a product model with generic performance

annotations, b) generating spreadsheets for the user containing

generic parameters and guiding information for the specific

product, c) performing the actual binding by using the concrete

values provided by the user. We have implemented these model

transformations in the Atlas Transformation Language (ATL). We

handle two kind of generic parametric annotations: a) product-

specific (due to the variability expressed in the SPL model) and

platform-specific (due to device choices, network connections,

middleware, and runtime environment).

3.1 Product Model Derivation
This subsection describes briefly the first model transformation

for generating a product model with generic performance

annotations from the SPL model, which was developed by the

authors in previous work [22][23][24].

Our derivation approach uses the mapping technique previously

proposed in [24] to set up the mapping between a functional

feature from the feature model and the model element(s) realizing

the feature in the SPL model (both in the structural and

behavioural views).

The derivation process is initiated by specifying a given product

through its feature configuration (i.e., the legal combination of

features characterizing the product). The second step in the

derivation process is to select the use cases realizing the chosen

features. The product class diagram is derived in the third step in a

similar way to the use case diagram. The final step of the product

derivation is to generate the sequence diagrams corresponding to

different scenarios of the chosen use cases. Each such scenario is

modeled as a sequence diagram, which has to be selected from the

SPL model and copied to the product one. The PL variability

stereotypes are eliminated after binding the generic roles

associated to the lifelines of each selected sequence diagram to

specific roles corresponding to the chosen features. For instance,

the sequence diagram BrowseCatalog has the generic alternate

role CustomerInterface which has to be bound to a concrete role,

either B2BInterface or B2CInterface to realize the features

BusinessCustomer or HomeCustomer, respectively. However, the

selection of the optional roles is based on the corresponding

features. For instance, the generic optional role StaticStorage is

selected if the feature Static Catalog is chosen. More details about

the derivation approach and the mapping of functional features to

model elements are presented in our previous work [24].

The outcome of this model transformation is a product model

where the variability related to SPL has been resolved based on

the chosen feature configuration. However, the performance

annotations are still generic and need to be bound to concrete

values.

114

3.2 Generating User-Friendly Representation
The generic parameters of a product model derived from the SPL

model are related to different kind of information: a) product-

specific resource demands (such as execution times, number of

repetitions and probabilities of different steps); b) software-to-

hardware allocation (such as component instances to processors);

and c) platform/environment-specific performance details (also

called performance completions). The user (i.e., performance

analyst) needs to provide concrete values for all generic

parameters; this will transform the generic product model into a

platform-specific model describing the run-time behaviour of the

product for a specific run-time environment.

Choosing concrete values to be assigned to the generic

performance parameters of type (a) is not a simple problem. In

general, it is difficult to estimate quantitative resource demands

for each step in the design phase, when an implementation does

not exist and cannot be measured yet. Several approaches are used

by performance analysts to come up with reasonable estimates in

the early design stages: expert experience with previous versions

or with similar software, understanding of the algorithm

complexity, measurements of reused software, measurements of

existing libraries, or using time budgets. As the project advances,

early estimates can be replaced with measured values for the most

critical parts. Therefore, it is helpful for the user of our approach

to keep a clearly organized record for the concrete values used for

binding in different stages of the project. For this reason, we

proposed to automate the collection of the generic parameters

from the model on spreadsheets, which will be provided to the

user.

The parameters of type (b) are related to the allocation of software

components to processors available for the application. For

example, Fig. 5 shows a part of the deployment diagram to be

used for the scenario BrowseCatalog. The user has to decide for a

product what is the actual hardware configuration and how to

allocate the software to processing nodes. The MARTE stereotype

«RunTInstance» annotating a lifeline in a sequence diagram

provides an explicit connection between a role in the behaviour

model and the corresponding runtime instance of a component.

The attribute host of this stereotype indicates on which physical

node from the deployment diagram the instance is running. Using

parameters for the attribute host enable us to allocate each role (a

software component) to an actual hardware resource. The

transformation collects all these hardware resources and

associates their list to each lifeline in the spreadsheets. The user

decides on the actual allocation by choosing a processor from this

list. For instance, the user may decide to allocate the role

ProductDisplay to the actual processing node CatalogNode.

