
Real-world Performance Modelling of Enterprise
Service Oriented Architectures: Delivering Business

Value with Complexity and Constraints

 Paul Brebner
NICTA/ANU

Canberra
Australia

Paul.Brebner@nica.com.au

ABSTRACT
Performance and Scalability Modelling of real-world enterprise
systems is challenging due to both the complexity and size of the
system being modelled, and constraints imposed by real projects
such as the need to provide business value, deadlines, and the
accessibility, relevance, quality and quantity of available
documentation and performance data. Our hypothesis is that
enterprise Service Oriented Architectures (SOAs) are more
amenable to performance modelling as services are more granular,
visible, and measurable. Since 2007 we have developed, trialled
and refined a method with model-driven tool support for directly
modelling the performance and scalability of increasingly
complex Service Oriented Architectures. This paper reports an
illustrative experience modelling a large-scale production SOA
Enterprise Service Bus (ESB) upgrade, focussing on lessons learnt
related to the complexity and constraints of modelling in the real-
world. The key observations are that model construction is a type
of theory formation and therefore: (1) Models (functioning as
theories) can be simple but powerful enough to model large
complex SOAs within the boundaries of real project constraints;
(2) Model formation can be incremental, starting with a simple
model (as simple theories are easier to refute) and refining as
required; (3) Building multiple competing models can be a useful
approach if information is inadequate or ambiguous, as the rival
models can be tested with the aim of discarding incorrect ones; (4)
If insufficient information is available to build a single “über”
model to answer all the performance questions, it is often possible
to build multiple specialised models for different purposes.

Categories and Subject Descriptors
C.4 Performance of Systems

General Terms: Performance

Keywords
ESB SOA Performance and Scalability, Real-world Performance
Modelling, Modleling approaches for Enterprises.

1. INTRODUCTION
Performance and Scalability Modelling of real-world enterprise
systems is challenging due to both the complexity and size of the
system being modelled, and constraints imposed by real projects
such as the need to provide business value, deadlines, and the
accessibility, relevance, quality and quantity of available
documentation and performance data. Our hypothesis is that
enterprise Service Oriented Architectures (SOAs) are more
amenable to performance modelling as services are more granular,
visible, and measurable. Since 2007 we have developed, trialled
and refined a method with model-driven tool support for directly
modelling the performance and scalability of increasingly
complex Service Oriented Architectures. This paper reports a
recent illustrative experience modelling a large-scale production
SOA Enterprise Service Bus (ESB) upgrade, focussing on lessons
learnt related to the complexity and constraints of modelling in the
real-world.

A key observation is that model construction is a type of
theory formation and is related to concepts from the Philosophy of
Science including Falsification as a basis for encouraging
speculative testable theories [1], and Paradigms as the basis for
the concurrent development of competition between multiple
incommensurate (conflicting) theories [2]. We propose that Model
construction for real projects can be best achieved using the
following modeling lifecycle approaches (See Figure 1).

(1) Models (functioning as theories) can be simple but powerful

enough to model large complex SOAs within the boundaries
of real project constraints;

(2) Model formation can be incremental, starting with a simple
model (as simple theories are easier to refute) and refining as
required;

(3) Building multiple competing models can be a useful
approach if information is inadequate or ambiguous, as the
rival models can be tested with the aim of discarding
incorrect ones;

(4) If insufficient information is available to build a single
“über” model to answer all the performance questions, it is
often possible to build multiple specialised models for
different purposes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

85

Figure 1 Modelling lifecycle approaches

Performance and scalability modelling of enterprise systems has
been previously reported in the literature [3-19]. But papers
typically report on modeling enterprise-like systems that are
smaller than actual enterprise production systems, and are
perfectly understood in controlled laboratory settings; or
occasionally full-sized production systems but where modelers
have direct access and control over them. In contrast, this paper
explores approaches for modeling large complex production
enterprise systems to which modelers have only limited and
indirect access and no control, and where many other project
constraints are imposed on the modeling activity.

Much academic modelling focuses on model accuracy. In
practice we have found that modeling in real-world situations is
more concerned with the build-ability, utility and usability of
models. That is, given the constraints of a real-world project, it is
more important to be able to rapidly construct a model that
answers the critical performance issues, but only with sufficient
accuracy to answer those questions (utility). For example, our
models typically predict maximum “theoretical” capacity, or
reveal potential bottlenecks or SLAs that may be exceeded, or
general architectural flaws preventing adequate scalability. In the
case of a prediction of “theoretical” maximum capacity, the actual
capacity may be less in practice. However, knowing that the
maximum capacity of the system is likely to be significantly less
than the required capacity with sufficient time to address this
problem is more important than knowing the precise capacity
later. Moreover, usability is critical when building a model that
represents the target system in a way that makes it easy to build,
verify, use and communicate with the client team members. This
raises the importance of a methodology and tool support that
directly and easily maps to the software and hardware artifacts in
the target system, and also enables realistic dynamic visualization
and animation of the running system to enable interactive
demonstrations and experiments.

