
Best Practices for Writing and Managing Performance
Requirements: A Tutorial

André B. Bondi
Siemens Corporation, Corporate

Research and Technologies
755 College Road East

Princeton, NJ 08540 USA
+1 609 734 3578

andre.bondi@siemens.com

ABSTRACT
Performance requirements are one of the main drivers of
architectural decisions. Because many performance problems
have their roots in architectural decisions, and since poor
performance is a principal cause of software project risk, it is
essential that performance requirements be developed early in the
software lifecycle, and that they be clearly formulated. In this
tutorial, we shall look at criteria for high-quality performance
requirements, including algebraic consistency, measurability,
testability, and linkage to business and engineering needs. While
focus of this tutorial is on practice, we shall show how the
drafting of performance requirements can be aided by
performance modeling. We shall show methods for presenting and
managing performance requirements that will improve their
chances of being accepted by architects, developers, testers,
contract negotiators, and purchasers; and of their being
successfully implemented and tested.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
systems; D.2.1 [Software Engineering]: Requirements
specification.

General Terms
Measurement, documentation, performance.

Keywords
System performance, performance requirements.

1. INTRODUCTION
Poor computer system performance has been called the single
most frequent cause of the failure of software projects [13, 1].
Among the causes of poor performance are poor architectural
choices and inadequately specified performance requirements. In
our experience and that of several performance engineers and
developers with whom we have spoken, performance
requirements may be vaguely written, or might not even have
been written at all by the time the project is close to completion.
The absence of performance requirements increases the risk that
performance will receive inadequate attention during the

architectural, development, and functional testing phases of a
software project. Performance requirements are drivers of
computer and software architecture.

Since performance problems often have their roots in poor
architectural decisions, the early establishment of performance
requirements for a new system is crucial to the project’s success.

The lack of well specified performance requirements places the
burden on the performance tester to identify the ranges of
workloads to which the system should be subjected before
delivery. In such cases, performance testers must make
conjectures about the anticipated system load and use case mix,
and then devise load tests accordingly. If the tests are well
structured, they can tell us whether the system has desirable
performance properties under designated loads, but the tested
loads may not be close to those envisioned for the system.

We have found that poorly written performance requirements
incur an insidious cost. They cause confusion among the
developers charged with meeting them, as well as among the
performance testers who must verify that they are met. The
confusion must be resolved in meetings to try to understand what
was meant. In the author’s experience, clarification of the
performance requirements often means rewriting them in keeping
with the spirit in which they were meant, and then communicating
the revisions to the various stakeholders for approval.

Whether or not they are well formulated, performance
requirements are a key ingredient of customer expectations of
what the system will do. Therefore, they may constitute part of an
agreement about what the supplier is supposed to deliver. It
follows that poorly drafted requirements increase the prospect of
incurring customer ill will, which can have undesirable
consequences, including loss of business and even litigation.

In this tutorial, we identify best practices for specifying
performance requirements, and examine the risks and pitfalls of
building a software system in cases in which the requirements are
either absent or written in a form that makes them inherently
untestable or unachievable. We argue that performance
requirements should possess the same good qualities as functional
requirements, such as traceability, measurability, and
unambiguousness [6], and be linked to business, engineering, or
regulatory needs. By ensuring measurability, we reduce the
possibility of adopting performance requirements that are
unachievable or that impose constraints that have no impact on
performance at all. The linkage may help to overcome the
problem that slogans masquerading as performance requirements
are sometimes neither achievable nor testable. Demanding this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’12, April 22–25, 2012, Boston, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1202-8/12/04...$10.00.

1

linkage also ensures the traceability of a performance requirement
by answering why the requirement was specified in the first place.

Confusion can also arise when a performance requirement has
been written for no apparent reason, or when it is in conflict with
other performance requirements. The guidelines we propose are
intended to reduce the risk of these difficulties.

2. RELATION TO PREVIOUS WORK
Smith and Williams state that performance requirements are a
precondition for good system performance [13]. Nixon describes a
framework for managing them during the course of a project, and
how they should be arranged to facilitate the identification of
performance goals [10]. Ho et al [5] advocate the incremental
formulation of performance requirements and conduct of
performance tests in an Agile development process. They identify
three levels of performance requirements. Level 1 performance
requirements are related to system performance in single user
mode. Level 2 performance requirements specify the performance
requirements when the system is supporting a specific transaction
rate. Level 3 requirements are similar to Level 2 requirements, but
relate to the peak rate.