The performance effects of variations in the platform/environment

factors (such as network connections, middleware, operating

system and platform choices) are included into our model by

aggregating the overheads caused by each factor and by attaching

them via MARTE annotations to the affected model elements. As

already mentioned, the variations in platform/environment factors

are represented in our approach through the PC-feature model (as

explained in the previous section). A specific run-time instance of

a product is configured by selecting a valid PC-feature

combination from the PC-feature model. We define a PC-feature

configuration as a complete set of choices of PC-features for a

specific model element. For instance, a PC-feature configuration

for a given message could be {MediumSecurity, Compressed,

CORBA, withoutGuaranteedDelivery}.

It is interesting to note that a PC-feature has impact on a subset of

model elements in the model, but not necessarily on all model

elements of the same type. For instance, the PC-feature

securedCommunication affects only certain communication

channels in a product model, not all of them. Hence, a PC-feature

needs to be associated to certain model element(s), not to the

entire product. This mapping is set up through the MARTE

performance specifications annotating the affected model

elements in the product model, as described in section 2.3.

Dealing manually with a huge number of performance annotations

by asking the developer to inspect every diagram in the generated

product model, to extract the generic parameters and to match

them with the PC-features is an error-prone process. We propose

to automate the process of collecting all generic parameters that

need to be bound to concrete values from the product model and

to associate each PC-feature to the model element(s) it may affect,

then present the information to the developer in a user-friendly

format. We generate a spreadsheet per diagram, indicating for

each generic parameter some guiding information that helps the

user in providing concrete binding values.

An example of such guiding information is the different

overheads for sending and receiving secure messages. For

instance, in [15] overhead data is provided for three security

levels (low, medium and high): the handshake overhead is

(10.2ms, 23.8 ms, 48.0 ms), and the data transfer overhead per KB

of data is (0.104 ms, 0.268 ms, 0.609 ms). For instance, we used

this data as guiding information in Fig. 6. For instance, the

overhead for sending a message with low security level is

(5.1+0.052*msgsize) and for receiving is (5.1+0.052*msgsize).

For a given SPL, the performance analyst may tailor the guiding

information to the platform and environment intended for

performance analysis.

The process of generating the spreadsheets takes place after a

specific product model is derived from the SPL model. Due to the

large semantic gap between the source and target models of the

transformation, we follow the example ”Microsoft Office Excel

Extractor” [7] from the Eclipse/ATL website, which applies the

principle of separation of concerns and breaks the transformation

into a series of simpler transformations. This transformation series

enables us to get some control over the order in which to navigate

the ATL source models. The process is composed of four different

model transformations:

a) From a specific UML product model into a Table model that

contains several tables, one for each sequence diagram; each

parametric performance annotation is represented as a table row;

«GAExecHost»

ProductDBNode

«GAExecHost»

CustomerNode

«GAExecHost»

CatalogNode

«GACommHost»

Cust&CatNode

{capacity=($Cap1, KB/ms)

blockT=($Lat1, ms)}

«GACommHost»
Cat&ProDBNode

{capacity=($Cap2, KB/ms)

blockT=($Lat2, ms)}

Figure 5. Part of a product deployment diagram.

115

b) From the Table model into a SpreadsheetMLSimplified model

that represents (as the name says) a simplified subset of the

spreadsheetML XML used by Microsoft to import/export Excel

workbook‟s data from/to XML;

c) From the SpreadsheetMLSimplified into an XML model;

d) The XML model created in the previous step is re-written as an

XML file which can be directly opened by Microsoft Excel.

The mapping between PC-features and the corresponding

performance attributes takes place during the transformation (a).

Each MARTE attribute gets the name of the PC-features that have

an impact on this attribute attached to it. For instance, the attribute

msgSize is associated with the PC-feature Data Compressed.

Another association is between the MARTE attribute host

annotating a model element of type lifeline and the list of all

available deployment nodes from the deployment diagram. After

the user selects a PC-feature combination for each model element,

he/she can delete the remaining unselected PC-features from the

spreadsheet, ending up with a small set of rows containing

annotations that need to be bound to concrete values.

The transformation handles differently the context analysis

parameters, which are usually defined by the modeler to be

carried without binding throughout the entire transformation

process, from the SPL model to the performance model for a

product. These parameters can be used to explore the performance

analysis space. A list of the context analysis parameters are

provided to the user, who will decide whether to bind them now to

concrete values, or to use them unbound in MARTE expressions.

