
Combined Profiling: Practical Collection of Feedback
Information for Code Optimization

Paul Berube
University of Alberta

Dept. of Computing Science
Edmonton, Alberta, Canada

T6G 2R3
pberube@ualberta.ca

Adam Preuss
University of Alberta

Dept. of Computing Science
Edmonton, Alberta, Canada

T6G 2R3
apreuss@ualberta.ca

José Nelson Amaral
University of Alberta

Dept. of Computing Science
Edmonton, Alberta, Canada

T6G 2R3
jamaral@ualberta.ca

ABSTRACT
Feedback-directed optimization (FDO) depends on profiling
information that is representative of a typical execution of
a given application. For most applications of interest, mul-
tiple data inputs need to be used to characterize the typical
behavior of the program. Thus, profiling information from
multiple runs of the program needs to be combined. We
are working on a new methodology to produce statistically
sound combined profiles from multiple runs of a program.
This paper presents the motivation for combined profiling
(CP), the requirements for a practical and useful methodol-
ogy to combine profiles, and introduces the principal ideas
under development for the creation of this methodology. We
are currently working on implementations of CP in both the
LLVM compiler and the IBM XL suite of compilers.

1. INTRODUCTION
Feedback-Directed Optimization (FDO), in the context of

an Ahead-of-Time (AOT) compiler, consists of collecting in-
formation about the behavior of a program from a training
run and then using this information for a new compilation of
the program [12]. A number of speculative optimizations are
known to benefit from FDO, including speculative partial
redundancy elimination [5, 8], trace-based scheduling and
others [2, 4]. However, most AOTs make only very limited
use of FDO. One reason is the lack of an efficient profiling
infrastructure by which it is practical to combine profiling
data collected from multiple runs of a program. In most
cases it is not possible to characterize the expected behavior
of a program at runtime from a single training run. Limited
efforts in the past towards combining profiling from multi-
ple runs were restricted to computing averages or sums of
frequencies. However, often the distribution of the frequen-
cies over multiple runs is important as well. Consider the
execution of a simple if-then-else statement within a hot
region of a procedure. Suppose that when the profile from
k runs of the application with different inputs are averaged,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

each branch of the conditional is executed 50% of the time.
Now consider two cases: (1) In each individual run the con-
dition is true 50% of the time; (2) In half of the runs the
condition is always false, while in the other half the con-
dition is always true. Different code transformations may
be implemented by a compiler designer if this distribution
is known, as compared with knowing only the average exe-
cution frequency of each branch, which is identical in both
cases.

Hence, there is a need for a proper and practical method-
ology to combine multiple profiles. One of the requirements
for a practical methodology is that it must allow the on-
line collection and combination of profiling data. In other
words, it must be possible to update the combined profiling
information without access to the profiling of each individual
run of the program that contribute to the combined profil-
ing.1 The advantage of the online collection of the combined
profile is that there is no need to store all the previous pro-
files that were collected. In an environment in which not
all training runs happen at once, this could be a great ad-
vantage. For instance, for an important application, there
could be a profiling and a normal code generated. During
the normal use of the deployed application, the behavior of
the application would be sampled by running a profiling run
either at regular intervals or at random with a set frequency
over the total runs of the application.

In such an environment, both compiler and architecture
designers benefit from a much more realistic characterization
of the execution of applications. More precise profiling of an
application affords FDO a much better chance to succeed in
commercial environments. Moreover, when presented with
more nuanced information about the application’s runtime
behavior, designers should be able to integrate this informa-
tion in their FDO algorithm.

This paper describes the development of a statistically
sound and practical technique to combine the profiles from
multiple runs of an application and to allow relevant queries
into the combined profile. Both batch and online combina-
tion of profiles are supported. To the best of our knowl-
edge, this work in progress is the first to address the issue
of combining profiles from multiple runs of an application in
a non-trivial manner. The main contributions of this work
will be:

• Combined profiling (CP), a statistically-sound method-

1The alternative is a batch methodology that collects the
profiling from all the runs before the computation of the
combined profile.

493

ology to combine data from multiple FDO training
runs, including a space-efficient combined representa-
tion and statistical queries to inform code transforma-
tions.

• Hierarchical normalization (HN), an algorithm that al-
lows profiles to be combined while maintaining both
the local and global relative frames of reference for
each monitor.

• Overlap Metrics, which quantify the difference in dy-
namic code coverage captured by alternative profiles.