The emphasis in the present tutorial is on the practice of
performance requirements engineering. We begin with a
discussion of the performance metrics that are used in
performance requirements, because a clear definition of
performance metrics is necessary to ensure that performance
requirements are unambiguous. As we describe below, the
desirable attributes of performance requirements are closely
related to those of functional requirements, for example as
described in [6].

3. PERFORMANCE METRICS
It is essential to describe the performance of a system in terms that
are commonly understood and unambiguously defined and related
to the problem domain. Performance is described in terms of
quantities known as metrics. A metric is defined as a standard of
measurement [14]. Metrics should be defined in terms that aid the
understanding of the system from both engineering and business
perspectives. A comprehensive discussion of performance metrics
is contained in [7]. The values of performance metrics should be
obtainable by direct measurement or by arithmetic manipulation
of direct measurement or the values of other metrics. Performance
metrics such as average response times are based on sample
statistics. Performance metrics such as average utilizations are
based on time-averaged statistics.

A performance metric should inform us about the behavior of the
system in the context of its domain of application and/or in the
context of its resource usage. What is informative depends on the
point of view of a particular stakeholder as well as on the domain
itself. For example, an accountant may be interested in the
monthly transaction volume of a system. By contrast, an
individual user of the system may only be interested in its
response time during a period of peak usage. This means that the
system must be engineered to handle a set number of transactions
per second in the peak hour. The latter quantity is of interest to the
performance engineer. It is only of interest to the accountant to the
extent that it is directly related to the total monthly volume. If the
two metrics are to be used interchangeably, there must be a well
known understanding and agreement about the relationship
between them. Such an example exists in telephony. In the latter
part of the 20th Century, it was understood that about 10% of the
calls on a weekday occur during the busy hour. In the USA, this is

true of both local call traffic and long distance traffic observed
concurrently in multiple time zones. It is also understood that the
number of relevant business days in a month is about 22. Thus,
thus the monthly traffic volume would be approximately 22 times
the busy hour volume, divided by 10%. For example, if 50,000
calls occur in a network in the busy hour, the number of calls per
month could be approximately estimated as 22 x 50,000/10% = 22
x 500,000 = 11,000,000 calls. This relationship must be stated in
the performance requirements if any requirement relies on it.

Lilja has identified the following useful properties of performance
metrics [7]. Among these are linearity (meaning that the
performance of a system improves by the same ratio as the metric
describing it), reliability (meaning that System A outperforms
System B when the metric indicates that it does), repeatability
(meaning that if the same experiment is run more than once under
identical load conditions with identical configurations, the
resulting metric will always have the same value), ease of
measurement, consistency (meaning that the metric has the same
meaning across all systems), and independence (meaning that it
does not reflect the bias of any stakeholder).

More than one metric may be needed to describe the performance
of a system. For on-line transaction processing systems, such as a
brokerage system or an online airline reservation system, the
metrics of interest will be the response times and transaction rates
for each type of transaction, usually measured in the hour when
the traffic is heaviest. The transaction loss rate, i.e., the fraction of
submitted transactions that were not completed for whatever
reason, is another measure of performance. It should be very low.
We see immediately that one performance metric on its own is not
sufficient to tell us about the performance of a system or about the
quality of service it provides. The tendency to fixate on a single
number or to focus too much on a single metric, termed
mononumerosis by Odlyzsko [11], can result in a poor design or
purchasing decision, because the chosen metric may not reflect
critical system characteristics that are described by other metrics.
One cannot rely on a single number to tell us the whole story
about the performance of a system. For example, a low system
response time may be accompanied by a high transaction loss rate,
because the loss rate reduces the waiting times of the transactions
that have not been lost, or because lost transactions may have
been more likely to suffer long delays.

4. GUIDELINES FOR SPECIFYING
PERFORMANCE REQUIREMENTS
The criteria for performance requirements are a superset of those
in [6] for functional requirements. In particular, like functional
requirements, performance requirements must be unambiguous,
traceable, verifiable, complete, and correct. Additional criteria
relate to the quantitative nature of performance requirements. To
be useful, they must be written in measurable terms, expressed in
correct statistical terms, and written in terms of one or more
metrics that are informative about the problem domain. They must
also be written in terms of metrics suitable for the time scale
within which the system must respond to stimuli. In addition, the
requirements must be mathematically consistent. Finally, all
performance requirements must be linked to business, regulatory,
and engineering needs. We now elaborate on each of these criteria
in turn.

