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ABSTRACT 
Performance and Scalability Modelling of real-world enterprise 
systems is challenging due to both the complexity and size of the 
system being modelled, and constraints imposed by real projects 
such as the need to provide business value, deadlines, and the 
accessibility, relevance, quality and quantity of available 
documentation and performance data. Our hypothesis is that 
enterprise Service Oriented Architectures (SOAs) are more 
amenable to performance modelling as services are more granular, 
visible, and measurable. Since 2007 we have developed, trialled 
and refined a method with model-driven tool support for directly 
modelling the performance and scalability of increasingly 
complex Service Oriented Architectures. This paper reports an 
illustrative experience modelling a large-scale production SOA 
Enterprise Service Bus (ESB) upgrade, focussing on lessons learnt 
related to the complexity and constraints of modelling in the real-
world. The key observations are that model construction is a type 
of theory formation and therefore: (1) Models (functioning as 
theories) can be simple but powerful enough to model large 
complex SOAs within the boundaries of real project constraints; 
(2) Model formation can be incremental, starting with a simple 
model (as simple theories are easier to refute) and refining as 
required; (3) Building multiple competing models can be a useful 
approach if information is inadequate or ambiguous, as the rival 
models can be tested with the aim of discarding incorrect ones; (4) 
If insufficient information is available to build a single “über” 
model to answer all the performance questions, it is often possible 
to build multiple specialised models for different purposes. 

Categories and Subject Descriptors 
C.4 Performance of Systems 

General Terms: Performance 

Keywords 
ESB SOA Performance and Scalability, Real-world Performance 
Modelling, Modleling approaches for Enterprises. 

1. INTRODUCTION 
Performance and Scalability Modelling of real-world enterprise 
systems is challenging due to both the complexity and size of the 
system being modelled, and constraints imposed by real projects 
such as the need to provide business value, deadlines, and the 
accessibility, relevance, quality and quantity of available 
documentation and performance data. Our hypothesis is that 
enterprise Service Oriented Architectures (SOAs) are more 
amenable to performance modelling as services are more granular, 
visible, and measurable. Since 2007 we have developed, trialled 
and refined a method with model-driven tool support for directly 
modelling the performance and scalability of increasingly 
complex Service Oriented Architectures. This paper reports a 
recent illustrative experience modelling a large-scale production 
SOA Enterprise Service Bus (ESB) upgrade, focussing on lessons 
learnt related to the complexity and constraints of modelling in the 
real-world. 

A key observation is that model construction is a type of 
theory formation and is related to concepts from the Philosophy of 
Science including Falsification as a basis for encouraging 
speculative testable theories [1], and Paradigms as the basis for 
the concurrent development of competition between multiple 
incommensurate (conflicting) theories [2]. We propose that Model 
construction for real projects can be best achieved using the 
following modeling lifecycle approaches (See Figure 1). 

 
(1) Models (functioning as theories) can be simple but powerful 

enough to model large complex SOAs within the boundaries 
of real project constraints; 

(2) Model formation can be incremental, starting with a simple 
model (as simple theories are easier to refute) and refining as 
required; 

(3) Building multiple competing models can be a useful 
approach if information is inadequate or ambiguous, as the 
rival models can be tested with the aim of discarding 
incorrect ones; 

(4) If insufficient information is available to build a single 
“über” model to answer all the performance questions, it is 
often possible to build multiple specialised models for 
different purposes. 
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Figure 1 Modelling lifecycle approaches 

 

Performance and scalability modelling of enterprise systems has 
been previously reported in the literature [3-19]. But papers 
typically report on modeling enterprise-like systems that are 
smaller than actual enterprise production systems, and are 
perfectly understood in controlled laboratory settings; or 
occasionally full-sized production systems but where modelers 
have direct access and control over them. In contrast, this paper 
explores approaches for modeling large complex production 
enterprise systems to which modelers have only limited and 
indirect access and no control, and where many other project 
constraints are imposed on the modeling activity.   