The four transformations are implemented in the Atlas

Transformation Language (ATL) [1]. An ATL transformation is

composed of a set of rules and helpers. The rules define the

mapping between the source and target model, while the helpers

are methods that can be called from different points in the ATL

transformation. The rules of the first transformation handle the

generation of the Table model from the UML product model. A

few examples of helpers and rules of this transformation are given

in the Appendix, with extensive comments in natural language.

A part of the generated spreadsheet for the scenario

BrowseCatalog is shown in Fig. 5. For instance, the PC-feature

dataCompression is mapped to the MARTE attribute msgSize

annotating a model element of type message. As the value of the

attribute msgSize is an expression $FSize*0.2 in function of the

context analysis parameter $FSize, it is the user‟s choice to bind it

at this level or keep it as a parameter in the output it produces.

The column titled Concrete Value is designated for the user to

enter appropriate concrete value for each generic parameter, while

the column Guideline for Value provides a typical range of values

to guide the user. For instance, if the PC-selection features chosen

are “secured” with “low security level”, the concrete value entered

by the user is obtained by evaluating the expression

(5.1+0.052*msgSize), assuming that the user follows the provided

guideline. Assuming that the choice for the PC-feature

dataCompression is “compressed”, the user may decide to

increase by 4% the existing overhead due to security features. In

general, the guidelines can be adjusted by the performance analyst

for a given SPL and a known execution environment. The

generated spreadsheet presents a user-friendly format for the users

of the transformation who have to provide appropriate concrete

values for binding the generic performance annotations. Being

automatically generated, they capture all the parameters that need

to be bound and reduce the incidence of errors.

3.3 Performing the Actual Binding
After the user selects an actual processor for each lifeline role

provided in the spreadsheets and enters concrete values for all the

generic performance parameters, the next model transformation

takes as input these spreadsheets along with its corresponding

Figure 6. Part of the generated Spreadsheet for the scenario Browse Catalog.

116

product model, and binds all the generic parameters to the actual

values provided by the user. The outcome of the transformation is

a specific product model with concrete performance annotations,

which can be further transformed into a performance model.

In order to automate the actual binding process, the generated

spreadsheets with concrete values are given as a mark model to

the binding transformation. The mark model concept has been

introduced in the OMG MDA guide [19] as a means of providing

concrete parameter values to a transformation. This capability of

allowing transformation parameterization through mark model

instances makes the transformation generic and more reusable in

different contexts.

To consider the spreadsheets as a mark model for the

transformation, we apply the same principle of separation of

concerns and break the transformation into a series of simpler

transformations as in [7]. Three extra model transformations have

to be done before performing the actual binding: a) from the

spreadsheets (XML file) to an XML model; b) from XML model

to the required syntax in Ecore-based format; c) which is further

extracted as an XML file that can be accepted by ATL. The main

transformation to perform the actual binding takes place now,

after the mark model is ready to be injected into the model

transformation as an XML file with the required syntax. As an

example, the helper called by different rules to get the value of an

attribute is shown in the Appendix.

4. RELATED WORK
This section surveys briefly work from literature related to

software performance engineering in the context of Model-Driven

Architecture, where the concepts of platform-independent and

platform-specific models were introduced. Special attention is

given to work focused on software product lines.

The Model-Driven Architecture approach is extended in [10] with

non-functional modeling and analysis concepts by adding new

models and transformations for validation activities. The concepts

of platform independent and platform specific are used through

the new type of models to obtain an accurate validation.

The concept of performance completions was proposed in [26] to

close the gap between application design models and external

platform factors. Performance completions provide a means to

extend the modeling constructs of a system by including the

influence of the underlying platforms and execution environments

in performance evaluation models.

A model transformation framework is proposed in [25] for

automatically including the impact of middleware on the

architecture and the performance of distributed systems. The

middleware descriptions are presented as a library in the

framework. Using this library, designers can model the system

with different types of middleware and then obtain a platform-

specific model. A LQN model build by hand is used for

performance evaluation.

An approach for performance prediction of component-base

software systems in proposed in [2]. The approach based on

operational analysis of QN models where performance bounds are

computed without deriving a QN model from the software

specification. Performance bounds such as system throughput and

response time are used to answer several performance-related and

what-if questions such as the bottleneck resource if the platform

configuration is changed.

A method for designing parametric performance completions that

are independent of a specific platform is proposed in [13]. The

variability in the platforms is described by using a feature model.

The completions can be instantiated for different environments by

explicitly coupling the transformations to performance models

and implementation to add the necessary details to both.