4.1 Unambiguousness
First and foremost, a performance requirement must be
unambiguous. Ambiguity arises primarily from a poor choice of
wording, but it can also arise from a poor choice of metrics.

2

• Example 1. “The response times shall be less than 5 seconds
95% of the time.”

This requirement is ambiguous. It opens the question of whether
this must be true during 95% of the busy hour, 95% of the busiest
5 minutes of the busy hour (both of which may be hard to satisfy),
or during 95% of the year (which might be easy to satisfy if quiet
periods are included in the average). In any case, the response
time is a sampled discrete observation, not a quantity averaged
over time. Consider an alternative formulation:

• “The average response time shall be 2 seconds or less in each
5-minute period beginning on the hour. Ninety-five percent
of all response times shall be less than 5 seconds.”

This requirement is very specific as to the periods in which
averages will be collected, as well as to the probability of a
sampled response time exceeding a specific value.

• Example 2. “The system shall support all submitted
transactions.”

Requiring that a system shall support all submitted transactions is
ambiguous, because

1. there is no statement of the rate at which transactions
occur,

2. there no statement of what the transactions do,
3. there is no explicit definition of the term “support”.

Instead, one might state that the submitted rate of type A
transactions is 5 per second, or (equivalently) 60 per minute. If
this requirement is coupled with an unambiguous response time
requirement such as that given in Example 1, and a further
requirement that no errors occur while the transactions are being
handled, we may be able to say that the transaction rate is being
supported if the response time and transaction loss rate
requirements are also met. We may also be able to say that a
desired transaction rate is sustainable all resources in the system
are at utilization levels below a stated average utilization that is
less than saturation (e.g., 70%) to allow room for spikes in activity
when this rate occurs.

4.2 Measurability
A well specified performance requirement must be expressed in
terms of quantities that are measurable. If the source of the
measurement is not known or is not trustworthy, the requirement
will be unenforceable. Therefore, it must be possible to obtain the
values of the metric(s) in which the requirement is expressed. To
ensure this, the source of the data involved in the requirement
should be specified alongside the requirement itself. The source of
the data could be a measurement tool embedded in the operating
system, a load generator, or a counter generated by the application
or one of its supporting platforms, such as an application server or
database management system. A performance requirement should
not be adopted if it cannot be verified and enforced by
measurement.

• Example 3. The average, minimum, and maximum response
times during an observation interval may be obtained from a
commercial load generator, together with a count of the
number of attempted, successful, and failed transactions of
each type, but only if the load generator is set up to collect
them.

• Example 4. The sample variance of the response times can
only be obtained if the load generator also collects the sum of
the squared response times during each observation interval,

or if all response times have been logged, provided always
that at least two response times have been collected.

4.3 Verifiability
According to [6], a requirement is verifiable “…if, and only if,
there exists some finite cost-effective process with which a person
or machine can check that the software product meets the
requirement. In general any ambiguous requirement is not
verifiable.” For performance requirements, this means that the
performance requirement is testable, consistent, unambiguous,
measurable, and consistent with all other performance and
functional requirements pertaining to the system of interest.
Where a performance requirement is inherently untestable, such
as freedom from deadlock, a procedure should be specified for
determining that the design fails to meet at least one of the three
necessary conditions for deadlock. These are circular waiting for a
resource, mutual exclusion from a resource, and nonpreemption of
a resource [3]. On the other hand, if deadlock happens to occur
during performance testing, we know that the requirement for
freedom from it cannot be met.

4.4 Completeness
A performance requirement is complete if its parameters are fully
specified, if it is unambiguous, and if its context is fully specified.
A requirement that specifies that a system shall be able to process
50,000 transactions per month is incomplete because the type of
transaction has not been specified, the parameters of the
transaction have not been specified, and the context has not been
specified. In particular, to be able to test the requirement, we have
to know how many transactions are requested in the peak hour,
and then have some context for inferring that the peak hourly
transaction rate is functionally related to the number of
transactions per month. We also have to define a performance
requirement for the acceptable time to complete the transaction.