• An implementation of CP for both edge and path pro-
filing in the open-source LLVM compiler, and an evalua-
tion of these implementations in terms of compilation
and profiling overhead, profile size, and profile overlap.

2. RELATED WORK
Savari and Young build a branch and decision model for

branch data [11]. Their model assumes that the next branch
and it’s outcome are independent of previous branches2. The
resulting model provides a distribution across all the events
of a certain type for a single program run. Distributions
from different runs are combined by using relative entropy
to find a mixture that is equally (dis)similar to the original
distributions. In essence, this is a sophisticated way to find
the weights for a weighted geometric average across runs.
Each event is still represented by a single number (expected
frequency). In contrast, CP’s statistically-sound distribu-
tions are for a single event across multiple program runs.

Fisher and Freudenberger measure instructions per break
in control flow and sum profiles to provide better branch
prediction [6]. Point summaries created by summing raw
frequencies produce similar results to summing normalized
frequencies. Usually, summed profiles perform better than
single-run profiles, but poor prediction still occurs in the
presence of multiple program use cases and poor training
input selection, two issues addressed by CP.

Simple sums and averages, or in fact any point summary,
cannot adequately represent workloads containing behavior
variation. CP is designed for exactly this purpose.

Many code transformations have shown the utility of ac-
curate profile information. For instance, Young and Smith
use the information from a path profiler to improve global
scheduling [14]. Ammons and Laurus improve the precision
of data flow analysis only along hot paths [1]. Gupta et al.
use path profiling to guide partial dead code elimination in
an architecture with predication [7, 2]. Path profiling is also
essential for the success of speculative partial redundancy
elimination (SPE) [5, 8]. The importance of an accurate
profile for these transformations foreshadows problems when
program behavior varies by data input, but this information
is neither captured by profiling nor taken into account by
compiler heuristics.

3. COMBINED PROFILING
Significant performance gains can be achieved through the

use of FDO. Nonetheless, FDO has not achieved widespread
use by compiler users. A major challenge in the use of FDO
is the selection of a data input to use for profiling that is

2This assumption of independence is never explained or jus-
tified, but is clearly violated (e.g., correlated branches).

representative of the execution of the program throughout
its lifetime. For large and complex programs dealing with
many use cases and used by a multitude of users, assembling
an appropriately representative workload may be a difficult
task. Picking one training run to represent such a space is far
more challenging, or potentially impossible, in the presence
of mutually-exclusive use cases. Moreover, user workloads
are prone to change over time. Performance gains today may
not be worth the risk of potentially significant performance
degradation in the future.

CP eases the burden of training-workload selection while
also mitigating the potential for performance degradation.
First, there is no need to select a single input for train-
ing,3 because data from any number of training runs can be
merged into a combined profile. More importantly, CP pre-
serves variations in execution behavior between inputs. The
distribution of behaviors can be queried and analyzed by the
compiler when making code transformation decisions. Mod-
estly profitable transformations can be performed with con-
fidence when they are beneficial to the entire workload. On
the other hand, transformations expected to be highly bene-
ficial on average can be suppressed when performance degra-
dation would be incurred on some members of the workload.

Over the lifetime of a complex application, the patterns
of execution of the program may change, and thus the rela-
tive importance of different execution paths will also change.
However, if a large number of distinct inputs are used to gen-
erate a combined profile, it is likely that most of the patterns
that will become frequent in the future are represented by
the workload. Therefore, providing the FDO algorithm with
the variation and the outliers in the distribution may allow
for the anticipation of the impact of a code transformation
in future frequent patterns of execution. A possible future
use of CP is to include triggers in the generated code that
either switch to an alternative version of the code, or suggest
to the user that the application should be re-profiled and re-
compiled because of changes in execution pattern detected
by some deployed sampling profiling mechanism.

3.1 Measuring Program Behavior
A methodology to combine profiles collected from multi-

ple runs of a program is applicable to a variety of profiling
techniques. The profile of a program records information
about a set of program behaviors. A program behavior B
is a (potentially) dynamic feature of the execution of a pro-
gram. The observation of a behavior B at a location l of a
representation of the program is denoted Bl.

