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ABSTRACT
The aim of this paper is to determine how to model router in-
terface in order to accurately predict packet drops. There is
an enormous amount of research on traffic models reported,
however, a model of router interface has not gained proper
consideration yet. Our experiments reveal that an incorrect
model of the router interface can result in a significant dis-
parity between drop probabilities measured on a physical
interface and derived from a trace-driven simulation study.
In this paper an accurate model of the router interface (Cisco
IOS-based routers with a non-distributed architecture) was
presented.

Categories and Subject Descriptors
B.4.4 [Input/Output and data communications ]: Per-
formance Analysis and Design Aids— Formal models, Sim-
ulation, Verification; C.2.6 [Computer communication
networks]: Internetworking—Routers

General Terms
Performance,Verification,Experimentation

Keywords
buffer, router, packet drops, storage policy

1. INTRODUCTION
Efficient dimensioning and effective management of packet

network resources require both traffic descriptions and net-
work devices (in particular an interface of a router) mod-
eling. Surprisingly, while traffic models are validated very
often, device models receive much less attention. According
to the author’s knowledge no research addressing accuracy
of router queuing modeling has been published.

In order to model a network device one has to consider
packet storage and packet service. Currently, there are at
least two types of packet storage policies. A buffer with
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a byte oriented policy can store a fixed amount of data (in
bytes) i.e. a large number of short packets or a small number
of long packets. On the other hand, in a packet oriented pol-
icy, the buffer can store a fixed number of packets regardless
of their size.

Note that the second policy is easier to implement since a
router operating system reads a packet payload into a spe-
cial memory and then operates only on payload pointers.
Therefore, a router knows how many packets (pointers) it
has in a queue, however, in order to know how many bytes
are stored additional information (packet size) has to be read
and processed.

Both storage policies have corresponding mathematical
models (refereed in this paper as byte or packet oriented
models). Byte oriented models happen to be more com-
monly used e.g. [9, 1]. Nevertheless, packet oriented models
have been derived [6]. In fact, the default storage policy in
the popular network simulator ns-2 is packet oriented [5].

A byte oriented approach is correct for some types of
routers where packets are stored in chunks of memory [1],
however, it is not adequate for all devices. Sometimes the
byte oriented model of the buffer is dictated by the traffic
model as it is for fluid approximation models (commonly
used for self-similar traffic [7]) where a storage model has
to be byte oriented in order to obtain a consistent model
of a system. When a buffer is packet oriented, then both
an input process and a service rate have to be measured in
packets per second. However, in such a case the service rate
is variable due to the different sizes of the packets. This
problem is discussed in detail in [4].

Different storage policies would result in different Packet
Loss Ratios, so when modeling a network device one has to
precisely specify which storage model (byte or packet ori-
ented) is used in order to adhere it to a traffic description
which comes from network measurements [9, 6].

However, the router interface has a complicated internal
structure, and it is not obvious, whether an approximation
commonly used in a simulation software is correct, or if pa-
rameters used in simulations are equal to parameters of a
real device.

The problem of a buffer policy and its parameters in prin-
ciple can be solved by checking router documentation. The
documentation of a Cisco router clearly states that the queue
limit in popular Cisco routers is set in packets [2], so a packet
policy is implied. Nevertheless, service is counted in bytes
per second, therefore we can say that the real router is a
mixture of both byte and packet oriented models. Buffer
size is counted in packets (as for a packet oriented model)
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and service is counted in bytes per second (as for a byte ori-
ented model). Moreover, the experiments described in detail
further on revealed that a queue size set in a router config-
uration is too small to reproduce observed packet drops. In
order to demonstrate an accurate model of a router inter-
face it is necessary to consider the internal structure of the
interface.

In [8] Ivan Pepelnjak described a queuing process in Cisco
IOS-based routers with a non-distributed architecture (for
example, the ISR series commonly used in small to medium-
sized businesses and enterprise branch offices). In Cisco
high-end routers (ASR and GSR series used by ISPs) im-
plementations differ significantly from the simple model de-
scribed in [8]. The buffer described in [8] resembles a net-
work of queues rather than a single queue. Therefore, it
is evident that there is a gap between theory and practice.
The goal of this paper is to bridge this gap.