4.5 Correctness
In addition to being correct within the context of the application to
which it refers, a performance requirement is correct only if it is
specified in measurable terms, is unambiguous, and is
mathematically consistent with other requirements. In addition, it
must be specified with respect to the time scale for which
engineering steps must be taken.

4.6 Mathematical Consistency
There are multiple aspects to the mathematical consistency of
performance requirements.

• Performance requirements must be mathematically consistent
with one another. To verify consistency, one must ensure that
no inference can be drawn from any requirement that would
conflict with any other requirement. Inferences could be
drawn through the use of models. They could also be drawn
by deriving an implied requirement from a stated one. If the
implied requirement is inconsistent with other requirements,
so is the source requirement.

• Each performance requirement must be consistent with stated
performance assumptions, e.g., about the traffic conditions
and engineering constraints. For example, a message round
trip time should be less than the timeout interval, while the
produce of the processing time and the system throughput
must be less than 100% so that the CPU is not saturated.

• The performance requirements must not specify
combinations of loads and anticipated service times that
make it unachievable. This will happen if the product of the
offered traffic rate and the anticipated average service time

3

of any device is greater than the number of devices acting in
parallel (usually one).

4.7 Testability
We desire that all performance requirements be testable.
Testability is closely related to measurability. If a metric
mentioned in a performance requirement cannot be measured, the
requirement cannot be tested, either.

Not all performance requirements are directly linked to the ability
to attain specific values for metrics, though. Moreover, such
requirements may be very difficult to test. For example, as
discussed above, freedom from deadlock must be verified from
the system structure. Since the potential for deadlock can be
masked under light loads, and since testing for freedom from
deadlock involves the enumeration of all execution paths, freedom
from deadlock is not verifiable by performance testing alone.

4.8 Traceability
Like functional requirements, performance requirements must be
traceable. Traceability answers questions like the following:

1. Why has this performance requirement been specified?
2. To what business need does the performance

requirement respond?
3. To what engineering needs does the performance

requirement respond?
4. Does the performance requirement help us conform to a

government or industrial regulation?
5. Is the requirement consistent with industrial norms? Is it

derived from industrial norms?
6. Who proposed the requirement?
7. If this requirement is based on a mathematical

derivation or model, the parameters should be listed and
a reference to the model provided.

8. If this requirement is based on the outputs of a load
model, a reference and pointer to the load model should
be provided, together with the corresponding version
number and date of issue.

4.9 Linkage to Business and Engineering
Needs
All performance requirements must be linked to business and
engineering needs. Linking to a business need reduces the risk of
engineering the system to meet a requirement that is unnecessarily
stringent, while linking to an engineering need helps us to
understand why the requirement was specified in the first place.
An example of a business need is the desire to provide a
competitive differentiator from a slower product. An example of
an engineering need is that a TCP packet must be acknowledged
within a certain time interval to prevent timeouts. Another
example of an engineering need is the standards requirement that
an alarm be delivered to a console and/or sounded within a
maximum amount of time from that at which the corresponding
problem was detected [9].

5. QUALITATIVE ATTRIBUTES
RELATED TO PERFORMANCE
Performance requirements may contain a statement of the form
“The system shall be scalable.” All too often, there is no mention
of the dimension with respect to which the system should be
scaled, or the extent to which the system might be scaled in the
future. Absent these criteria for scalability, testers will not know
how to verify that the system is indeed scalable, and product
managers and sales engineers will not be able to manage customer

expectations about the ability of the system to be expanded.
Characteristics for scalability, such as load scalability, space-time
scalability, space scalability, and structural scalability are
described in [2]. Examples of the corresponding dimensions
include transaction rates, the ability to exploit parallelism, storage
available to users and the operating environment, and constraints
imposed by the size of the address space.

Stability is a quality attribute that is also related to scalability. If
the system runs smoothly when N objects are present but crashes
when N+1 objects are present, the scalability of the system is
limited by the number of objects the system can support. Clearly,
the number of objects the system can support is a dimension of
scalability that is limited in this case.