Much academic modelling focuses on model accuracy. In 
practice we have found that modeling in real-world situations is 
more concerned with the build-ability, utility and usability of 
models. That is, given the constraints of a real-world project, it is 
more important to be able to rapidly construct a model that 
answers the critical performance issues, but only with sufficient 
accuracy to answer those questions (utility).  For example, our 
models typically predict maximum “theoretical” capacity, or 
reveal potential bottlenecks or SLAs that may be exceeded, or 
general architectural flaws preventing adequate scalability. In the 
case of a prediction of “theoretical” maximum capacity, the actual 
capacity may be less in practice. However, knowing that the 
maximum capacity of the system is likely to be significantly less 
than the required capacity with sufficient time to address this 
problem is more important than knowing the precise capacity 
later. Moreover, usability is critical when building a model that 
represents the target system in a way that makes it easy to build, 
verify, use and communicate with the client team members.  This 
raises the importance of a methodology and tool support that 
directly and easily maps to the software and hardware artifacts in 
the target system, and also enables realistic dynamic visualization 
and animation of the running system to enable interactive 
demonstrations and experiments. 

Over the last few years we have developed a method with 
tool support for performance modeling of large complex SOAs [3-
8]. We have trialled and refined the method in conjunction with 
approximately twelve collaborators and clients in both 
government and non-government (e.g. financial, 
telecommunications) sectors in Australia. The method and tool 
support uses a model-driven tool GUI for model development and 

visualization, and automatically transforms the model into a run-
time form to be solved by a discrete event simulation engine to 
compute performance metrics for each component (including 
workloads, services, servers) and aggregation of components 
(including response times, throughput, concurrency, utilization, 
wait times, service demand, etc). The modeling methodology and 
approaches taken to model specific types of problems and 
technology stacks is flexible, and has been evolving to cope with 
different and more complex and constrained business problems. 

The rest of the paper illustrates some of the problems and 
approaches we have taken to address them by looking in more 
detail at a single illustrative case study. In section 2 we introduce 
the modeling project/problem and planned approach, and in 
subsequent sections we show how the plan worked out in practice, 
and how the various modeling lifecycle approaches were applied.  

2. Modelling Problem and Approach 
 

2.1 Context 
The business client was a large international enterprise operating 
in the Telecommunication sector. When we were contracted to 
assist with performance modeling they were in the process of a 
major middleware software and hardware upgrade, as some 
software versions were no longer supported, and they needed 
extra capacity to cope with expected growth and peak loads. They 
wanted to ensure the upgrade resulted in sufficient capacity and 
headroom for three years. 

The software upgrade involved a number of concurrent 
changes, which made it risky and the results unpredictable. A new 
workflow engine was introduced for increased flexibility and 
reduced development costs. The integration architecture was 
modified to use Web Services and XML data interchange which 
was better aligned with the Enterprise architecture strategic 
directions. The ESB software was upgraded and different design 
patterns introduced ESB features used in the expectation that there 
would be a performance improvement (as the new pattern was 
optimized for back-end workflows compared to the previous 
pattern which was optimized for user interaction only).  
Transaction and messages were persistent, and a database was 
used to guarantee message delivery and workflow state 
persistence. Changes were introduced to the way logging, 
security, and exception handling was performed. Virtualisation 
was also introduced, although the middleware vendor did not 
recommend virtualization of their product stack. Unused software 
and infrastructure was planned to be decommissioned. Finally, for 
the hardware, the number and type of CPUs were changed for the 
ESB middleware and database servers. 

Multiple types of users were supported by the system, which 
was mission critical. User types included customer service agents, 
dealers, customers, business partners and providers, etc. The 
upgrade had to be performed with no impact on production 
(performance, availability, reliability, etc), and still guaranteeing 
the SLAs of 90% of orders being processed correctly in under 7 
minutes.  
 

2.2 Constraints 
Compared with much academic modeling, or modeling systems 
in-house, most of our modeling engagements have been done for 
external clients which imposes severe constraints on the modeling 
activities including time constraints, lack of visibility into system, 
availability (including timeliness, quality and quantity) of 

86



information, ongoing changes in system, size and complexity of 
system, and business problem to be solved by modelling. 

 

Time constraints 

Modelling engagements are typically of fixed duration, and tightly 
bound to client project milestones. In this case we had 12 weeks 
to complete the modeling before the production version of the 
upgraded system went live.  There are often time constraints 
imposed on interactions with the client team (when and for how 
long they are available). In this case we were engaged by the 
performance testing team, and we they had limited bandwidth 
available to interact with us due to their schedule and finite 
resources. We also had only limited access to other client teams 
(e.g. development, business) which restricted our access to other 
types of documentation. 