Over the last few years we have developed a method with
tool support for performance modeling of large complex SOAs [3-
8]. We have trialled and refined the method in conjunction with
approximately twelve collaborators and clients in both
government and non-government (e.g. financial,
telecommunications) sectors in Australia. The method and tool
support uses a model-driven tool GUI for model development and

visualization, and automatically transforms the model into a run-
time form to be solved by a discrete event simulation engine to
compute performance metrics for each component (including
workloads, services, servers) and aggregation of components
(including response times, throughput, concurrency, utilization,
wait times, service demand, etc). The modeling methodology and
approaches taken to model specific types of problems and
technology stacks is flexible, and has been evolving to cope with
different and more complex and constrained business problems.

The rest of the paper illustrates some of the problems and
approaches we have taken to address them by looking in more
detail at a single illustrative case study. In section 2 we introduce
the modeling project/problem and planned approach, and in
subsequent sections we show how the plan worked out in practice,
and how the various modeling lifecycle approaches were applied.

2. Modelling Problem and Approach

2.1 Context
The business client was a large international enterprise operating
in the Telecommunication sector. When we were contracted to
assist with performance modeling they were in the process of a
major middleware software and hardware upgrade, as some
software versions were no longer supported, and they needed
extra capacity to cope with expected growth and peak loads. They
wanted to ensure the upgrade resulted in sufficient capacity and
headroom for three years.

The software upgrade involved a number of concurrent
changes, which made it risky and the results unpredictable. A new
workflow engine was introduced for increased flexibility and
reduced development costs. The integration architecture was
modified to use Web Services and XML data interchange which
was better aligned with the Enterprise architecture strategic
directions. The ESB software was upgraded and different design
patterns introduced ESB features used in the expectation that there
would be a performance improvement (as the new pattern was
optimized for back-end workflows compared to the previous
pattern which was optimized for user interaction only).
Transaction and messages were persistent, and a database was
used to guarantee message delivery and workflow state
persistence. Changes were introduced to the way logging,
security, and exception handling was performed. Virtualisation
was also introduced, although the middleware vendor did not
recommend virtualization of their product stack. Unused software
and infrastructure was planned to be decommissioned. Finally, for
the hardware, the number and type of CPUs were changed for the
ESB middleware and database servers.

Multiple types of users were supported by the system, which
was mission critical. User types included customer service agents,
dealers, customers, business partners and providers, etc. The
upgrade had to be performed with no impact on production
(performance, availability, reliability, etc), and still guaranteeing
the SLAs of 90% of orders being processed correctly in under 7
minutes.

2.2 Constraints
Compared with much academic modeling, or modeling systems
in-house, most of our modeling engagements have been done for
external clients which imposes severe constraints on the modeling
activities including time constraints, lack of visibility into system,
availability (including timeliness, quality and quantity) of

86

information, ongoing changes in system, size and complexity of
system, and business problem to be solved by modelling.

Time constraints

Modelling engagements are typically of fixed duration, and tightly
bound to client project milestones. In this case we had 12 weeks
to complete the modeling before the production version of the
upgraded system went live. There are often time constraints
imposed on interactions with the client team (when and for how
long they are available). In this case we were engaged by the
performance testing team, and we they had limited bandwidth
available to interact with us due to their schedule and finite
resources. We also had only limited access to other client teams
(e.g. development, business) which restricted our access to other
types of documentation.

Visibility

Not having direct access to the system or documentation of the
system being modeled means that all information has to come via
the client. This impact timeliness, quality and quantity of
information, so unlike academic modeling, the modeler will never
have perfect visibility into the system. In general we find that this
means we have access to only a subset of documentation for the
system, some documentation either does not exist or is
unobtainable, documentation may not be electronic (or in a format
that is unusable), and documentation may be incomplete, out of
data, and inconsistent. It is also often difficult to get sufficient
quality and quantity of measured performance data from running
systems, and test data to validate the complete models. In this
case, the available documentation was highly focused on the
system upgrade, and had been developed by the test team solely
for this purpose.

It proved impossible to obtain adequate business process or
development documentation, or technical documentation for the
middleware. We had to infer the workflow steps from
examination of run-time traces of the system. Run-time data was
highly detailed and difficult to interpret. Multiple sources of run-
time data were available, but more detailed traces were impossible
to interpret or correlate with each other. The system was
technologically complex, with many heterogeneous components
involved with unknown performance and scalability
characteristics, including front and back end applications,
application services, middleware calls (internal and external),
adaptors, database, workflow engine, etc.

Moving Target

The system itself was being run on multiple environments (e.g.
development, test, production), and as the system was being
upgraded there were ongoing changes in both hardware and
software. Performance fixes were also being applied during the
modelling period.

Size & Scope

In theory the scope of modeling may be the entire Enterprise
system, however in practice modeling is often limited to those
parts of the system and level of detail that are essential for
answering the performance questions. For this engagement, the

modeling was limited in scope to only those transactions that used
the ESB. Nevertheless, the potential size and complexity of the
system was substantial. There were a large number of transaction
types, a large number of steps and interactions with a large
number of other systems and services.