A queueing model for the performance of Web servers is

presented in [14]. The model includes the impacts of workloads,

hardware/software configurations, communication protocols, and

interconnect topologies. It is implemented in a simulation tool and

the results are validated with results from a test lab environment.

A literature survey on approaches that address non-functional

requirements (NFRs) is presented in [8]. The classification is

based on software variability, requirements analysis, elicitation,

reusability, and traceability as well as aspect-oriented

development. Variability related to SPL is also discussed.

In the context of SPL, to the best of our knowledge, no work has

been done to evaluate and predict the performance of a given

product by generating a formal performance model. Most of the

work aims to model non-functional requirements (NFRs) in the

same way as functional requirements. Some of the works are

concerned with the interactions between selected features and the

NFRs and propose different techniques to represent these

interactions and dependencies.

In [4], the MARTE profile is analyzed to identify the variability

mechanisms of the profile in order to model variability in

embedded SPL models. Although MARTE was not defined for

product lines, the paper proposes to combine it with existing

mechanisms for representing variability, but it does not explain

how this can be achieved. A model analysis process for embedded

SPL is presented in [5] to validate and verify quality attributes

variability. The concept of multilevel and staged feature model is

applied by introducing more than one feature models that

represent different information at different abstraction levels;

however, the traceability links between the multilevel models and

the design model are not explained.

In [3], the authors propose an integrated tool-supported approach

that considers both qualitative and quantitative quality attributes

without imposing hierarchical structural constraints. The

integration of SPL quality attributes is addressed by assigning

quality attributes to software elements in the solution domain and

linking these elements to features. An aggregation function is used

to collect the quality attributes depending on the selected features

for a given product.

A literature survey on approaches that analyze and design non-

functional requirements in a systematic way for SPL is presented

in [16]. The main concepts of the surveyed approaches are based

on the interactions between the functional and non-functional

features.

An approach called Svamp is proposed to model functional and

quality variability at the architectural level of the SPL [20]. The

approach integrates several models: a Kumbang model to

represent the functional and structural variability in the

architecture and to define components that are used by other

models; a quality attribute model to specify the quality properties

and a quality variability model for expressing variability within

these quality attributes.

Reference [6] extends the feature model with so-called extra-

functional features representing non-functional features.

Constraint programming is used to reason on this extended feature

model to answer some questions such as how many potential

products the feature model contains.

117

The Product Line UML-Based Software Engineering (PLUS)

method is extended in [21] to specify performance requirements

by introducing several stereotypes specific to model performance

requirements such as «optional» and «alternative performance

feature».

Reference [17] handles one of the problems of human interaction

in the context of SPL; the decision-making process that requires

humans to answer questions to configure a specific product. They

propose an approach for automatically optimizing the order of

questions with every answer. The optimization is done in an

incremental way and in real-time.

To the best of our knowledge, ours is the first approach to

generate automatically a performance model of a product from the

software model of the family by a chain of model transformations.

We handle the variability and commonality between the products

of a family and the variability of the underlying platforms. We

propose to address the performance impact of the underlying

platforms as aggregated platform overheads expressed in MARTE

annotations attached to the affected model elements. This will

keep the model simple and still allow us to generate a

performance model containing the performance effects of the

platforms.

5. CONCLUSIONS
This paper is an integral part of a larger research effort to integrate

performance analysis in the early phases of the development

process of software product lines. Our goal is to generate

automatically a performance model for a given product, which can

be used to analyze its performance. Through performance analysis

we can gain insight into the run-time performance characteristics

and thus provide guidance for design choices early in the system

development.

SPL development takes advantage of the reusability of the core

assets shared among the SPL members. When integrating

performance analysis in the early phases of SPL development, we

take advantage of the reusability concept applied to performance

annotations. Instead of annotating from scratch the UML model of

every automatically derived product, we propose to annotate the

SPL model once with generic performance annotations. After

deriving the model of a product from the family model by an

automatic transformation, the generic performance annotations

need to be bound to concrete product-specific values provided by

the developer.