4 A behavior
B is quantified by some metric M(B) as a tuple of numeric
values. A monitor R(B, l,M)5 is injected into a program
at every location l where the behavior B is to be measured
using metric M . At the completion of a training run, each
monitor records the tuple 〈l,M(Bl)〉 in a raw profile. A
raw profile contains unmodified metric values, as opposed to
other profiles that may contain processed values. We refer to
the value (or distribution) of the metric of a monitor simply
as the value (or distribution) of the monitor. For example,
in naive edge profiling, the locations l are the edges of the

3We firmly believe that training must always use a workload
formed by multiple inputs.
4For instance a location l can be a point or a single-entry-
single-exit region in the Control Flow Graph of the program.
5A monitor can also be thought of as a Recorder, thus the
use of the letter R to refer to a monitor.

494

CFG, the metric M is the frequency of execution of each
edge and the observation Bl of the behavior B is the traver-
sal of the edge during program execution. In this case the
raw edge profile contains a listing of 〈edgeID, count〉 pairs,
with one record for each monitor/edge.

For simplicity, consider a program with a single monitor,
R. When no program state is shared between executions,
the raw profile from training run i provides one independent
sample,6 Ri, of the possible values of R. In other words, each
Ri is an independent random variable identically distributed
according to some unknown probability distribution D. If
D were known, statistical inference about the values of R
would be possible.

3.2 Approximating the Empirical Distribution
Section 3.1 presented the idea of constructing a distribu-

tion model of each monitor from the observed values. To
facilitate the use of CP with existing FDO compilers, a CP
file should be a drop-in replacement for raw profiles. In par-
ticular, a CP file created from a single raw profile should
be as informative as the original raw profile. As a matter
of practicality, the distribution model should have a (small)
bounded size, since it must be stored on disk but will also
compete with the rest of the compiler for memory during
compilation. Similarly, a CP should support both incre-
mental and batch additions of raw profiles to give the user
maximum data management flexibility.

A simple method to create a model is to build the em-
pirical distribution, where the data is the distribution. This
approach requires the storage and analysis of all existing pro-
files. However, in the context of compiler decisions, a coarse-
grained distribution model is sufficient because small varia-
tions in a distribution have no impact on decision outcomes.
Therefore, the empirical distribution can be approximated
by storing quantized monitor values in histograms. The his-
togram approximates the empirical distribution, which esti-
mates the unknown true distribution of a monitor.

Assuming that a monitor is uniformly distributed within
a bin, it’s histogram forms a contiguous n-step probability
distribution. FDO’s limited precision requirements make
this assumption reasonable. The probability of the value of
a monitor belonging to bin bi is the proportion of the his-
togram’s total weight falling in bin bi. Thus, the distribution
of a monitor’s value has a well-defined and piece-wise contin-
uous cumulative distribution function (CDF) and quantile
function. Likewise, individual monitor values can be seen as
degenerate histograms where all the weight is contained in
a single minimum-width bin. Henceforth, all monitor values
are assumed to be such histograms rather than scalar values.

3.3 Building Histograms
The histogram of a combined profile may be updated in a

batch, incrementally, or by a hybrid approach. The update
method is unaffected by the choice of update frequency. In
general, updating produces a new histogram in 3 steps:

1. Determine the range of the combined data. Create a
new histogram with this range.

2. Proportionally weight the bins of the new histogram.

3. Calculate new values for the true mean and variance.

6Execution independence is sufficient, but not strictly nec-
essary for Ri and Rj (i 6= j) to be independent.

1H

2H

3H

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
1
7

1
2
5

8
5

9
3

1
0
1

1
0
9

1
2
4

1
5
0

8
5

1
3
7

1
1
1

9
8

3 5
1 2

6 3
102

4

1.01.5
6.0135.5

Figure 1: Combining histograms. H1 has a bin width
of 10 and a total weight of 12; H2 has a bin width of
8 and a total weight of 15. The combined histogram
H3 has a bin width of 13 and a total weight of 27.

The combination of two histograms H1 and H2 into a new
histogram H3 is illustrated in Figure 1. The range of H3 is
simply the minimum encompassing range of the ranges of
H1 and H2: [min(100, 85),max(150, 125)] = [85, 150]. This
range is divided into the same number of bins as were present
in the original histograms. The weight of a bin bi of H3 is
given by the weights of the bins of H1 and H2 that overlap
the range of bi multiplied by the overlapping proportion. For
example, let b3 be the third bin of H3 in Figure 1. In H1 the
bin width is 10, and in H2 the bin width is 8. The weight
of b3 in H3 is calculated as follows:

Wb3(H1) =

„
120− 111

10

«
3 +

„
124− 120

10

«
2

=
27 + 8

10
= 3.5

Wb3(H2) =

„
117− 111

8

«
1 +

„
124− 117

8

«
2

=
6 + 14

8
= 2.5

Wb3(H3) = 3.5 + 2.5 = 6.0

Updating the sample mean and variance of a combined
profile uses the parallel algorithm due to Chan et. al.[3].
Given two data sets A and B, the inputs for this algorithm
are the number of values, n, the sum of values S, and the
sum of squared deviations, SS:

S = SA + SB

SS = SSA + SSB +
nAnB

nA + nB

„
SA

nA
− SB

nB

«2

The sample mean x̄ and the variance σ2 of the combined
profile of the data sets A and B are computed as follows:
x̄ = S

n
and σ2 = SS

n
.