 

Visibility 

Not having direct access to the system or documentation of the 
system being modeled means that all information has to come via 
the client. This impact timeliness, quality and quantity of 
information, so unlike academic modeling, the modeler will never 
have perfect visibility into the system. In general we find that this 
means we have access to only a subset of documentation for the 
system, some documentation either does not exist or is 
unobtainable, documentation may not be electronic (or in a format 
that is unusable), and documentation may be incomplete, out of 
data, and inconsistent. It is also often difficult to get sufficient 
quality and quantity of measured performance data from running 
systems, and test data to validate the complete models. In this 
case, the available documentation was highly focused on the 
system upgrade, and had been developed by the test team solely 
for this purpose. 

It proved impossible to obtain adequate business process or 
development documentation, or technical documentation for the 
middleware. We had to infer the workflow steps from 
examination of run-time traces of the system. Run-time data was 
highly detailed and difficult to interpret. Multiple sources of run-
time data were available, but more detailed traces were impossible 
to interpret or correlate with each other. The system was 
technologically complex, with many heterogeneous components 
involved with unknown performance and scalability 
characteristics, including front and back end applications, 
application services, middleware calls (internal and external), 
adaptors, database, workflow engine, etc. 
 

Moving Target 

The system itself was being run on multiple environments (e.g. 
development, test, production), and as the system was being 
upgraded there were ongoing changes in both hardware and 
software. Performance fixes were also being applied during the 
modelling period. 

 

Size & Scope 

In theory the scope of modeling may be the entire Enterprise 
system, however in practice modeling is often limited to those 
parts of the system and level of detail that are essential for 
answering the performance questions. For this engagement, the 

modeling was limited in scope to only those transactions that used 
the ESB. Nevertheless, the potential size and complexity of the 
system was substantial. There were a large number of transaction 
types, a large number of steps and interactions with a large 
number of other systems and services. 

Initial size scoping of the system for modeling suggested in 
the order of 15 (out of a possible 100) transactions, 15 (out of 30) 
applications, and 20 (out of 200) services, and 10-20 service calls 
per transaction. The approximate model complexity (in terms of 
number of model components, including workloads, workflow 
steps and timing parameters and service calls, services and 
deployment relationships, and servers, and assuming services are 
not decomposed further) using our methodology and tool can be 
estimated with the formula: Complexity = Transactions + (3 * 
Transactions * Steps) + (2 x Services) + Applications. Assuming 
the entire system was to be modeled the upper complexity bound 
of the model is approximately 6530 (100 + (3 x 100 x 20) + (2 x 
200) + 30). This is well beyond our capability to manually model 
in the time available, even if sufficient information was available. 
However, the upper complexity bound for the scoped model is 
lower but still non-trivial at 970 (15 + (3 * 15 * 20) + (2 x 20) + 
15). 

 
Business Problem 

Given the constraints of real world projects, and the complexity of 
the modeling problem, modeling may appear to be a lost cause. 
However, the nature of the business problem to be addressed, 
which is the final constraint, typically makes modeling both 
tractable and attractive from a business value perspective.   
Depending on the phase of development, and the type of project 
(e.g. proof of concept, pilot, development, test, production, 
evolution, etc) modeling can offer many potential benefits for 
addressing performance and scalability risk and exploring 
architecture tradeoffs.  For this engagement, modeling was 
intended to complement, not replace, performance and stress 
testing. The focus was on the performance and scalability of the 
enterprise system related to the upgrade of the middleware 
hardware and software only.  

Modelling could enable both more flexible and responsive 
testing of some scenarios such as different transaction ratios, and 
testing of higher loads than was physically possible given certain 
limitations of the test platform (e.g. sizing of systems, capacity of 
test driver system). Modelling could also be used to determine the 
load on back-end systems more accurately than in the test 
environment (as many back-end system were “stubs”, with no real 
implementation behind them).  Modelling was also seen as 
valuable for assisting with scaling the results given the constraints 
of some of the test systems, and the use of shared resources for 
some systems that would have dedicated resources in production.   
It seemed likely that we would be able to address some of these 
areas of business and architectural risk through modeling only a 
smaller subset of target system.  The client also wanted to 
evaluate the suitability of the modeling approach as a strategic 
tool to increase the use of performance engineering throughput the 
software lifecycle and across all enterprise systems. 
 

2.3 Approach 
Typical of our modelling methodology developed from multiple 
modelling engagements, the modelling is done incrementally with 
a number of refinements to increase both the scope and accuracy 
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of the model. Premature modelling can often result in significant 
rework. In this engagement we planned three phases. Phase one 
was a scoping phase to rapidly produce a very high level “straw” 
model (within a few weeks) to demonstrate the potential uses of a 
model, and therefore elicit the information required to build a 
more detailed model which could be used predictively. The 
second phase was for refinement and initial parameterisation of 
the model, and the final phase was for increase in scope, final 
parameterisation and validation, and use of the model to answer 
performance issues. In practice another phase was introduced in 
order to explore the ability to build models with different 
purposes. 