Initial size scoping of the system for modeling suggested in
the order of 15 (out of a possible 100) transactions, 15 (out of 30)
applications, and 20 (out of 200) services, and 10-20 service calls
per transaction. The approximate model complexity (in terms of
number of model components, including workloads, workflow
steps and timing parameters and service calls, services and
deployment relationships, and servers, and assuming services are
not decomposed further) using our methodology and tool can be
estimated with the formula: Complexity = Transactions + (3 *
Transactions * Steps) + (2 x Services) + Applications. Assuming
the entire system was to be modeled the upper complexity bound
of the model is approximately 6530 (100 + (3 x 100 x 20) + (2 x
200) + 30). This is well beyond our capability to manually model
in the time available, even if sufficient information was available.
However, the upper complexity bound for the scoped model is
lower but still non-trivial at 970 (15 + (3 * 15 * 20) + (2 x 20) +
15).

Business Problem

Given the constraints of real world projects, and the complexity of
the modeling problem, modeling may appear to be a lost cause.
However, the nature of the business problem to be addressed,
which is the final constraint, typically makes modeling both
tractable and attractive from a business value perspective.
Depending on the phase of development, and the type of project
(e.g. proof of concept, pilot, development, test, production,
evolution, etc) modeling can offer many potential benefits for
addressing performance and scalability risk and exploring
architecture tradeoffs. For this engagement, modeling was
intended to complement, not replace, performance and stress
testing. The focus was on the performance and scalability of the
enterprise system related to the upgrade of the middleware
hardware and software only.

Modelling could enable both more flexible and responsive
testing of some scenarios such as different transaction ratios, and
testing of higher loads than was physically possible given certain
limitations of the test platform (e.g. sizing of systems, capacity of
test driver system). Modelling could also be used to determine the
load on back-end systems more accurately than in the test
environment (as many back-end system were “stubs”, with no real
implementation behind them). Modelling was also seen as
valuable for assisting with scaling the results given the constraints
of some of the test systems, and the use of shared resources for
some systems that would have dedicated resources in production.
It seemed likely that we would be able to address some of these
areas of business and architectural risk through modeling only a
smaller subset of target system. The client also wanted to
evaluate the suitability of the modeling approach as a strategic
tool to increase the use of performance engineering throughput the
software lifecycle and across all enterprise systems.

2.3 Approach
Typical of our modelling methodology developed from multiple
modelling engagements, the modelling is done incrementally with
a number of refinements to increase both the scope and accuracy

87

of the model. Premature modelling can often result in significant
rework. In this engagement we planned three phases. Phase one
was a scoping phase to rapidly produce a very high level “straw”
model (within a few weeks) to demonstrate the potential uses of a
model, and therefore elicit the information required to build a
more detailed model which could be used predictively. The
second phase was for refinement and initial parameterisation of
the model, and the final phase was for increase in scope, final
parameterisation and validation, and use of the model to answer
performance issues. In practice another phase was introduced in
order to explore the ability to build models with different
purposes.

Figure 2 Target Enterprise Architecture

3. Phase 1: Initial Model
The goal of phase 1 was to discover the available information
(e.g. architecture, system documentation, performance data,
performance requirements, etc), to scope the modelling by
selecting a subset of the system to model (based on need, and
boundaries of systems, and visibility into systems), and to produce
an initial high-level model to communicate the approach, benefits,
and information requirements, to the client management and
technical teams in terms that were tailored for their environment.

Because we were working in conjunction with the
performance test group, a subset of transaction types had already
been selected as a focus for testing. This gave us an initial subset
of the system to scope the modelling on. There was also good
historical data available revealing loads over time, including peak
loads and the main contributing transactions.

Our standard modelling method starts with identifying
workloads and the services they consume. We model workloads
as workflows with steps calling services. Services can be either
simple (if there are no known further dependencies, or if the
service and all dependencies are deployed to same physical
resource) or composite (if further dependencies are known and are
on other resources).

During a workshop with the test team we were able to obtain
high-level visibility into the broad architecture of the system in
terms of input and output applications (and services deployed to
them), and the middleware being upgraded (See Figure 2). We
determined that further visibility into the external applications

would be unlikely (either in terms of implementation details or
resourcing), and as the focus of the modelling was the upgrade of
the middleware, we decided that further modelling would focus on
understanding the transaction workflows and interactions with the
middleware, with calls to external applications modelled only as
simple services (with no further decomposition into sub-services).
Based on previous ESB modelling [4, 5] and knowledge of the
network characteristics of this system, we made the added
assumptions that LAN and ESB messaging infrastructure could
safely be out of scope.

We therefore planned to refine the model through adding
more transactions, and more interactions with back-end services
(with no more detail), and replacing the simple middleware
service with a composite service as more details about the
middleware were discovered.

Based on the initial limited information available (which did
not include transaction workflow details), we built an initial
sample high level model (2 transactions interacting with a front-
end application, the middleware, and 3 back-end applications),
and presented this model to the management team enabling us to
get the go ahead to proceed to Phase 2 (Figure 3). We requested
more detailed documentation of transaction workflows and
interactions with the middleware for Phase 2.