3.4 Why Not Use Parametric Models?
The core of CP is the distribution model associated with

each monitor. CP is based on the empirical distribution
and histograms because we believe this approach to be both
effective and efficient. An alternative would be to create
parametric probability models.

495

L

S
foo()

100

10

(a) foo() x10

L

S
foo()

10,000

1,000

(b) foo()
x1,000

Figure 2: The loop L in foo() iterates 10 times.

The empirical distribution is a non-parametric model that
makes no assumptions about the shape of the data. Para-
metric probability models assume that data comes from a
family of distributions characterized by a fixed set of pa-
rameters. Building the model entails estimating the values
of those parameters. For instance, a normal distribution is
parameterized by the mean and standard deviation of the
data. While those two parameters are easily estimated and
have a small space requirement, we have no justification to
assume that monitor values are distributed according to any
particular distribution. More flexible parametric models can
better estimate arbitrary distributions, but require a larger
number of parameters. Unfortunately, accurately estimating
many parameters necessitates many data samples in order
to constrain each degree of freedom in the model. For ex-
ample, the generalized lambda distribution can approximate
a large number of well-known distributions, but is parame-
terized by the first four moments of the data [9]. Thus, the
model may be very different from the real distribution of the
data when the number of raw profiles collected is small.

4. HIERARCHICAL NORMALIZATION
Building a distribution model of a program behavior can

provide a compiler with richer information to guide code
transformation. However, raw profiles cannot be combined
naively. Consider the case of procedure foo() in Figure 2,
who’s only control flow construct is a loop that iterates ex-
actly 10 times. Let S be the straight-line code outside the
loop code L. Two profiles are generated: in Figure 2(a),
foo() is invoked 10 times; in Figure 2(b), 1,000 times. Com-
bining this information naively, we learn that S executes 10
or 1,000 times, while L executes 100 or 10,000 times. How-
ever, we have lost the correlation between the frequencies
of S and L. According to this combined profile, there may
be a single run in which S executes 1,000 times while L
executes 100 times. The problem is that the two pairs of
measurements were taken under different conditions. Thus,
when combining these measurements, all values recorded for
a monitor must be computed relative to a common fixed
reference. Hierarchical normalization (HN) is a process to
achieve this goal by decomposing a CFG into a hierarchy of
dominating regions.

HN is presented for vertex profiling. Edge profiles are
treated identically, but use the line graph of the CFG in-
stead of the CFG itself. The line graph contains one vertex
for each edge in the CFG. The edges in the line graph cor-
respond to adjacencies between the edges of the CFG. This
technique may be similarly applied to a call-graph.

Decomposing a CFG into a hierarchy of dominating re-
gions to enable HN is achieved by constructing it’s domi-

nator tree. Each non-leaf node n in the tree is the head of
a region Gn, which encompasses any regions headed by de-
scendants of n. Let node p be the immediate dominator of
node n and let Rp and Rn be the monitors at these nodes.
To prepare a raw profile for combination with other profiles,
each Rn is normalized against the value of Rp. Normal-
ization proceeds in a bottom-up traversal of the dominator
tree, so that the head of a region is only normalized to it’s
immediate dominator after all of it’s descendents have been
normalized. The root of the dominator tree, i.e., the proce-
dure entry point, is assigned a “normalized” value of 1.

The current formulation of HN does not apply to paths.
The problem lies in loops, where multiple paths overlap and
no path or set of paths strictly dominates the loop body. For
example, there is a set of paths starting at the procedure
entry and ending at the end of the innermost loop, and a set
of paths consisting of the last iteration of the loop followed
by paths to the exit. None of these paths strictly dominate
any of the others, nor do any of them dominate or post-
dominate the loop body. Our implementation of combined
path profiling in LLVM currently does normalization using the
imprecise approximation that all paths are dominated only
by the procedure entry point.