In this article a realistic yet mathematically tractable
model of a single interface in a router is presented. Model
predictions match packet drops obtained in a real network
with acceptable accuracy. Two main steps of router inter-
face modeling were addressed. Firstly, it has been empir-
ically proven, that the Cisco ISR router can be accurately
described by queuing theory. Secondly, the parametrization
of the proposed model was discussed.

This work is divided into five sections. In Section 2 a
testbed and details of performed experiments are described.
In Section 3 a model of a single router interface is discussed.
Obtained results are presented and assessed in Section 4.
Finally, Section 5 concludes the paper. Finally in the Ap-
pendix network measurement accuracy is discussed.

2. EXPERIMENT
The purpose of this article was to investigate what the

storage policy in a real router is and how accurate in Packet
Loss Ratio prediction its mathematical model is. Toward
this end a series of two step experiments were performed.
In the first step artificially generated traffic was transmitted
through a lossy interface in the router with simultaneous
sniffing of incoming and outgoing traffic. In the second step
a trace-driven simulation was used to verify if the dropped
packets are the same. All simulations were performed in
MATLAB, using custom routines, though identical results
can be obtained from another simulator e.g ns-2. The con-
cept of the experiment is presented in Fig. 1.

Router

Simulator

same ?

Traffic

drops

speed/bufferWireshark

drops

Figure 1: Concept of the experiment. We compared
drops occurring in router and in trace-driven simu-
lation

Each transmitted packet carried a unique ID in its pay-
load, so it was possible to identify dropped packets by check-
ing missing IDs in the output trace file. The experiments
took place conducted in a controlled and isolated environ-
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C
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Figure 2: Network used for tests, R1 – tested router,
PC2 – traffic generator, PC3 – traffic destination,
PC1,PC4 – sniffers

ment,so there were almost no packets outside the experi-
ment.

A simple network depicted in Fig. 2 was set up for testing
purposes. In the tests Cisco 2800 Series routers being typical
of the ISR family were used. For all of the connections 100
Mbit Etherernet (C1 = C2 = 100) was used and the bottle-
neck was C = 10 Mbit link. Such a setup guarantees that
drops occur only on a tested interface. The PC2 computer
was a traffic generator and the PC3 was a traffic destina-
tion. For simplicity UDP was used as a transport protocol.
Computers PC1 and PC4 served as sniffers, dumping re-
spectively, incoming and outgoing traffic. The Wireshark
application was used for traffic capturing. It is crucial for
an experiment accuracy that links C1 and C2 have the same
speed which is explained in the appendix. The tested router
was R1 and the bottleneck was link C = 10Mbit between R1
and R2. One may consider the router R2 as redundant but
such architecture allows replacing the Ethernet link R1R2
by a serial link.

In all the experiments surprising results were revealed.
In the simulations the number of dropped packets was at
least two times greater than the drop number observed in
reality. In the next section we present a model that is able
to accurately reproduce observed packet drops.

3. MODEL OF A ROUTER INTERFACE
A FIFO queue system is characterized by three compo-

nents: input process, service process and buffer capacity.
Each of these three components have to be fitted in order
to create an accurate router interface model. In the case of
modeling the router, the storage policy is also important.
The input process comes from traffic measurements while
queue size is obtained from router configuration. Combing
the information from a router configuration (a link speed)
and traffic measurements (packet lengths) one can derive the
service process.

3.1 Buffer Capacity
Each interface in the router has an input and an output

queue. When a packet enters the router, it is queued in
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the input queue of the incoming interface and waits to be
processed. If the input queue is full the packet is dropped.
Input queue drops generally occur when processing is too
slow, so it is a hardware related issue [2]. Output drops
on the other hand are caused by a congested interface (the
outgoing interface cannot send all packets) [2].

The output queue is more complicated than a simple FIFO
1 buffer [8] as it is split into at least two queues: one hard-
ware queue (tx ring) and one or more software queues. The
size of the software queues is set by a hold-queue command
whereas hardware queues are managed by the Cisco IOS.
The size of the additional hardware queue can be verified
by a show controller command in a tx limit section. The
hardware queue is shared between the CPU and the inter-
face chipset. Its size is computed automatically by Cisco IOS
(the router tries to minimize the hardware queue size) and
depends on the interface speed. For interfaces with FIFO
discipline, the hardware queue can store up to 128 packets.