Figure 3 Initial High-level Model

4. Phase 2: Incremental and Alternative
Modelling
Phase 2 involves the construction and validation of the first
detailed model. This typically involves collection and detailed
examination of business, architectural and operational
documentation and possible run-time traces/logs (if available),
verification with client technical team members, and validation of
some parts of the systems as possible. In this phase the initial
model is refined into a real model by including more transactions
and details. A sample of transaction/workloads is identified as
representative or critical (from Use Cases or other business

88

process documents), workflows are discovered (typically from
architectural documents such as UML sequence diagrams),
services are discovered (external, internal, and 3rd party, typically
from architectural documentation or “service maps” etc), and the a
more detailed model is constructed that relates the workloads and
services as workflows. Deployment of services to servers, and
server resources may also be available and modelled in this phase,
and finally initial parameterisation of the model is carried out
from available performance data (requirements or SLAs, pilots,
development, test, production systems etc). Typically any data
that is not available or decisions made about how to model are
documented as assumptions which can be verified, and modified
as required.

The main extra input required for phase 2 was detailed
documentation of the transaction workflows and performance
timing data to calibrate the model. We discovered a single
example transaction that was both representative of the subset of
performance testing transaction types (“typical” in terms of the
back-end systems used and the number of calls), but was also
performance critical as it was the most common transaction
during times of highest peak load on the system.

We managed to obtain audit traces for the example
transaction, but little other documentation, making it difficult to
interpret the traces. The traces consisted of the name of
system/service involved, and timestamps at entry and exit of each
system. Each transaction trace had approximately 500 steps
(names and timestamps). Initially we obtained only a small
number of sample traces as timing data for model
parameterisation needs to be obtained from an unloaded system,
and it was time consuming for the client team to setup the
performance test environment for their exclusive use and run the
tests (exacerbated by longer than expected transaction completion
times due to a performance issue, see below).

There are typically a number of issues with understanding
and using timing data from logs for modelling. These include
understanding where the times are being measured from,
allocating times to services, and automating the processing of
times for use in model parameterisation. In this case we
determined that all the times were measured from the perspective
of the middleware, thus giving good visibility into systems which
directly interacted with the middleware, but no visibility into
indirectly connected systems.

With assistance from the client we were able to identify
where calls to external systems were made in the traces, and
therefore which applications were used, how many service calls
there were, and how long the external services were taking. The
example transaction used 7 external applications, with 16 service
calls (i.e. some applications have multiple services, and some
services are called multiple times in the same transaction). We
also determined that most service calls were synchronous
(request-response), so response times were just the difference
between two consecutive time stamps. However, one service call
was asynchronous and required more complex processing to
obtain the time (i.e. looking for a synchronisation event later in
the trace and taking the difference between the time stamp then
and the time at which the call was initiated).

Examination of the resulting external service times revealed
that they were taking significantly longer than expected (10s of
minutes), and that the maximum SLA would be exceeded. This
required the client and vendor technical teams to determine the
cause of the underlying problem and remediate it before we could
proceed further with measurement and modelling.

Given that the focus of the modelling was on the middleware
upgrade performance and capacity it was critical to allocate the
correct times to the middleware. Close inspection of the trace with
the client team enabled us to determine that a number of other
systems were closely involved with the ESB, including a
database, adaptors, and workflow engine (Figure 4). The problem
was then to allocate times to either the middleware or one of these
other related systems (which we correctly assumed were
independently hosted).

In attempting to understand the traces it was vital to
determine what the different steps were that were being logged,
and why there were so many steps (500) for only 16 external
service calls. It was apparent that many of the steps logged were
for low level ESB components and actions, including transaction
boundaries, orchestration events, events related to external service
calls (e.g. getting and transforming data, preparing calls, doing
calls, waiting for or obtaining the response, processing returned
data, and finalising call). In fact we discovered 66 calls in the
transaction, which were made up of multiple trace steps. Only 16
of these calls were external, and the remainder were to “related”
middleware services. The high-level view of the base model is
shown in Figure 5, and Figure 6 shows an expansion of the
service calls. The complexity of the base model was 79 (1 + (3 *
1 * 18) + (2 x 8) + 8).

Figure 4 Target Architecture Middleware Systems

More detailed traces were available from some of these related
systems, but given the lack of other supporting documentation
(e.g. business process documentation), or sufficient direct access
to vendor technical experts, and difficulties relating the timing
information collected from multiple systems (e.g. attempting to
correlate events from the same transaction, and synchronise
clocks), the best solution was to develop alternative competing
models based on different assumptions about how to allocate
times to systems. The alternative models would then be tested to
determine which could be rejected, hopefully leaving us with one
correct model. Figure 7 shows the basic model assuming that all
the middleware time is spent in the ESB.

We therefore built 3 models as follows. Model 2a assumed that all
times were spent in the middleware except times that were
“obviously” spent in other systems, specifically external
application services, and the middleware database (Figure 8).

89

Figure 5 Base Model

Figure 6 Base Model Detail

Figure 7 Base ESB Modelling

90

Figure 8 ESB Detail 2A "Pessimistic"

We viewed this as the most conservative (as it was an
interpretation of the traces closest to that suggested by the client
team) and pessimistic model (as it would predict the least
capacity). Model 2b attempted to allocate more time to other
systems based on inference (Figure 9). For example, some times
were allocated to other systems for transactions, adaptor call outs,
and the workflow engine. We viewed this as a reasonably likely
model, as it was based on more intuitive rather than purely
mechanical interpretation of the traces. Finally, Model 2c (Figure
10) was constructed with the assumption that the only times spent
in the middleware were directly related to orchestration (steps
related to case/sub-case start and termination), and the rest of the
times could be allocated to an aggregate of other “related”
systems (i.e. an aggregation of all the systems in model 2b and
any others undiscovered). This assumption was justified by the
observation that the main activity of the ESB was orchestration,
processing data for use in calls or obtained from calls, and calling
services. This model was the most optimistic in terms of capacity
prediction, but also the most risky as it was based on the loosest
interpretation of the traces.