Stability or a tendency to instability are also indicated by
characteristics of the performance metrics. For example, during a
prolonged period when the average offered transaction rate is
constant, one expects (a) that the completion rate to be equal to
the transaction rate, (b) that average resource utilizations will be
approximately constant, (c) that average response times will be
approximately constant, and (d) that memory occupancy will be
approximately constant. Performance requirements for these
characteristics should be specified. Failure to meet them in
performance tests or production should be cause for an
investigation. Upward trends in any or all these measures is an
indication of saturation or an oncoming crash. In particular, if
memory occupancy is increasing, there may be a memory leak
that could lead to a system crash.

6. DERIVED AND IMPLICIT
PERFORMANCE REQUIREMENTS
While performance requirements about transaction rates,
throughputs, and response times are often explicitly stated,
consequent requirements on subsystems, including object pool
size and memory usage are not. If they are not explicitly stated,
they must be derived from the quantities that are given to ensure
system stability and to ensure that sufficient numbers of
concurrent activities can be supported. In the author’s experience,
an astute developer and/or tester may ask the performance
engineer to specify the maximum size of the object pool so that
testing can be done accordingly.

As an example, suppose that a transaction will be dropped if an
object pool is exhausted. The required transaction response time
may be thought of as an average value for the holding time, while
the transaction rate multiplied by the number of times an object
will be acquired and released by the transaction. If we require that
the probability of object pool exhaustion is 10 or less, we can
approximately size the object pool to achieve this requirement
using the Erlang loss formula [4]. The calculated object pool size
is the derived requirement needed to achieve the desired
probability of pool exhaustion. While the loss probability
requirement is inherently hard to test because losses should not
occur, the ability to store the desired number of objects is easily
tested in principle, provided that the test harness is capable of
doing so.

In this context, it is worth noting that freedom from deadlock is
always an implicit requirement. It can be derived from any
requirement that specifies or implies a non-zero throughput,
because a system in deadlock has zero throughput. Freedom from
deadlock is a prerequisite for system stability.

4

7. PATTERNS AND ANTI-PATTERNS IN
PERFORMANCE REQUIREMENTS
While performance requirements for specialized embedded
systems may take unusual, domain-specific forms, those for
transaction-oriented systems tend to fall into patterns for average
response time, throughput, and number of supported users. We
have already seen some examples of these in the foregoing. Smith
and Williams have used the term performance anti-pattern to
describe an aspect of system structure or algorithmic behaviour
that leads to poor performance [13]. We shall use the term
performance requirements anti-pattern to denote a form of
performance requirement that is ambiguous at best and misleading
at worst. Anti-patterns are to be avoided, even if they express
sentiments that are laudable. We illustrate patterns and anti-
patterns with examples encountered by the author.

7.1 Response Time Pattern and Anti-Pattern
The following is an ill-formulated performance requirement.

1. Ideally, the response time shall be at most one second.
2. The response time shall be at most 2 seconds.

This requirement is problematic. The term “ideally” expresses a
sentiment, but does not describe something that is attainable. The
two parts of the requirement are mutually inconsistent. The
occurrence of a single response time in excess of two seconds
would mean that the requirement had not been met. Nothing is
stated about when or how often the response time requirement
must be met. If a sentiment like that in the first part of the
requirement must be documented, it is best to place it in a section
on supporting commentary rather than in the body of the
requirement itself.

We propose a formulation that expresses the same sentiment
while being measurable and testable.

1. The average response time during the busy hour shall
be 1 second.

2. 99% of all response times shall be less than 2 seconds
during the busy hour.

3. Both requirements shall be met simultaneously.

The wording in parts 1 and 2 of this requirement reflects the fact
that the average response time is a sample statistic rather than a
time-averaged statistic. Notice also that the second part of the
requirement does not say that the response time shall be less than
2 seconds 99% of the time, since that would suggest averaging
over time rather than over the observed values of the response
time.

7.2 “…all the time/…of the time” Anti-
Pattern
Were a requirement to say that the response time should be less
than 2 seconds 99% of the time, we would have to clarify the
requirement by asking whether the requirement for the average
response time would be met for 0.99x3600=3564 seconds in every
hour, or during some fraction of the year, or some other time
interval. The problem may be illustrated by a quote from former
President George W. Bush: “I talk to General Petraeus all the
time. I say ‘all the time’ -- weekly; that's all the time – …”[8]. The
quantification is ambiguous because the time scale and frequency
of interaction are unspecified, and because one cannot tell from
colloquial use whether the “…all the time” or “…of the time”
refers to a sample statistic such as average response time, a time-
averaged statistic such as utilization or queue length, or to a

frequency, such as the number of events per second or even the
number of communications between a president and a general per
month.