All queuing mechanisms offered by the Cisco IOS per-
forme in the software queue. After packet processing the
CPU inserts a packet into the shared hardware queue where
it waits for transmission. When the hardware queue is full a
packet is queued in the software queue. The interface picks
up packets from the hardware queue when it is ready to
transmit another one. If the hardware queue is empty, the
interface enters an idle state. In an idle state the interface
hardware periodically polls the hardware queue and starts
the transmission as soon as it finds a new packet. During
normal operations the interface interrupts the main CPU
when it needs more packets to transmit. On slow inter-
faces interruption may occur on every successfully transmit-
ted packet. Because packets are transferred from the soft-
ware queue to the shared hardware queue very often it was
assumed that hardware and software queues may be modeled
as single queue where size is equal to sum of the sizes of both
of the components. Such an assumption happens to be very
accurate.

3.2 Service Process
The last but not least part of a router model is the ser-

vice process. Simulation software does not typically require
explicitly service time but rather frame lengths and an in-
terface speed are required. Service time τ is then computed
according to following formula

τ =
l

C
, (1)

where l is a layer 2 frame length in bits and C is the inter-
face speed in bits per second. Precise calculation of service
times requires precise information about a protocol stack
(overhead) and the interface speed.

The overhead added by protocols can be easily obtained
from a documentation. Unfortunately, some protocols (e.g.
MAC in Ethernet [10]) have interframe gaps (IFGs) between
frames. In order the equation (1) to be still valid for those
protocols, the gap was treated as part of the frame thus
increasing its length.

Two popular protocols MAC in Ethernet (10M) and Cisco
HDLC (version of HDLC modified by Cisco) were investi-
gated. The Ethernet frame without VLAN adds a 38B over-
head to an IP packet(including IFG [10]). The Cisco HDLC

1We assume, that the interface is configured for FIFO dis-
cipline.

frame has a smaller overhead (only 8B per IP packet), but
the protocol is more complicated than the Ethernet because
each frame starts and ends with one octet frame flag and two
frames may share the same flag. When sharing the flag be-
tween successive frames, the ending flag in the first frame is
also treated as the starting flag of the next frame [3]. Shar-
ing flags has a small impact on a model accuracy in highly
congested interfaces when almost all flags are shared.

The link speed can be obtained from a router configura-
tion, however, it was decided to measure the service time
directly which resulted in slightly better accuracy. The ser-
vice time was measured as interarrival time of the output
from the highly congested interface flooded by packets with
known length. The link speed for the simulation software
was computed according to equation (1).

4. RESULTS
Applying a queue parametrization described in Section 3

results in an accurate Packet Loss Ration prediction on a real
device. Further on the experimental results are presented.
We conducted several experiments with different types of
generated traffic. Each experiment was conducted for both
fixed and variable packet lengths in order to be certain about
the storage policy.

In the variable packet length scenarios sizes ware drown
from discreet random variable taking values 48B and 1408B
witch equal probability. Size distribution was chosen to
mimic size distribution observed in real traffic. Exact packet
size distributions can be found in e.g. [9]. The experiment
was performed for both Ethernet and serial links at different
level of utilization (including the overloaded state) and dif-
ferent buffer capacities. Because real packets have variable
lengths only such results are presented. We mostly concen-
trated on Ethernet interfaces but the model is also valid for
serial interfaces.

4.1 Drop Function
Suppose that from M input packets N was dropped for

both the model and the real queue. Note that it does not
indicate that both queues behave similarly. Knowing a num-
ber of dropped packets in one experiment is not enough, be-
cause those drops can be achieved in many different ways.
We needed more information about the drop process, there-
fore we introduced drop function d(i), i ∈ N, a more fun-
damental characteristic describing drop process at a deeper
level. Drop function d(i) has two values:

d(i) =

{
0 if the i-th packet was not dropped

1 if the i-th packet was dropped
(2)

and fully describes the drop process, but it is hard to vi-
sualize on a plot. For cleaner drop presentation we use the
cumulative drop function defined as:

D(i) =
i∑

k=1

d(k). (3)

The cumulative drop function is simply the number of
dropped packets from the beginning of the observation up to
the i-th packet arrival. Further,if there is no explicit name,
the term drop function means cumulative drop function.