Figure 9 ESB Detail 2B "Likely"

Critically, model 2c also indicated a possible unexplored

architectural scalability risk as in order for the ESB to achieve this
capacity a larger portion of middleware time is assumed to be
spent in the other “related systems”, which need to be sufficiently
well resourced to ensure they aren’t a bottleneck.

Initial parameterisation

Having decided on the alternative models and the alternative
allocations of times to systems, we then turned out attention to the
quantity and quality of performance timing data. We received 10
sample transactions once the initial performance issues had been
rectified, but only two of them were “clean” runs. The other eight
had problems with insufficient precision (i.e. second precision
compared with millisecond precision for each timestamp) or were
duplicated, incomplete, or contained exceptions. We therefore
requested at least another 8 samples. The number of samples
required to parameterise a model with the desired accuracy is
difficult to determine in advance.

Figure 10 ESB Detail 2C "Optimistic"

From past experience, 10’s to 100’s of samples are needed to
ensure sufficient confidence in the model predictions (and to
compute the min/max and confidence intervals etc). Two samples
did not give us sufficient confidence in the variability of the data
to be able to predict how many samples were needed, the range of
values, the confidence intervals or error bounds. However, in
order to illustrate to the client the value of more data we produced
initial indicative predictions of the capacity of the middleware for
each of the alternative models in terms of minimum (“Worst”) and
maximum (“Best”) values (with no error bounds). Results (Figure
11) are reported in Transactions Per Hour (TPH) per CPU, as the
total available CPUs was unknown. Predictions across the models
are highly variable, ranging from a low of 400TPH to a high of
2700TPH (approximately 700% difference), and the variation
within models increases from 150% in 2a to over 300% in 2c.

One of the goals of the ESB upgrade was to increase the
capacity to cope with forecast and forecast+30% loads (the load
forecasted to be reached in 3 years). We therefore increased the
number of CPUs for the ESB server until at least one of the model
predictions reached the forecast+30 capacity. Figure 12 shows the
results with 5 CPUs, compared with the target capacities (Current
Production with 3 CPUs, Forecast, and Forecast+30%). Even
given the poor data quality model variant 2a is unlikely to scale to
the peak demand, but 2c may if the actual values are nearer to the
best case values.

91

Throughput predictions for model variants (2 samples)

0

500

1000

1500

2000

2500

3000

2a 2b 2c

Model variant

T
ra

n
sa

ct
io

n
 P

er
 H

o
u
r
(T

P
H

)

Worst

Best

Figure 11 Throughput predictions, 2 samples

Capacity (5CPUs) and Targets

0

2000

4000

6000

8000

10000

12000

14000

16000

2a 2b 2c Goal

Variant/Target

T
P

H

Worst (5 CPUs)

Best (5 CPUs)

Production

Forecast

Forecast+30%

Figure 12 Throughput Predictions 5 CPUs, and Targets

5. Phase 3: Final Paramaterisation,
Validation, Scaling
We received eight more trace samples for the example transaction,
and initial performance test results for the next phase. However,
it was evident that the eight new samples were obtained from a
newer configuration of the upgraded system compared with the
previous samples, so we were unable to use the previous two
clean samples in conjunction with the new ones.

Using only the eight new samples to parameterise the model
gave a relative sampling error of 10% and therefore surprisingly
good confidence in the model accuracy. Parameterising each of
the model variants with the updated and more extensive
performance data resulted in the following predictions (Figure
13), which are in terms of median throughput (for 5 CPUs on the
ESB server) and include upper and lower 95% confidence limits.
With more samples the model predictions are less variable and
more conservative compared with only 2 samples. The most
optimistic model variant (2c) now predicted a throughput of
between 6,000 and 7,5000 TPH which is comparable to current
production (3 CPU server), but less than the forecast goals. In
order to achieve the forecast+30% target at least 9 CPUs is
predicted to be required.

Given the constraints on availability of the test system and
test team we were unable to extend the model by including more
transaction types as we had planned for this phase.

TPH (5 CPUs) 8 samples

0

2000

4000

6000

8000

10000

12000

14000

2a 2b 2c Goal

Model/Target

T
P

H

Lower 95% Limit

Median

Upper 95% Limit

Production

Forecast

Forecast+30%

Figure 13 Throughput Predictions, 5 CPUS, 8 samples

5.1 Model validation
There are two main approaches that can be taken to ensure that a
model is likely to produce correct results. The first is to verify the
model by enumerating all assumptions, and then testing them
against available documentation and expert knowledge. In the
absence of further documentation or access to middleware vendor
technical experts, we were unable to directly verify which (if any)
of the model variants were most likely to be correct. The second
approach is to validate the model by comparing model predictions
to available performance test results. By this phase of the project
some preliminary performance test results had become available
using a test subset of transactions, for 4, 5 and 6 CPUs. First, the
results confirmed an assumption that scalability was linear with
increasing number of CPUs. Second, the measured test results for
5 CPUs (7,000 TPH) were comparable with the predictions of
only one of the alternative models: The optimistic model variant
(2c). See Figure 14. We therefore concluded that the other models
(2a and 2b) had been refuted and model 2c was the only
remaining candidate model for further use.