4.1 Denormalization
By design, hierarchical normalization leads to histograms

built using relative execution frequencies. These histograms
approximate conditional distributions such that the distribu-
tion of a monitor is conditioned on the execution frequency
of it’s immediate dominator being 1. Thus, monitor values
can only be compared when their distributions share the
same condition, i.e., they have been normalized against the
same dominator. Denormalization is the process of (statis-
tically) reversing the effects of hierarchical normalization.

Let Ra and Rb be monitors from the same CFG, and let
domi(Ra) be the ith most-immediate dominator of Ra. The
least-common dominator of Ra and Rb is Rd = domj(Ra) =
domk(Rb). AdjustingRa from being conditioned on dom(Ra)
to being conditioned on Rd is achieved incrementally by
walking up the dominator tree. For example, the expected
execution frequency of Ra conditioned with respect to Rd

can be computed:

E(Ra|Rd = 1) = E(Ra|dom(Ra) = 1)×
jY

i=2

(E(domi−1(Ra)|domi(Ra) = 1))

In this way, Ra and Rb can be compared via E(Ra|Rd = 1)
and E(Rb|Rd = 1). Variance should be denormalized in a
similar fashion to ensure a confident comparison result.

5. USING COMBINED PROFILES
Throughput and latency are two important measurements

for performance evaluation. Considering throughput alone
is sufficient to improve performance in a batch environment,
and is the typical concern of compiler code transformations.
After all, a user is usually concerned with the total execu-
tion time of a program, not the relative speed of individual
control flow paths taken during the program’s execution.
However, when considering a workload of inputs composed
of, for example, representative inputs from a software ven-
dor’s primary clients, the speed of the individual compo-
nents matters. The clients do not care about overall pro-

496

gram throughput, they care about program execution time
for their particular workload. Consequently, code transfor-
mations should consider the distribution of program behav-
iors across the workload when presented with a combined
profile.

A combined profile holds a wealth of knowledge that can
be used to enhance feedback-directed code transformations.
The utility of any particular statistic depends on the charac-
teristics of the consuming transformation. A detailed treat-
ment of non-parametric statistics and plug-in estimators is
beyond the scope of this paper, but can be found in appro-
priate statistics texts [13]. Some examples of the types of
queries that can be made to a combined profiling infrastruc-
ture are highlighted here.

Average Benefit: Code transformation heuristics that use
raw execution frequencies, normalized frequencies, or
sums of frequencies are attempting to maximize av-
erage benefit. However, the median can be a better
representative of the common case than the mean for
skewed distributions; CP allows both the skew and me-
dian of a distribution to be approximated. Of course,
CP also provides the sample mean.

Worst-Case Cost: Considering latency alone is a worst-
case analysis. Thus, heuristics should use the extreme
values of the distribution for cost/benefit analysis. The
sample maximum and minimum of a distribution are
estimators for the true maximum and minimum, and
are available through CP.

High-Certainty Benefit: The choice between average-case
and worst-case analysis is quite coarse. However, the
inverse CDF, or quantile function Q, enables finding
ranges or thresholds corresponding to specified propor-
tions of the data. Denote by R a monitor and by T a
threshold value. Q(p) asks: “What is the value of T
such that P(R < T) = p?” Thus, Q(0), Q(0.5), and
Q(1) are the sample minimum, median, and maximum,
respectively; Q(0.05) gives the threshold between the
lowest 5% of the distribution and the upper 95%. A
heuristic that determines that a transformation should
be beneficial to 95% of the workload would likely be
more reliable than one which conservatively requires
that the average benefit be “large enough.”

Sorting: Transformation opportunities are often evaluated
in an order that requires that they first be sorted, such
as a “hottest first” order. In addition to the statistics
above, CP provides the sample variance to measure
the spread of the distribution. Thus, a sorting function
could prefer opportunities with more strongly peaked
distributions. Furthermore, the variance can be used
to construct a confidence interval around the mean in
order to determine if a comparison result is statisti-
cally significant or the result of random chance. Over-
all, CP allows for the construction of nuanced sorting
functions that are appropriate for the transformations
for which they are used.