Drop function defined in a such way is an easy tool to
compare two drop systems. When the difference of two drop
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functions for the compared systems is equal to zero for all
possible inputs then those systems are indistinguishable in
the sense of the drop process.

The drop function is a primary tool used to validate the
model used in this work. In an ideal case the drop function
obtained from router (Dr) and the one from simulation (Ds)
should be the same. In reality there is always some level of
uncertainty. Also a model may simplify reality too much,
therefore we expect the drop function to be close but not
identical. To measure the accuracy of the model we used the
difference between experimental and simulation drop func-
tions DΔ named the error function.

DΔ(i) = Dr(i)−Ds(i), i ∈ N (4)

By dividing equation (4) by i, one can find that quantity

D∗(i) =
DΔ(i)

i
, i ∈ N (5)

is the difference between real and simulated Loss Ratios
named relative error function.

4.2 Model verification
Our main proposition was to bind software and hardware

queues into one queue. We tested this proposition for three
different software queues for the Ethernet2 interface at the
utilization level ρ = 0.8. The error functions are presented
in Fig. 3,4 and 5. Each of the presented error charts is
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Figure 3: Error function for 20 packet queue, ρ =
0.8. Solid line – error function, dashed line – 95%
confidence interval

a mean value of error functions for five experiments with
the same input traffic. Observed error functions are very
chaotic and quite large even for very similar input traffic.
Confidence intervals for the observed error functions are also
depicted In Fig. 3,4 and 5 to show the dispersion of results.
Although the error is random, 0 value is almost always in
95% confidence interval, so statistically our model is accu-
rate. Obtained results indicate that the chosen model and
its parametrization are correct.

Besides the random nature of the errors, they have a clear
trend. That kinds of trends may be caused by biases in
link speed or queue size estimation. Changing the queue
size by ±1 leads to a worst model so we believe that the
error is caused by bias in the link speed estimator and other

2Similar results were observed for serial interface
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Figure 4: Error function for 40 packet queue, ρ =
0.8. Solid line – error function, dashed line – 95%
confidence interval
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Figure 5: Error function for 60 packet queue, ρ =
0.8. Solid line – error function, dashed line – 95%
confidence interval

random effects. This also means that we have found the
most accurate approximation of buffer capacity.

The model accuracy is not clearly dependent on software
queue size, but we observed such a dependency on link uti-
lization. Figures 3,4 and 5 present the results of experiments
conducted at utilization level ρ = 0.8. Higher utilization
level (0.9 and 1.1) results are presented in Fig. 6 and 7.
Each of the presented results contains some error, but the
question is if this error is acceptable. To answer this ques-
tion we have to use the relative error function to estimate
the accuracy of the Packet Loss Ratio. Let us consider the
worst scenario Fig. 7. The maximum of an error function
can be approximated (with trend) by a linear function. Such
an approximation is also depicted in Fig. 7. The relative er-
ror function for a large number of packets is a tangent of the
fitted line and is equal to 0.0028. It is quite a small error
considering that the observed packet loss ratio was equal to
0.189, the model error is less then 1.5 % of the observed drop
probability.

4.3 Errors
Each measurement we did has an uncertainty error. In

the experiments errors appeared in two places: traffic sniff-
ing and interface speed calculation. We did not use the DAG
card but instead simple Wireshark application to dump the
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Figure 6: Error function for ρ = 0.9, 20 packet queue.
Solid line – error function, dashed line – 95% confi-
dence interval
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Figure 7: Error function for ρ = 1.1, 20 packet queue.
Solid line – error function, dashed line– 95% confi-
dence interval. Straight line – linear approximation
of maximal model error

traffic, which may create an error related to packet process-
ing in sniffer. Wireshark trace files were also used to esti-
mate link speed, so speed measurement is also not extremely
accurate. The question is how those errors effect a proposed
model? In order to answer this question, we did some tests
similar to the original experiments.

In our main experiment we compared drop functions mea-
sured in a router with ones obtained from the trace-driven
simulation. To estimate an error, we compared drop func-
tions obtained from two simulations run with different pa-
rameters. The changed parameters were the arrival time of
each packet (introducing the jitter), link speed and buffer
length.