Figure 14 Predictions compared with Test Results

92

5.2 Model and test results scaling
A fundamental problem is that both the model predictions and test
results are lower than the target goals. The upgrade does not
appear to have resulted in any substantive improvement in
capacity, and the scalability may actually be worse as the
production throughput was achieved with 3 CPUs compared with
5 CPUs for the upgraded results. The current model (2c) was
highly reliant on the representativeness of a single transaction. We
had planned to add at least another 2 transactions to the model but
were unable to obtain workflow documentation or timing data for
any more. More transactions would have made the model more
robust and more likely to have a representative transaction mix.
An alternative solution to adding more transactions was to further
investigate the representativeness of the sample transaction.

Upon closer analysis the client determined that the subset of
transactions used for testing was in fact more demanding than the
production transaction mix. For testing, the average number of
calls to external services per transaction was 22, compared with
the 13 for production. Assuming that the ESB & associated
middleware times are simply linearly proportional to the number
of calls per transaction they had then scaled the results by a factor
of 22/13 = 1.69, giving a revised maximum capacity of 12,000
TPH for 5 CPUs, which is comparable to the forecast+30% target.

We therefore also modified the model using similar
assumptions (essentially by producing a different special purpose
model, 3a, which explicitly modelled the constant ESB overhead
per transaction, and then a variable number of external service
calls and ESB overheads per call) for 13 calls per transaction
(reduced from 16). The revised model (3a) gave an improved
predicted capacity approximately 23% higher, between 7,500 and
9,200 TPH, although still approximately 4,000 TPH or 30% less
than target. See Figure 15.

5.3 Revised scaling
The scaling used by the client assumed that the middleware time
could simply be scaled in proportion to the number of service
calls per transaction. However, re-modelling the sample
transaction for 13 calls per transaction and examining the traces
again revealed that there is a constant ESB/middleware time
associated with the transaction as a whole, independent of the
actual number of service calls. This suggests that the initial
scaling approach may give results that are too optimistic. We
estimated this constant overhead for both the test transaction mix
and the model production transaction, which were slightly
different due to a dependency on the ratio of the external to
internal service calls. The revised test capacity was therefore
reduced to 10,000 TPH, but the revised model (3b) prediction was
only slightly lower at 8,000 TPH (both for 5 CPUs). Based on this
analysis the client reconsidered their scaling approach and also
planned to redo performance testing with transaction mixes closer
to production ratios. See Figure 15.

This model also had the flexibility to easily explore the
impact of different transaction mixes (in terms of the average
number of external calls per transaction), or the relative benefits
of optimising the constant or per call ESB overheads.

Figure 15 Model and Test Results for Production

Transactions

5.4 Observations
The model results suggest that the upgraded system with 5 CPUs
may not be able to meet the forecast targets. Moreover, the
revised model suggested that the performance test results scaling
may be too optimistic, reinforcing the view that the more
resources may be required to meet the targets. The revised model
predicts that 8 CPUs are needed to meet the Forecast+30% target.

However, we also noted that there was still some uncertainty
with the interpretation of trace times. Even if the most optimistic
assumptions are correct (2c), it is possible that time measurement
isn’t as accurate as the precision implies. For example, the
measured times may include wait times due to queuing or
asynchronous messaging protocols, logging overheads, and times
assumed to be spent in one system only may in practice need to be
split between multiple systems. Further investigations and
experiments with the ESB middleware and monitoring
infrastructure, and discussions with the vendor technical experts,
would hopefully have resolved some of these ambiguities.

It is also possible that the measured times needed to be
scaled for the modelling in order to take into account variable
speed processors. If variable speed processors are used in the
performance test environment, then the processors may not be
running at full speed for the example trace times, but will be
running at full speed for the performance test results. For
example, the CPUs used in the production system appeared to
have dynamic power saving which enables them to run a variable
clock speed of between 3.5 (low utilisation) and 5 GHz (high
utilisation) depending on utilisation. Thus, assuming trace times
were obtained at the slowest speed of 3.5GHz then the revised
scaled model (3c) predicts a significantly higher capacity of
11,441 TPH at the top speed of 5GHz (with 5 CPUs), which is
close to the Target+30% goal. See Figure 16.

93

Figure 16 Model Scaled for variable speed CPUs

6. Phase 4: Multiple Models
The model was developed to explore a number of performance
issues including the capacity of the upgraded ESB middleware,
the customer experience (in terms of end-to-end response times
for different numbers and types of users, different transaction
mixes, and workload distributions), and the impact on the external
back-end systems (many of which are legacy systems and have
very limited capacity and scalability). Model building in phases 1
to 3 focused on the first question (the capacity of the upgraded
ESB middleware). Due to the limited documentation and sample
transaction data, it turned out to be impractical to construct a
single model which answered all three issues at the same time.
However, it was feasible to construct model variations with
increased scope for the second and third issues.