To the best of our knowledge, our research is the first to tackle

this problem. Dealing manually with a large number of

performance parameters and with their mapping to each model

elements, by asking the developer to inspect every diagram in the

model, to extract these annotations and to attach them to the

corresponding PC-features, is an error-prone process. Automating

the entire process of extracting this information from a product

model, generating spreadsheets, and performing the actual binding

make the process of providing concrete values for performance

variables more user-friendly and less error-prone. It is also more

efficient and easier to repeat this process every time a new generic

product model is derived from the SPL model or changes to the

execution environment happen. The performance characteristics

of different platforms can be measured and reused for many

products executed on a variety of runtime environments. Future

work will use Aspect-Oriented Modeling for including the

impacts of underlying platforms by presenting each PC-feature in

the PC-feature model as a generic aspect model that can be reused

with different applications.

6. ACKNOWLEDGMENTS
This research was partially supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) and by the

Centre of Excellence for Research in Adaptive Systems (CERAS).

7. REFERENCES
[1] Atlas Transformation Language (ATL),

www.eclipse.org/m2m/atl

[2] Balsamo, S., Marzolla, M., and Mirandola, R., “Efficient

Performance Models in Component-Based Software

Engineering”, Proc. of the 32nd EUROMICRO Conference

on Software Engineering and Advanced, 2006.

[3] Bartholdt, J., Medak, M. and Oberhauser, R, "Integrating

Quality Modeling with Feature Modeling in Software

Product Lines", Proc. of the 4th Int Conference on Software

Engineering Advances (ICSEA2009), pp.365-370, 2009.

[4] Belategi, L., Sagardui, G., Etxeberria, L., "MARTE

mechanisms to model variability when analyzing embedded

software product Lines", Proc. Of the 14th Int Conference on

Software Product Line (SPLC'10), pp.466-470, 2010.

[5] Belategi, L., Sagardui, G. and Etxeberria, L., “Model based

analysis process for embedded software product lines”, Proc

of the 2011 Int Conference on Software and Systems Process

(ICSSP '11), 2011.

[6] Benavides, D., Trinidad, P., and Ruiz-Cort´es, A.,

“Automated Reasoning on Feature Models”, Proc. of 17th

Int. Conference on Advanced Information Systems

Engineering (CAiSE), 2005.

[7] Brunelière, H., ATL Transformation Example: Microsoft

Office Excel Extractor,

http://www.eclipse.org/m2m/atl/atlTransformations/MSOffic

eExcelExtractor/ExampleMicrosoftOfficeExcelExtractor[v00

.01].pdf

[8] Chung, L., Leite, J.C. sampaio do prado, “On Non-

Functional Requirements in Software Engineering”,

Conceptual Modeling: Foundations and Applications, pp.

363-379, 2009.

[9] Clements, P. C. and Northrop, L. M. (2001). “Software

Product Lines: Practice and Patterns”, p.608, Addison-

Wesley, 2001.

[10] Cortellessa, V., Di Marco, A. & Inverardi, P., “Non-

Functional Modeling and Validation in Model-Driven

Architecture”, Proc of the 6th Working IEEE/IFIP

Conference on Software Architecture (WICSA07), pp. 25,

Mumbai, 2007.

[11] Czarnecki, K., Helsen, S., and Eisenecker, U., “Formalizing

cardinality-based feature models and their specialization”,

Software Process Improvement and Practice, pp. 7–29, 2005.

[12] Gomaa, H., "Designing Software Product Lines with UML:

From Use Cases to Pattern-based Software Architectures",

Addison-Wesley Object Technology Series, July 2005.

[13] Happe, J., Becker, S., Rathfelder C., Friedrich, H., and

Reussner, R., "Parametric performance completions for

model-driven performance prediction", Performance

Evaluation, Vol.67, No.8, pp.694-716, 2010.

[14] Mei, R. D. van der, Hariharan, R., Reeser, P.K., “Web Server

Performance Modeling. Telecommunication Systems

(TELSYS) 16(3-4), pp. 361-378, 2001.

118

http://www.eclipse.org/m2m/atl
http://www.eclipse.org/m2m/atl/atlTransformations/MSOfficeExcelExtractor/ExampleMicrosoftOfficeExcelExtractor%5bv00.01%5d.pdf
http://www.eclipse.org/m2m/atl/atlTransformations/MSOfficeExcelExtractor/ExampleMicrosoftOfficeExcelExtractor%5bv00.01%5d.pdf
http://www.eclipse.org/m2m/atl/atlTransformations/MSOfficeExcelExtractor/ExampleMicrosoftOfficeExcelExtractor%5bv00.01%5d.pdf

[15] Menasce, D., Almeida, V., and Dowdy, L., "Performance by

Design: Computer Capacity Planning by Example", Prentice

Hall PTR, Upper Saddle River, NJ 07458, 2004.