 

 
Figure 2 Target Enterprise Architecture 

 

3. Phase 1: Initial Model 
The goal of phase 1 was to discover the available information 
(e.g. architecture, system documentation, performance data, 
performance requirements, etc), to scope the modelling by 
selecting a subset of the system to model (based on need, and 
boundaries of systems, and visibility into systems), and to produce 
an initial high-level model to communicate the approach, benefits, 
and information requirements, to the client management and 
technical teams in terms that were tailored for their environment.  

Because we were working in conjunction with the 
performance test group, a subset of transaction types had already 
been selected as a focus for testing. This gave us an initial subset 
of the system to scope the modelling on. There was also good 
historical data available revealing loads over time, including peak 
loads and the main contributing transactions.  

Our standard modelling method starts with identifying 
workloads and the services they consume. We model workloads 
as workflows with steps calling services. Services can be either 
simple (if there are no known further dependencies, or if the 
service and all dependencies are deployed to same physical 
resource) or composite (if further dependencies are known and are 
on other resources). 

During a workshop with the test team we were able to obtain 
high-level visibility into the broad architecture of the system in 
terms of input and output applications (and services deployed to 
them), and the middleware being upgraded (See Figure 2). We 
determined that further visibility into the external applications 

would be unlikely (either in terms of implementation details or 
resourcing), and as the focus of the modelling was the upgrade of 
the middleware, we decided that further modelling would focus on 
understanding the transaction workflows and interactions with the 
middleware, with calls to external applications modelled only as 
simple services (with no further decomposition into sub-services). 
Based on previous ESB modelling [4, 5] and knowledge of the 
network characteristics of this system, we made the added 
assumptions that LAN and ESB messaging infrastructure could 
safely be out of scope. 

We therefore planned to refine the model through adding 
more transactions, and more interactions with back-end services 
(with no more detail), and replacing the simple middleware 
service with a composite service as more details about the 
middleware were discovered. 

Based on the initial limited information available (which did 
not include transaction workflow details), we built an initial 
sample high level model (2 transactions interacting with a front-
end application, the middleware, and 3 back-end applications), 
and presented this model to the management team enabling us to 
get the go ahead to proceed to Phase 2 (Figure 3).  We requested 
more detailed documentation of transaction workflows and 
interactions with the middleware for Phase 2. 

 

 
Figure 3 Initial High-level Model 

 

4. Phase 2: Incremental and Alternative 
Modelling 
Phase 2 involves the construction and validation of the first 
detailed model. This typically involves collection and detailed 
examination of business, architectural and operational 
documentation and possible run-time traces/logs (if available), 
verification with client technical team members, and validation of 
some parts of the systems as possible. In this phase the initial 
model is refined into a real model by including more transactions 
and details. A sample of transaction/workloads is identified as 
representative or critical (from Use Cases or other business 
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process documents), workflows are discovered (typically from 
architectural documents such as UML sequence diagrams), 
services are discovered (external, internal, and 3rd party, typically 
from architectural documentation or “service maps” etc), and the a 
more detailed model is constructed that relates the workloads and 
services as workflows. Deployment of services to servers, and 
server resources may also be available and modelled in this phase, 
and finally initial parameterisation of the model is carried out 
from available performance data (requirements or SLAs, pilots, 
development, test, production systems etc).  Typically any data 
that is not available or decisions made about how to model are 
documented as assumptions which can be verified, and modified 
as required. 

The main extra input required for phase 2 was detailed 
documentation of the transaction workflows and performance 
timing data to calibrate the model. We discovered a single 
example transaction that was both representative of the subset of 
performance testing transaction types (“typical” in terms of the 
back-end systems used and the number of calls), but was also 
performance critical as it was the most common transaction 
during times of highest peak load on the system. 

We managed to obtain audit traces for the example 
transaction, but little other documentation, making it difficult to 
interpret the traces. The traces consisted of the name of 
system/service involved, and timestamps at entry and exit of each 
system. Each transaction trace had approximately 500 steps 
(names and timestamps).  Initially we obtained only a small 
number of sample traces as timing data for model 
parameterisation needs to be obtained from an unloaded system, 
and it was time consuming for the client team to setup the 
performance test environment for their exclusive use and run the 
tests (exacerbated by longer than expected transaction completion 
times due to a performance issue, see below). 