The second model (4a) took into account a bigger subset of
transaction types (in terms of the number of service calls per
transaction, based on other documentation available) but was
parameterised only with response times from the sample
transaction, and did not attempt to model external service
resourcing – i.e. resources were assumed to be infinite for back-
end services). Results for customer experience modelling were
good, with 100% of end-to-end times under 5 minutes (the SLA
was 7 minutes) and median times under 3 minutes. However, as
this prediction depends on the capacity of the external services,
which was the third issue, we also built a variant model to address
this.

For model 4b we increased the scope to include all the calls
to the external services for all transaction types. However, we
couldn’t do this by measuring and modelling every single
transaction type given the constraints (time, documentation,
measurements). Instead we developed a probabilistic model of the
number and distribution of calls to external services per
transaction. The model was not parameterised with response times
or resource constraints, and had the sole purpose of predicting the
demand on external services (in terms of throughput, concurrency,
or service demand) for comparison against documented service
SLAs. The result was that several services appeared to be at risk
of overload for the forecast load and further testing, mitigation
and modelling strategies would need to be applied (e.g. increased
use of asynchronous calls to those services and throttling the
service capacity, modelling of impact on customer perceived

response times, and extra resourcing of services or resource
constrained dependent systems where possible).

7. Conclusions
In this paper we have illustrated a variety of modeling lifecyle
approaches that can be used to mitigate some of the problems
encountered in performance modeling real-world enterprise
systems given system complexity and project constraints:
modelling only a subset of the scope and detail of the target
system, incremental modelling, modelling alternatives, and
multiple models.

This project also illustrated one of the reoccurring problems
we encounter modelling systems late in their development
lifecycle, which visibility into the system (documentation) and the
quality and quantity of performance data available. In many cases
we can successfully work around these constrains. In other earlier
lifecycle modelling projects the lack of data can actually be used
as a feature of modelling however.

For example, we have used modelling to assist a government
tender process to refine the performance and scalability
requirements for the tender process, and also as a gateway process
to rank the tender responses in terms of their ability to understand
and supply available system information, performance and
scalability characteristics, and indicative performance data in their
tender response. In this example, we were able to easily determine
which systems existed and had been used in production, and
which had better performance or scalability characteristics, and
would be more likely to meet the performance and scalability
requirements, and which probably only existed on paper and
would be more risky options.

Finally, for systems in very early requirements and
architecting stages, modelling can be used to assist with
developing the performance and scalability requirements, and
characteristics of different architectures and technologies. This
can be achieved using a “blending” modelling approach that
utilizes information from a variety of sources to build and
parameterise the models (including test-beds, vendor input,
benchmark results, stakeholders’ requirements, knowledge of
legacy systems, etc). These predictions then can be used to further
refine options and test solutions during subsequent architectural
proof of concept phases. We plan to publish more on this type of
modelling project in the future.

8. ACKNOWLEDGMENTS
NICTA is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Centre of Excellence program.

9. REFERENCES
[1] Karl Popper, Conjectures and Refutations, London:

Routledge and Keagan Paul, 1963

[2] T. S. Kuhn, The Structure of Scientific Revolutions, 1st. ed.,
Chicago: Univ. of Chicago Pr., 1962

[3] Brebner, P. C. 2008. Performance modeling for service
oriented architectures. In Companion of the 30th
international Conference on Software Engineering (Leipzig,
Germany, May 10 - 18, 2008). ICSE Companion '08. ACM,
New York, NY, 953-954. DOI=
http://doi.acm.org/10.1145/1370175.1370204

94

[4] Paul Brebner, Liam O’Brien, Jon Gray. Performance
Modeling for e-Government Service Oriented Architectures
(SOAs). ASWEC Conference Proceedings (Perth, March,
2008), 130-138.

[5] Brebner, P. 2009. Service-Oriented Performance Modeling
the MULE Enterprise Service Bus (ESB) Loan Broker
Application. In Proceedings of the 2009 35th Euromicro
Conference on Software Engineering and Advanced
Applications (August 27 - 29, 2009). SEAA. IEEE Computer
Society, Washington, DC, 404-411. DOI=
http://dx.doi.org/10.1109/SEAA.2009.57

[6] Brebner, P., O’Brien, L, Gray, J., Performance modeling
power consumption and carbon emissions for Server
Virtualization of Service Oriented Architectures (SOAs).
Enterprise Distributed Object Computing Conference
Workshops, 2009. EDOCW 2009. 13th. 1-4 September 2009.
92-99. DOI=10.1109/EDOCW.2009.5332010

[7] Paul Brebner, Liam O'Brien, Jon Gray: Performance
modeling evolving Enterprise Service Oriented
Architectures. WICSA/ECSA 2009: 71-80.

[8] Paul Brebner, Anna Liu. Modeling Cloud Cost and
Performance. Proceedings of Cloud Computing and
Virtualization Conference (CCV 2010), Singapore, 2010.