[16] Nguyen, Q.,"Non-Functional Requirements Analysis

Modeling for Software Product Lines", Proc. of Modeling in

Software Engineering (MISE'09), ICSE workshop, pp. 56-61,

2009.

[17] Nohrer, A. and Egyed, A., “Optimizing User Guidance

during Decision-Making”, Proc. of the 15th Int Conference

on Software Product Line (SPLC‟11), Munich, Germany,

2011.

[18] Object Management Group, "UML Profile for Modeling and

Analysis of Real-Time and Embedded Systems (MARTE)",

Version 1.1, OMG document formal/2011-06-02, 2011.

[19] Object Management Group, "MDA Guide Version 1.0.1",

omg/03-06-01, 2003.

[20] Raatikainen, M., Niemelä, E., Myllärniemi, V., and

Männistö, T., "Svamp - An Integrated Approach for

Modeling Functional and Quality Variability", 2nd Int

Workshop on Variability Modeling of Software-intensive

Systems (VaMoS), 2008.

[21] Street, J. and Gomaa, H.,"An Approach to Performance

Modeling of Software Product Lines", Workshop on

Modeling and Analysis of Real-Time and Embedded

Systems, Genova, Italy, October 2006.

[22] Tawhid, R. and Petriu, D.C., "Towards Automatic Derivation

of a Product Performance Model from a UML Software

Product Line Model", Proc. of the 2008 ACM Int. Workshop

on Software Performance (WOSP08), pp. 91-102, 2008.

[23] Tawhid, R. and Petriu, D.C., “Automatic Derivation of a

Product Performance Model from a Software Product Line

Model”, Proc. of the 15th Int Conference on Software

Product Line (SPLC‟11), Munich, Germany, 2011.

[24] Tawhid, R. and Petriu, D.C., “Integrating Performance

Analysis in Software Product Line Development Process”,

book chapter in Software Product Lines - The Automated

Analysis, InTech - Open Access Publisher, 2011 (in press).

[25] Verdickt, T., Dhoedt, B., Gielen, F., and Demeester, P.,

“Automatic Inclusion of Middleware Performance Attributes

into Architectural UML Software Models", IEEE Trans. on

Software Engineering, Vol. 31, No. 8, 2005.

[26] Woodside, M., Petriu, D. C., and Siddiqui. K. H.,

"Performance-related Completions for Software

Specifications". Proc. of the 22rd Int Conference on Software

Engineering, ICSE 2002, pp. 22-32, Orlando, Florida, USA,

2002.

[27] Woodside, M., Petriu, D. C, Petriu, D. B., Shen, H., Israr, T.,

and Merseguer, J., "Performance by Unified Model Analysis

(PUMA)", Proc. of the 5th ACM Int.Workshop on Software

and Performance WOSP'2005, pp. 1-12, Palma, Spain, 2005.

Appendix

Examples of ATL rules and helpers to transform a UML product

model into a Table model:

-- Rule Interaction2Table transforms each SD
-- in UML model to a table in Table model
rule Interaction2Table {

from interaction : UML!Interaction
 (interaction.hasStereotype('GaAnalysisContext'))

-- Define the headers‟ names
 using { titles_name : Sequence(String) =
 Sequence{'Element_Type','Stereotype_Name',
 'Attribute_Name','Element_Name',
 'PC-feature_Name','Guideline for Value',
 'Generic_Parameter', 'Concrete_Value'}; }
 to table : Table!Table(
 name <- interaction.name,

 rows <- Sequence{title_row, blank_row,

-- create a row for each attribute
 Sequence{UML!Message.allInstances()->
 collect(e |thisModule.resolveTemp
 (e,'hostDemand_row'))},

 Sequence{UML!Message.allInstances()->
 collect(e | thisModule.resolveTemp
 (e,'msgSize_row')) },
 Sequence{UML!Message.allInstances()->
 collect(e | thisModule.resolveTemp
 (e,'commTxOvh_row')) },
 Sequence{UML!Message.allInstances()->
 collect(e | thisModule.resolveTemp
 (e,'commRcvOvh_row')) }}),
-- create the title row

title_row : Table!Row(
cells <- Sequence{ title_cols }),

 title_cols : distinct Table!Cell
 foreach(name in titles_name)
 (content <- name),

-- create a blank row
 blank_row : Table!Row(
 cells <- Sequence{ blank_cols }),
 blank_cols : Table!Cell(
 content <- '' “) }