There are typically a number of issues with understanding 
and using timing data from logs for modelling. These include 
understanding where the times are being measured from, 
allocating times to services, and automating the processing of 
times for use in model parameterisation. In this case we 
determined that all the times were measured from the perspective 
of the middleware, thus giving good visibility into systems which 
directly interacted with the middleware, but no visibility into 
indirectly connected systems. 

With assistance from the client we were able to identify 
where calls to external systems were made in the traces, and 
therefore which applications were used, how many service calls 
there were, and how long the external services were taking. The 
example transaction used 7 external applications, with 16 service 
calls (i.e. some applications have multiple services, and some 
services are called multiple times in the same transaction). We 
also determined that most service calls were synchronous 
(request-response), so response times were just the difference 
between two consecutive time stamps. However, one service call 
was asynchronous and required more complex processing to 
obtain the time (i.e. looking for a synchronisation event later in 
the trace and taking the difference between the time stamp then 
and the time at which the call was initiated). 

Examination of the resulting external service times revealed 
that they were taking significantly longer than expected (10s of 
minutes), and that the maximum SLA would be exceeded. This 
required the client and vendor technical teams to determine the 
cause of the underlying problem and remediate it before we could 
proceed further with measurement and modelling. 

Given that the focus of the modelling was on the middleware 
upgrade performance and capacity it was critical to allocate the 
correct times to the middleware. Close inspection of the trace with 
the client team enabled us to determine that a number of other 
systems were closely involved with the ESB, including a 
database, adaptors, and workflow engine (Figure 4). The problem 
was then to allocate times to either the middleware or one of these 
other related systems (which we correctly assumed were 
independently hosted).  

In attempting to understand the traces it was vital to 
determine what the different steps were that were being logged, 
and why there were so many steps (500) for only 16 external 
service calls. It was apparent that many of the steps logged were 
for low level ESB components and actions, including transaction 
boundaries, orchestration events, events related to external service 
calls (e.g. getting and transforming data, preparing calls, doing 
calls, waiting for or obtaining the response, processing returned 
data, and finalising call).  In fact we discovered 66 calls in the 
transaction, which were made up of multiple trace steps. Only 16 
of these calls were external, and the remainder were to “related” 
middleware services. The high-level view of the base model is 
shown in Figure 5, and Figure 6 shows an expansion of the 
service calls.  The complexity of the base model was 79 (1 + (3 * 
1 * 18) + (2 x 8) + 8). 
 

 
Figure 4 Target Architecture Middleware Systems 

 
More detailed traces were available from some of these related 
systems, but given the lack of other supporting documentation 
(e.g. business process documentation), or sufficient direct access 
to vendor technical experts, and difficulties relating the timing 
information collected from multiple systems (e.g. attempting to 
correlate events from the same transaction, and synchronise 
clocks), the best solution was to develop alternative competing 
models based on different assumptions about how to allocate 
times to systems.  The alternative models would then be tested to 
determine which could be rejected, hopefully leaving us with one 
correct model. Figure 7 shows the basic model assuming that all 
the middleware time is spent in the ESB. 

We therefore built 3 models as follows. Model 2a assumed that all 
times were spent in the middleware except times that were 
“obviously” spent in other systems, specifically external 
application services, and the middleware database (Figure 8). 
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Figure 5 Base Model 

 
Figure 6 Base Model Detail 

 

 
Figure 7 Base ESB Modelling
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Figure 8 ESB Detail 2A "Pessimistic" 

We viewed this as the most conservative (as it was an 
interpretation of the traces closest to that suggested by the client 
team) and pessimistic model (as it would predict the least 
capacity). Model 2b attempted to allocate more time to other 
systems based on inference (Figure 9). For example, some times 
were allocated to other systems for transactions, adaptor call outs, 
and the workflow engine. We viewed this as a reasonably likely 
model, as it was based on more intuitive rather than purely 
mechanical interpretation of the traces. Finally, Model 2c (Figure 
10) was constructed with the assumption that the only times spent 
in the middleware were directly related to orchestration (steps 
related to case/sub-case start and termination), and the rest of the 
times could be allocated to an aggregate of other “related” 
systems (i.e. an aggregation of all the systems in model 2b and 
any others undiscovered). This assumption was justified by the 
observation that the main activity of the ESB was orchestration, 
processing data for use in calls or obtained from calls, and calling 
services.  This model was the most optimistic in terms of capacity 
prediction, but also the most risky as it was based on the loosest 
interpretation of the traces. 