The observation is that the error in the arrival time mea-
surement has the lowest impact on drop function. This type
of error is mostly important in highly congested links. Sim-
ulation results were confirmed by real experiments where an
error increases when link utilization increases (compare Fig.
6 and 7).

The accuracies of link speed and buffer length estimations
are far more significant then arrival time accuracy. Perfect
fit of link speed is crucial. The simulations showed, that in
a real world example, the relative error in link speed at level

10−5 causes an error function reaching up to 60 packets in
a 200000 packet long simulation. What is also important is
that observed error patterns are similar to those observed in
the experiments. Based on simulation results we assumed,
that link speed error is the main source of the total error in
the model.

4.4 Traditional Router Models
Accurate router interface modeling is not possible without

taking into account packet length. Traditional router mod-
els involving packet lengths are mostly developed for byte
oriented storage [9, 1]. Byte oriented storage policy con-
tradicts the model recommended in this paper, nevertheless
the traditional approach to router modeling was also tested.
Observed error functions for byte storage policy are depicted
in Fig. 8.
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Figure 8: Model error for ρ = 0.8 and ρ = 0.9

The failure of byte oriented models is easily seen in Fig. 8.
The plot marked as ρ = 0.8 is the error function for a byte
oriented model of a router interface at utilization level 0.8.
In such conditions the buffer size was chosen to minimize the
error function across the entire trace. Next, the estimated
byte buffer size was used in a model of a system at utilization
level 0.9. The resulting error function is marked as ρ = 0.8.
The line marked as “our model” is the error function for
a model proposed in this paper. Clearly the byte oriented
models can not be used for the real devices discussed in
this paper because the required buffer size depends on its
utilization, and it is not related to queue sizes for witch an
interface was configured.

5. CONCLUSION
The results indicate that a single finite FIFO queue with

buffer counted in packets (packet policy) is a good model
for a single interface in a typical router used in LAN net-
works. Despite its complicated internal structure consisting
of several buffers, we can tune the queue size and the link
capacity to mimic drops occurring on a real device by model
prediction with acceptable errors. The accuracy of a model
largely depends on the accuracy of the link speed estima-
tion. The protocol stack and the overhead resulting from
lower level protocols is also crucial for accuracy. The pro-
posed parametrization of a standard model leads to more
realistic simulations and may be used for network dimen-
sioning or router performance evaluation.
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APPENDIX
A. TESTBED ACCURACY
Here we explain why the link speed on which the sniffer

listen is so important for accurate measurements. Let us go
back to Fig. 2. In switch S a traffic directed to router R1 is

duplicated. The original traffic is sent to router R1 trough
link witch capacity C1, ad a copy is sent to the sniffer trough
link witch capacity C2. Further we will prove that if C1 is
not equal to C2 and packets have different sizes, that the
sniffed traffic is not the same as incoming to router R1.

Suppose that at time t = 0, a l1 long packet arrives to
switch S. The packet is duplicated and transmitted to R1
and PC1. Both packets reach their destination after time
l1
C1

for packet to R1, and l1
C2

for the sniffed packet. We do
not consider the propagation time but only the time required
to pump the packet into the wire according to equation (1).
Suppose that at time t = t1 the second packet arrives to
switch S. Let the second packet has length l2. The second
packet reaches router R1 at time t1 +

l2
C1

and the sniffer at

time t1 +
l2
C2

.
Let us now consider the inter-arrival time of those two

packets observed by router R and sniffer PC1. The inter-
arrival time observed by router R1 is equal:

Δ1 = t1 +
l2
C1

− l1
C1

. (6)

On the other hand, a sniffer PC1 observes packets separated
by time:

Δ2 = t1 +
l2
C2

− l1
C2

. (7)

The difference of the observed inter-arrival times is equal

ΔΔ = Δ1 −Δ2 = (l2 − l1)

(
1

C1
− 1

C2

)
(8)

In equation (8) we can clearly see that the inter-arrival times
are different when packets have different lengths and link
speeds are not the same. Let us put some numbers from
one of our experiments into formula (8) to see how big the
described phenomena is. Real world values are: l1 = 1446B
and l2 = 96B and C1 = 100Mbps and C2 = 1Gbps. The
relative error

ΔΔ

Δ1
= −14%,

for inter-arrival time t1 = 800μs. The described phenomena
is a real problem for accurate measurements and have to be
taken into account when planing experiments.
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