-- Rule Message2Rows collects all the generic tagged values
-- of the stereotypes «PaStep» or «PaCommStep» extending
-- model elements of type message and transforms them to a
-- row in a table
rule Message2Rows {

from message : UML!Message
using { hostDemand_name : Sequence(String)=

 Sequence{'Message','PaStep','hostDemand',
 message.name,'Application-Annotation',
 message.getTagValues('PaStep','hostDemand')};
 msgSize_name : Sequence(String) =
 Sequence{'Message','PaCommStep','msgSize',
 message.name,

-- call helper “pcFeatureName” to get PC-feature
-- affects attribute msgSize
 message.pcFeatureName('PaCommStep','msgSize'),

-- call helper “getTagValues” to get the generic attribute value
 message.getTagValues('PaCommStep','msgSize')};
 commTxOvh_name : Sequence(String) =
 Sequence{'Message','PaCommStep','commTxOvh',
 message.name,
 message.pcFeatureName('PaCommStep','commTxOvh'),
 message.getTagValues('PaCommStep','commTxOvh')};
 commRcvOvh_name : Sequence(String) =
 Sequence{'Message','PaCommStep','commRcvOvh',
 message.name},
 message.pcFeatureName('PaCommStep','commRcvOvh'),
 message.getTagValues('PaCommStep','commRcvOvh')};}

to hostDemand_row : Table!Row(
 cells <- Sequence{hostDemand_cols}),

119

 hostDemand_cols : distinct Table!Cell
 foreach(name in hostDemand_name)
 content <- name),
 msgSize_row : Table!Row(
 cells <- Sequence{ msgSize_cols }),
 msgSize_cols : distinct Table!Cell
 foreach(name in msgSize_name) (
 content <- name),
 commTxOvh_row : Table!Row(
 cells <- Sequence{ commTxOvh_cols}),
 commTxOvh_cols : distinct Table!Cell
 foreach(name in commTxOvh_name) (
 content <- name),
 commRcvOvh_row : Table!Row(
 cells <- Sequence{ commRcvOvh_cols}),
 commRcvOvh_cols : distinct Table!Cell
 foreach(name in commRcvOvh_name) (
 content <- name)}

-- This helper returns the tagged value of the
-- stereotype's attribute; both stereotype and
-- attribute name are given as parameters

helper context UML!Element def :
 getTagValues(stereotype:String,tag:String) :

 UML!Element =
 if self.getAppliedStereotypes()->
 select(e | e.name =stereotype)->notEmpty()
 then self.getValue(self.getAppliedStereotypes()
 ->select(e|e.name=stereotype)->first(),tag)
 ->first()

else '' endif;

-- This helper returns “true” if the respective model element is
-- stereotyped with the stereotype name given as a parameter

helper context UML!Element def:
 hasStereotype(stereotype:String) :

 Boolean = self.getAppliedStereotypes()
 -> exists(c|c.name.startsWith(stereotype));

-- This helper returns the PC-feature name affecting the
-- respective attribute;both stereotype and attribute name are
-- given as parameters
 helper context UML!Element def :
 pcFeatureName(stereotype:String, name:String):
 String =
 if self.getAppliedStereotypes() ->
 select(e | e.name = stereotype)->notEmpty()
 then UML!Class.allInstances() ->
 select(class|class.getTagValues
 ('pc-feature','AttList')=name) ->
 collect(c|c.name)->first()
 else '' endif;

An Example of a helper from the transformation performing the

actual binding:

-- This helper returns the value of the attribute „value‟ and gets
-- as a parameter the value of the attribute „name‟ by checking
-- all elements in mark model „parameters‟

helper def : getParameter (variable : String) : String =
 XML!Element.allInstancesFrom

 ('parameters')->select(m|m.name = 'Row')->
 select(a|a.getStringAttrValue('name')= variable)
 ->first().getStringAttrValue('value');

-- This helper is called by the previous one to return the value
-- of a string attribute. It returns an empty string if the attribute
-- doesn't exist.

helper context XML!Element def:
 getStringAttrValue(attrName : String) : String =
let attX :Sequence(XML!Attribute)= self.children
 ->select(a|a.oclIsTypeOf(XML!Attribute) and
 a.name = attrName)->asSequence() in
if attX -> notEmpty()

 then attX ->first().value
 else '' endif;

120