 
Figure 9 ESB Detail 2B "Likely" 

 
Critically, model 2c also indicated a possible unexplored 

architectural scalability risk as in order for the ESB to achieve this 
capacity a larger portion of middleware time is assumed to be 
spent in the other “related systems”, which need to be sufficiently 
well resourced to ensure they aren’t a bottleneck. 

Initial parameterisation 

Having decided on the alternative models and the alternative 
allocations of times to systems, we then turned out attention to the 
quantity and quality of performance timing data. We received 10 
sample transactions once the initial performance issues had been 
rectified, but only two of them were “clean” runs. The other eight 
had problems with insufficient precision (i.e. second precision 
compared with millisecond precision for each timestamp) or were 
duplicated, incomplete, or contained exceptions. We therefore 
requested at least another 8 samples.  The number of samples 
required to parameterise a model with the desired accuracy is 
difficult to determine in advance. 

 
Figure 10 ESB Detail 2C "Optimistic" 

 

From past experience, 10’s to 100’s of samples are needed to 
ensure sufficient confidence in the model predictions (and to 
compute the min/max and confidence intervals etc). Two samples 
did not give us sufficient confidence in the variability of the data 
to be able to predict how many samples were needed, the range of 
values, the confidence intervals or error bounds. However, in 
order to illustrate to the client the value of more data we produced 
initial indicative predictions of the capacity of the middleware for 
each of the alternative models in terms of minimum (“Worst”) and 
maximum (“Best”) values (with no error bounds). Results (Figure 
11) are reported in Transactions Per Hour (TPH) per CPU, as the 
total available CPUs was unknown.  Predictions across the models 
are highly variable, ranging from a low of 400TPH to a high of 
2700TPH (approximately 700% difference), and the variation 
within models increases from 150% in 2a to over 300% in 2c. 

One of the goals of the ESB upgrade was to increase the 
capacity to cope with forecast and forecast+30% loads (the load 
forecasted to be reached in 3 years). We therefore increased the 
number of CPUs for the ESB server until at least one of the model 
predictions reached the forecast+30 capacity.  Figure 12 shows the 
results with 5 CPUs, compared with the target capacities (Current 
Production with 3 CPUs, Forecast, and Forecast+30%). Even 
given the poor data quality model variant 2a is unlikely to scale to 
the peak demand, but 2c may if the actual values are nearer to the 
best case values.  
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Throughput predictions for model variants (2 samples)
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Figure 11 Throughput predictions, 2 samples 

 

Capacity (5CPUs) and Targets

0

2000

4000

6000

8000

10000

12000

14000

16000

2a 2b 2c Goal

Variant/Target

T
P

H

Worst (5 CPUs)

Best (5 CPUs)

Production

Forecast

Forecast+30%

 
Figure 12 Throughput Predictions 5 CPUs, and Targets 

5. Phase 3: Final Paramaterisation, 
Validation, Scaling 
We received eight more trace samples for the example transaction, 
and initial performance test results for the next phase.  However, 
it was evident that the eight new samples were obtained from a 
newer configuration of the upgraded system compared with the 
previous samples, so we were unable to use the previous two 
clean samples in conjunction with the new ones.  

Using only the eight new samples to parameterise the model 
gave a relative sampling error of 10% and therefore surprisingly 
good confidence in the model accuracy. Parameterising each of 
the model variants with the updated and more extensive 
performance data resulted in the following predictions (Figure 
13), which are in terms of median throughput (for 5 CPUs on the 
ESB server) and include upper and lower 95% confidence limits. 
With more samples the model predictions are less variable and 
more conservative compared with only 2 samples. The most 
optimistic model variant (2c) now predicted a throughput of 
between 6,000 and 7,5000 TPH which is comparable to current 
production (3 CPU server), but less than the forecast goals. In 
order to achieve the forecast+30% target at least 9 CPUs is 
predicted to be required. 