[9] A multi-level simulation model of MVS/JES2 Batch
Workloads, Charles Hackett, Guardian Life Insurance
Company, CMG Annual Conference, 1988.

[10] Incremental Performance Analysis of Client-Server Systems,
Thomas Bell, Anne Falk, CMG Annual Conference, 1995.

[11] Using Analytical Modelling to Ensure Client/Server
Application Performance, Gene Leganza, CMG Annual
Conference 1996.

[12] Singleton, Paul. Performance Modelling — What, Why,
When and How. BT Technology Journal, Volume 20,
Number 3, 133-143, Springer Netherlands, 1358-3948

DOI: 10.1023/A:1020860029447

[13] J. Skene and W. Emmerich. Model Driven Performance
Analysis of Enterprise Information Systems. In Proc. of
International Workshop on Test and Analysis of Component
Based Systems (ETAPS/TACoS), Warsaw, Poland.
Electronic Notes in Theoretical Computer Science (ENTCS)
No. 82(6). 2003. Elsevier Science B. V. April 2003

[14] A Comprehensive Toolset for Workload Characterization,
Performance Modeling and On-line Control. Li Zhang, Zhen
Liu, Anton Riabov, Monty Schulman, Cathy Xia and Fan
Zhang. In Performance TOOLS Conference 2003.

[15] Guinness, D. M. and Murphy, L. 2005. A simulation model
of a multi-server EJB system. In Proceedings of the 1st
international Workshop on Advances in Model-Based Testing
(St. Louis, Missouri, May 15 - 21, 2005). A-MOST '05.
ACM, New York, NY, 1-7. DOI=
http://doi.acm.org/10.1145/1083274.1083278

[16] Vittorio Cortellessa, Pierluigi Pierini, Daniele Rossi,
"Integrating Software Models and Platform Models for
Performance Analysis," IEEE Transactions on Software
Engineering, vol. 33, no. 6, pp. 385-401, June 2007,
DOI=10.1109/TSE.2007.1014

[17] Marco, Bernardo, Jane, Hillston, Connie Smith. Introduction
to Software Performance Engineering: Origins and
Outstanding Problems. Formal Methods for Performance
Evaluation, Lecture Notes in Computer Science, 2007,
Volume 4486/2007, 395-428, DOI=10.1007/978-3-540-
72522-0_10

[18] Dubey, A., Mehrotra, R., Abdelwahed, S., and Tantawi, A.
2009. Performance modeling of distributed multi-tier
enterprise systems. SIGMETRICS Perform. Eval. Rev. 37, 2
(Oct. 2009), 9-11. DOI=
http://doi.acm.org/10.1145/1639562.1639566

[19] Cherkasova, L., Ozonat, K., Mi, N., Symons, J., and Smirni,
E. 2009. Automated anomaly detection and performance
modeling of enterprise applications. ACM Trans. Comput.
Syst. 27, 3 (Nov. 2009), 1-32. DOI=
http://doi.acm.org/10.1145/1629087.1629089

[20] Wells Fargo Performance Modeling - Techniques for
Integrating into Development Life-Cycle Processes, Todd
Nichols, White paper at HyPerformix User Conference.
http://www.anser-
e.com/performance/modeling/WellsFargoModeling.htm

[21] Performance Modeling for Web based J2EE and .NET
Applications, Shankar Kambhampaty, Venkata Modali,
World Academy of Science, Engineering and Technology 8,
2005. http://www.waset.org/journals/waset/v8/v8-63.pdf

[22] Rolia, J., Casale, G., Krishnamurthy, D., Dawson, S., and
Kraft, S. 2009. Predictive modelling of SAP ERP
applications: challenges and solutions. In Proceedings of the
Fourth international ICST Conference on Performance
Evaluation Methodologies and Tools (Pisa, Italy, October 20
- 22, 2009). International Conference On Performance
Evaluation Methodologies And Tools & Workshops. ICST
(Institute for Computer Sciences Social-Informatics and
Telecommunications Engineering), ICST, Brussels, Belgium,
1-9. DOI=
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7988

[23] Mos, A. and Murphy, J. 2002. A framework for performance
monitoring, modelling and prediction of component oriented
distributed systems. In Proceedings of the 3rd international
Workshop on Software and Performance (Rome, Italy, July
24 - 26, 2002). WOSP '02. ACM, New York, NY, 235-236.
DOI= http://doi.acm.org/10.1145/584369.584403

[24] Kounev, S. 2006. Performance Modeling and Evaluation of
Distributed Component-Based Systems Using Queueing
Petri Nets. IEEE Trans. Softw. Eng. 32, 7 (Jul. 2006), 486-
502. DOI= http://dx.doi.org/10.1109/TSE.2006.69

[25] Brosig, F., Kounev, S., and Krogmann, K. 2009. Automated
extraction of palladio component models from running
enterprise Java applications. In Proceedings of the Fourth
international ICST Conference on Performance Evaluation
Methodologies and Tools (Pisa, Italy, October 20 - 22, 2009).
International Conference On Performance Evaluation
Methodologies And Tools & Workshops. ICST (Institute for
Computer Sciences Social-Informatics and
Telecommunications Engineering), ICST, Brussels, Belgium,
1-10. DOI=
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7981

95