7.3 Resource Utilization Anti-Pattern
A requirement that states that the CPU utilization shall be 60% is
erroneous because the resource utilization depends on the
hardware and on the volume of activity. The desired response
time and throughput requirements might well be met at higher
utilizations. Furthermore, the requirement would fail to be met
under light loads, which is absurd. When confronted with a
requirement like this, the performance engineer could ask whether
the stakeholder who originated the requirement is concerned about
overload, and then offer to reformulate the requirement as an
upper bound on processor utilization. Doing so helps to ensure
that the system will be able to gracefully deal with transients that
could cause the utilization to briefly exceed the stated level under
normal conditions. It is entirely appropriate to state a resource
utilization requirement of the form “The average utilization of
resource X shall be less than Y% in the peak hour.” For single
server resources, Y might be set to 70%. For a pair of parallel
servers in which one acts as a backup for the other, it is
appropriate to state that the utilizations of individual processors
must not exceed 40%, so that the maximum load on one of them
after a failover would be no more than 80%. Anything higher than
that could result in system saturation.

8. PERFORMANCE REQUIREMENTS
GATHERING
As with functional requirements, the gathering of performance
requirements entails interviewing stakeholders from many
different teams within the customer and supplier organizations. In
the author’s experience, the set of stakeholders can include
product managers and sales engineers, because they identify the
market segments for a system, including customers for large-scale
and small-scale systems. Any pertinent regulations that could
affect performance requirements must also be identified, such as
fire codes in the case of alarm systems. The set of stakeholders
also includes architects, designers, developers, and testers. It is
important to interview the architects and developers, because they
may propose the use of technologies that are incapable of meeting
the envisaged system demand.

Stakeholders may be reluctant to commit to a particular set of
estimates of demand for system usage because Customer A may
argue that his organisation’s load is not like Customer B’s. For
example, the work mix of a small rural clinic may be very
different from that of a large hospital using similar sorts of
computer-controlled diagnostic equipment for different purposes.
Even the workloads of hospitals with similar numbers of beds
may differ, because one hospital might specialize in orthopaedics
while the other only does cancer care. Their fire alarm systems
may be quite different, too, because of the nature of what is
stored. Despite these disparities, performance requirements
specification and testing should not be avoided. Instead, the
project team should resort to the use of a set of reference
scenarios reflecting standardized mixes of activities. The
reference scenarios might be agreed to by product managers
and/or sales engineers, and then mapped to the corresponding
activities in the computer system, with corresponding workloads.
The frequency and delay requirements of these activities form the
body of the performance requirements. Under no circumstances
should performance requirements be reduced to a single number,

5

because doing so will mask potential complexities and obscure
any possibilities for tradeoffs.

9. PERFORMANCE REQUIREMENTS
PITFALL: TRANSITION FROM A
LEGACY SYSTEM TO A NEW SYSTEM
When transitioning from a legacy system to a new one, it is easy
to overlook subtle changes in functionality that might affect the
way performance requirements should be formulated. The author
encountered this pitfall when transitioning from a 1940s vintage
35mm rangefinder camera to a modern point and shoot digital
camera. With the old camera, pressing the shutter button causes
the subject to be captured pretty much in the state seen by the
user. In this case, the object was a walking cow with a bell
hanging from its collar. The digital camera took so much time to
capture the image that the resulting photo included the cow’s
udder, but not the bell. The difficulty was that the shutter reaction
time with the digital camera included autofocus and exposure
setting. With the vintage camera, these would have been done
manually in advance of the shutter being released. The problem
occurred because the photographer simply assumed that the digital
camera would have the same shutter reaction time as the vintage
camera. It does not, and the unexpected image was the result. One
might ask whether the comparison of the shutter reaction times is
fair, given that the digital camera does so much more when the
button is pressed. The answer is that a comparison should reflect
expectations of the functionality that will be implemented, and
that the user should plan the shot accordingly.