Given the constraints on availability of the test system and 
test team we were unable to extend the model by including more 
transaction types as we had planned for this phase. 
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Figure 13 Throughput Predictions, 5 CPUS, 8 samples 

 

5.1 Model validation 
There are two main approaches that can be taken to ensure that a 
model is likely to produce correct results. The first is to verify the 
model by enumerating all assumptions, and then testing them 
against available documentation and expert knowledge. In the 
absence of further documentation or access to middleware vendor 
technical experts, we were unable to directly verify which (if any) 
of the model variants were most likely to be correct. The second 
approach is to validate the model by comparing model predictions 
to available performance test results. By this phase of the project 
some preliminary performance test results had become available 
using a test subset of transactions, for 4, 5 and 6 CPUs. First, the 
results confirmed an assumption that scalability was linear with 
increasing number of CPUs.  Second, the measured test results for 
5 CPUs (7,000 TPH) were comparable with the predictions of 
only one of the alternative models: The optimistic model variant 
(2c). See Figure 14. We therefore concluded that the other models 
(2a and 2b) had been refuted and model 2c was the only 
remaining candidate model for further use. 

 

 
Figure 14 Predictions compared with Test Results 
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5.2 Model and test results scaling 
A fundamental problem is that both the model predictions and test 
results are lower than the target goals. The upgrade does not 
appear to have resulted in any substantive improvement in 
capacity, and the scalability may actually be worse as the 
production throughput was achieved with 3 CPUs compared with 
5 CPUs for the upgraded results. The current model (2c) was 
highly reliant on the representativeness of a single transaction. We 
had planned to add at least another 2 transactions to the model but 
were unable to obtain workflow documentation or timing data for 
any more. More transactions would have made the model more 
robust and more likely to have a representative transaction mix. 
An alternative solution to adding more transactions was to further 
investigate the representativeness of the sample transaction. 

Upon closer analysis the client determined that the subset of 
transactions used for testing was in fact more demanding than the 
production transaction mix. For testing, the average number of 
calls to external services per transaction was 22, compared with 
the 13 for production. Assuming that the ESB & associated 
middleware times are simply linearly proportional to the number 
of calls per transaction they had then scaled the results by a factor 
of 22/13 = 1.69, giving a revised maximum capacity of 12,000 
TPH for 5 CPUs, which is comparable to the forecast+30% target. 

We therefore also modified the model using similar 
assumptions (essentially by producing a different special purpose 
model, 3a, which explicitly modelled the constant ESB overhead 
per transaction, and then a variable number of external service 
calls and ESB overheads per call) for 13 calls per transaction 
(reduced from 16). The revised model (3a) gave an improved 
predicted capacity approximately 23% higher, between 7,500 and 
9,200 TPH, although still approximately 4,000 TPH or 30% less 
than target. See Figure 15. 
 

5.3 Revised scaling 
The scaling used by the client assumed that the middleware time 
could simply be scaled in proportion to the number of service 
calls per transaction. However, re-modelling the sample 
transaction for 13 calls per transaction and examining the traces 
again revealed that there is a constant ESB/middleware time 
associated with the transaction as a whole, independent of the 
actual number of service calls. This suggests that the initial 
scaling approach may give results that are too optimistic. We 
estimated this constant overhead for both the test transaction mix 
and the model production transaction, which were slightly 
different due to a dependency on the ratio of the external to 
internal service calls. The revised test capacity was therefore 
reduced to 10,000 TPH, but the revised model (3b) prediction was 
only slightly lower at 8,000 TPH (both for 5 CPUs). Based on this 
analysis the client reconsidered their scaling approach and also 
planned to redo performance testing with transaction mixes closer 
to production ratios. See Figure 15. 

This model also had the flexibility to easily explore the 
impact of different transaction mixes (in terms of the average 
number of external calls per transaction), or the relative benefits 
of optimising the constant or per call ESB overheads. 
 

 
Figure 15 Model and Test Results for Production 

Transactions 
 

5.4 Observations 
The model results suggest that the upgraded system with 5 CPUs 
may not be able to meet the forecast targets.  Moreover, the 
revised model suggested that the performance test results scaling 
may be too optimistic, reinforcing the view that the more 
resources may be required to meet the targets. The revised model 
predicts that 8 CPUs are needed to meet the Forecast+30% target. 

However, we also noted that there was still some uncertainty 
with the interpretation of trace times. Even if the most optimistic 
assumptions are correct (2c), it is possible that time measurement 
isn’t as accurate as the precision implies. For example, the 
measured times may include wait times due to queuing or 
asynchronous messaging protocols, logging overheads, and times 
assumed to be spent in one system only may in practice need to be 
split between multiple systems. Further investigations and 
experiments with the ESB middleware and monitoring 
infrastructure, and discussions with the vendor technical experts, 
would hopefully have resolved some of these ambiguities. 