10. STRUCTURE OF A PERFORMANCE
REQUIREMENTS DOCUMENT
The structure of a performance requirements document we
recommend is quite similar to that recommended in [6] for
functional requirements. A section on traffic assumptions
specific to the domain should be included to reduce the risk
of ambiguity or misunderstanding. This is especially
important in a labour force with turnover. Reference work
items and reference workloads are needed to establish the
context for domain-specific metrics. A reference work item
may be a particular kind of transaction or set of transactions
and activities. A reference workload specifies the mix and
volumes of the transactions and activities. A reference
scenario might be a set of workloads, or a set of actions to
be carried out upon the occurrence of a specific type of
event. For instance, a reference scenario for a fire alarm
system might be the occurrence of a fire that triggers
summoning the fire brigade, the sounding of alarms, and
the automated closure of a defined set of ventilators and
doors. The performance metrics used in the requirements,
especially those that are specific to the domain, should be
defined and mapped to related system actions. The
instrumentation used to gather the metrics should also be
specified to the extent known, so that one can establish that
a mechanism for verifying and enforcing the requirements
exists. Figure 1 shows a possible outline for a performance
requirements document.

1. Scope and Purpose
2. Intended Audience
3. References (including functional

requirements spec)
4. Statement of Assumptions:

a. Traffic assumptions Specific to the
Domain

b. Definition of reference work items
and reference workloads and
scenarios

c. Criteria for load sustainability
d. Definitions of metrics used in the

requirements
e. Instrumentation to gather the

metrics for verification
5. Performance Requirements

Figure 1. Outline of a performance requirements
document.

Table 1. Suggested fields of a performance
requirements record.

1. Requirement Number
2. Title
3. Statement of requirement
4. Supporting commentary
5. List of precedents, sources, standards
6. Derivation of quantities
7. List of dependent requirements
8. List of assumptions and precedent performance

requirements
9. Sources of measurement data.
10. Name of a subject matter expert on this requirement
11. Indicator if the requirement is independently

modifiable, or if not, why not.
12. Indicator that the requirement is traceable.
13. Indicator that the requirement is unambiguous, or if

not, why not.
14. Indicator that the requirement is correct, or, if not,

why not.
15. Indicator that the requirement is complete, and if not,

why not.
16. Indicator that the requirement has passed or failed

review, and why.

11. STRUCTURE OF A PERFORMANCE
REQUIREMENT
The fields of a performance requirement record suggested
below reflect many of the concerns we have described
above. Some, like the list of precedents, sources, and
standards, are intended to provide traceability. Separating
supporting commentary from the statement of the
requirement reduces the risk of ambiguity while providing
an opportunity to document some of the reasoning behind
the requirement and the requirement’s purpose. Listing
dependent and precedent performance requirements help
one to see how requirements are intertwined. A possible list
of records is shown in Table 1.

6

12. THE COMMERCIAL SENSITIVITY OF
PERFORMANCE REQUIREMENTS
Disclaimer: This section does not contain legal advice. You
should seek the advice of legal counsel when drafting any
agreements or documents incorporated into agreements by
reference. Legal obligations and practice may differ from one
jurisdiction to another. The author is not a lawyer.

12.1 Confidentiality
A great deal can be inferred about the competitiveness of a
product or the commercial position of the intended customer by
examining performance requirements. For example, the ability of
a network management system to handle traps at a given peak
rate, combined with knowledge of the number of nodes to be
managed and the peak polling rate can tell us about the intended
market segment of the product while nourishing speculation about
the product’s feature set, or even about the nature of the site the
system is intended to support. This can affect price negotiations
between supplier and buyer, and perhaps the supplier’s share
price. Therefore, performance requirements and any contractual
negotiations related to them should be treated as confidential and
perhaps even covered by non-disclosure agreements (NDAs). The
release of performance requirements and performance data
outside a circle of individuals with a need to know should be
handled with great care. Engineering, marketing, legal, and
intellectual property departments should all be involved in setting
up a formal process to release performance data to the public or to
third parties under non-disclosure agreements.

12.2 System Performance and the
Relationship Between Buyer and Supplier
Situations may arise in which the supplier has greater expertise in
system performance than the buyer, or vice versa. In the author’s
experience, both are possible whether the buyer is a startup and
the supplier is established, both are startups, both are established,
or the supplier is a startup and the buyer is established. In any of
these cases, transparency and adherence to commonly accepted
guidelines for writing requirements, such as those prescribed by
IEEE Std 830-1998 for software requirements documents [6] will
go a long way to preventing misunderstandings and disputes
regarding performance requirements and the interpretation of
performance test results.