It is also possible that the measured times needed to be 
scaled for the modelling in order to take into account variable 
speed processors. If variable speed processors are used in the 
performance test environment, then the processors may not be 
running at full speed for the example trace times, but will be 
running at full speed for the performance test results.  For 
example, the CPUs used in the production system appeared to 
have dynamic power saving which enables them to run a variable 
clock speed of between 3.5 (low utilisation) and 5 GHz (high 
utilisation) depending on utilisation.  Thus, assuming trace times 
were obtained at the slowest speed of 3.5GHz then the revised 
scaled model (3c) predicts a significantly higher capacity of 
11,441 TPH at the top speed of 5GHz (with 5 CPUs), which is 
close to the Target+30% goal. See Figure 16. 
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Figure 16 Model Scaled for variable speed CPUs 

 

6. Phase 4: Multiple Models 
The model was developed to explore a number of performance 
issues including the capacity of the upgraded ESB middleware, 
the customer experience (in terms of end-to-end response times 
for different numbers and types of users, different transaction 
mixes, and workload distributions), and the impact on the external 
back-end systems (many of which are legacy systems and have 
very limited capacity and scalability). Model building in phases 1 
to 3 focused on the first question (the capacity of the upgraded 
ESB middleware). Due to the limited documentation and sample 
transaction data, it turned out to be impractical to construct a 
single model which answered all three issues at the same time. 
However, it was feasible to construct model variations with 
increased scope for the second and third issues. 

The second model (4a) took into account a bigger subset of 
transaction types (in terms of the number of service calls per 
transaction, based on other documentation available) but was 
parameterised only with response times from the sample 
transaction, and did not attempt to model external service 
resourcing – i.e. resources were assumed to be infinite for back-
end services). Results for customer experience modelling were 
good, with 100% of end-to-end times under 5 minutes (the SLA 
was 7 minutes) and median times under 3 minutes. However, as 
this prediction depends on the capacity of the external services, 
which was the third issue, we also built a variant model to address 
this. 

For model 4b we increased the scope to include all the calls 
to the external services for all transaction types. However, we 
couldn’t do this by measuring and modelling every single 
transaction type given the constraints (time, documentation, 
measurements). Instead we developed a probabilistic model of the 
number and distribution of calls to external services per 
transaction. The model was not parameterised with response times 
or resource constraints, and had the sole purpose of predicting the 
demand on external services (in terms of throughput, concurrency, 
or service demand) for comparison against documented service 
SLAs. The result was that several services appeared to be at risk 
of overload for the forecast load and further testing, mitigation 
and modelling strategies would need to be applied (e.g. increased 
use of asynchronous calls to those services and throttling the 
service capacity, modelling of impact on customer perceived 

response times, and extra resourcing of services or resource 
constrained dependent systems where possible).  
 

7. Conclusions 
In this paper we have illustrated a variety of modeling lifecyle 
approaches that can be used to mitigate some of the problems 
encountered in performance modeling real-world enterprise 
systems given system complexity and project constraints: 
modelling only a subset of the scope and detail of the target 
system, incremental modelling, modelling alternatives, and 
multiple models.  

This project also illustrated one of the reoccurring problems 
we encounter modelling systems late in their development 
lifecycle, which visibility into the system (documentation) and the 
quality and quantity of performance data available. In many cases 
we can successfully work around these constrains. In other earlier 
lifecycle modelling projects the lack of data can actually be used 
as a feature of modelling however.  

For example, we have used modelling to assist a government 
tender process to refine the performance and scalability 
requirements for the tender process, and also as a gateway process 
to rank the tender responses in terms of their ability to understand 
and supply available system information, performance and 
scalability characteristics, and indicative performance data in their 
tender response. In this example, we were able to easily determine 
which systems existed and had been used in production, and 
which had better performance or scalability characteristics, and 
would be more likely to meet the performance and scalability 
requirements, and which probably only existed on paper and 
would be more risky options. 

Finally, for systems in very early requirements and 
architecting stages, modelling can be used to assist with 
developing the performance and scalability requirements, and 
characteristics of different architectures and technologies. This 
can be achieved using a “blending” modelling approach that 
utilizes information from a variety of sources to build and 
parameterise the models (including test-beds, vendor input, 
benchmark results, stakeholders’ requirements, knowledge of 
legacy systems, etc). These predictions then can be used to further 
refine options and test solutions during subsequent architectural 
proof of concept phases. We plan to publish more on this type of 
modelling project in the future. 
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