13. MANAGING PERFORMANCE
REQUIREMENTS
Performance requirements play a role in every stage of the
software lifecycle, whether the lifecycle is managed using a
waterfall process, an Agile process, or something else. To
facilitate access by the stakeholders, performance requirements
should be centrally stored, perhaps in the same system that is used
to store functional requirements. To ensure that performance
considerations do not fall into a crack, it is essential that an
individual be nominated as their owner, and that this individual be
visibly mandated and empowered to communicate with all project
stakeholders about performance issues.

In addition to addressing performance concerns, the performance
requirements owner will be responsible for managing change
control, requirements traceability, as well as ensuring that every
change or addition is linked to business and engineering needs.
The owner will also play a pivotal role in mediating between
different groups of stakeholders when performance requirements
are negotiated and written, including architects, designers, and

perhaps even lawyers. Involvement with the latter is necessary to
ensure that contracted levels of performance are described in
measurable terms. If performance requirements are changed, the
performance requirements owner must ensure that the changes are
understood by architects, developers, and sales engineers, so that
the necessary changes to architecture, implementation, and
appropriate commitments to customers can be made.

14. CONCLUSION
The foregoing discussion has covered a wide range of topics
related to performance requirements. Careful wording of
performance requirements is necessary to ensure verifiability and
testability. Ambiguity and confusion occur when a performance
requirement contains inconsistencies, or when it is inconsistent
with other requirements or with standards documents. Ambiguous
and otherwise ill-specified requirements lead to time wasted
trying to sort out what they mean. The absence of performance
requirements can lead to disagreements among stakeholders about
performance expectations. We have proposed guidelines for
writing and managing performance requirements that are
consistent with those for functional requirements. The
performance requirements must be formulated in terms of metrics
whose values can be measured in testing and in production. The
metrics must be relevant to the application domain. We have also
shown how reference scenarios and reference workloads can be
used to steer stakeholders towards a clear baseline when the
possible set of performance requirements is very large. Our
experience suggests that adherence to the practices here can be
used to avoid many performance pitfalls, while aiding in the
smooth application of performance engineering principles in the
software lifecycle.

15. ACKNOWLEDGMENTS
The author has benefited from useful discussions with Alberto
Avritzer, Brian Berenbach, Dan Paulish, and Bob Schwanke of
Siemens Corporate Research, as well as from the experience of
teaching performance requirements practices in internal training
courses.

16. REFERENCES
[1] Bass, Len, Robert L. Nord, William Wood, David Zubrow:

Risk Themes Discovered through Architecture Evaluations.
WICSA 2007, Mumbai, January 2007.

[2] Bondi, A. B.: Characteristics of Scalability and Their Impact
on Performance. Proc. WOSP2000 (Workshop on Software
Performance), 195-203, Ottawa, Canada, September 2000.

[3] Coffman, E., and P. J. Denning. Operating Systems Theory.
Prentice Hall, 1973.

[4] Cooper, R. B., Introduction to Queueing Theory, Second
Edition, North Holland, 1981.

[5] Ho, C.-W.; Johnson, M.J.; Williams, L., and Maximilen,
E.M.: On agile performance requirements specification and
testing. Proc. Agile Conference, Minneapolis, 2006,

[6] IEEE Std 830-1998 IEEE Recommended Practice for
Software Requirements Specifications –Description

[7] Lilja, D. J. Measuring Computer Performance: a
Practitioner’s Guide. Cambridge University Press, 2000.

[8] http://www.prnewswire.com/cgi-
bin/stories.pl?ACCT=104&STORY=/www/story/06-28-
2007/0004617850&EDATE=

7

[9] NFPA 72, National Fire Alarm Code ®, 2007 Edition,
NFPA, Quincy, MA 02169-7471.

[10] Nixon, B.A.: Managing performance requirements for
information systems. Proc. First WOSP 1998, 131-144,
1998.

[11] Odlyszko, A.M., CMG Magazine, 2000.

[12] R. F. Rey (ed)., Engineering and Operations in the Bell
System, AT&T Bell Laboratories, 1983.

[13] Smith, Connie U., and Lloyd G. Williams. Performance
Solutions: a Practical Guide to Creating Responsive, Scalable
Software. Addison-Wesley, 2000.

[14] Webster’s Ninth New Collegiate Dictionary, Merriam
Webster, 1988.

8