6. IMPLEMENTATION
We implemented both Ball-Larus path profiling and CP

for edge and path profiling in the LLVM compiler. LLVM is
a broadly used compiler infrastructure that has had great

Deficiency Exclusivity
Statistic # % # %

Maximum 395 18.5 3 0.141
Minimum 88 4.13 0 0

Mean 210.35 9.88 0.015 7.00 ×10−4

σ2 90.2 0.542 0.197 9.25 ×10−3

Table 1: Deficiency and exclusivity over 1000 inputs
to bzip2. 2130 edges are executed at least once over
the full workload.

influence both in the development of compilers and in the
delivery of commercial products to the market [10]. This
implementation of path profiling was verified against an in-
dependently developed edge profiler using the SPEC CPU
2000 and the SPEC CPU 2006 benchmark suites.

To compare the coverage of an application behavior by
CP with the coverage of profiling of a single run of the pro-
gram, we defined two metrics: deficiency and exclusivity.
Both metrics use a leave-one-out cross-validation methodol-
ogy; Let si be the left-out input, and S the set of remaining
inputs. Denote by C(si) and C(S) the sets of edges with
non-zero frequency in the raw profile for si and the com-
bined profile of S, respectively.

Deficiency counts the number of edges covered by S that
are not covered by si, i.e., information lost when si is used
alone to estimate frequencies:

Def(i) = |C(S)− C(si)|

y Conversely, exclusivity counts the number of edges covered
by si but not by S, i.e., information lost due to omitting si

from the combined profile:

Excl(i) = |C(si)− C(S)|

Table 1 shows deficiency and exclusivity metrics for edge
profiles of bzip2 (a relatively simple program). This prelim-
inary data confirms that combined profiles capture informa-
tion about parts of a program that are difficult to capture
with a single input. Any one input covers at most 3 edges
not covered by the combined profile, while the combined
profile covers at least 88, and on average 210, more edges
than a single profile.

7. ON-GOING WORK
Combined profiling is a practical approach to addressing

the issue of combining profiles from multiple training runs
while capturing the variations between those runs. Initial re-
sults show that behavior variation is present in even a simple
program like bzip2, and this variation can be captured by
a statistical model. We are currently working on a more ex-
tensive evaluation of CP on LLVM. Also, we are finalizing the
design of an extension of CP to apply it inter-procedurally
through the use of the program’s call graph. Finally, we
are examining existing FDO transformations to design new
strategies for their application based on the additional in-
formation made available by CP.

8. ACKNOWLEDGMENTS
This research is supported by fellowships and grants from

the Natural Sciences and Engineering Research Council of

497

Canada (NSERC), the Informatics Circle of Research Excel-
lence (iCORE), and the Canadian Foundation for Innovation
(CFI).

9. REFERENCES
[1] G. Ammons and J. R. Larus. Improving data-flow

analysis with path profiles. In Conference on
Programming Language Design and Implementation
(PLDI), pages 72–84, Montreal, QC, Canada, June
1998.

[2] R. Bod́ık and R. Gupta. Partial dead code elimination
using slicing transformations. In Conference on
Programming Language Design and Implementation
(PLDI), pages 159–170, Las Vegas, NV, USA, 1997.

[3] T. F. Chan, G. H. Golub, and R. J. LeVeque.
Updating formulae and a pairwise algorithm for
computing sample variances. Technical Report
STAN-CS-79-773, Stanford University, November
1979.

[4] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan,
B. R. Rau, and M. Schlansker. Profile-driven
instruction level parallel scheduling with application
to super blocks. In Intern. Symposium on
Microarchitecture (MICRO), pages 58–67, Paris,
France, December 1996.

[5] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and
P. Tu. A new algorithm for partial redundancy
elimination based on ssa form. In Programming
language design and implementation, pages 273–286,
Las Vegas, NV, USA, 1997.

[6] J. A. Fisher and S. M. Freudenberger. Predicting
conditional branch directions from previous runs of a
program. In Intern. Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 85–95, 1992.

[7] R. Gupta, D. A. Berson, and J. Z. Fang. Path profile
guided partial dead code elimination using predication.
In Parallel Architectures and Compilation Techniques
(PACT), page 102, San Francisco, CA, USA, 1997.

[8] R. Gupta, D. A. Berson, and J. Z. Fang. Path profile
guided partial redundancy elimination using
speculation. In Intern. Conf. on Computer Languages
(ICCL), pages 230–239, 1998.

[9] A. Lakhany and H. Mausser. Estimating the
parameters of the generalized lambda distribution.
Algo Research Quarterly, 3(3):47–58, December 2000.

[10] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Intern. Symp. on Code Generation
and Optimization (CGO), San Jose, CA, USA, March
2004.

[11] S. Savari and C. Young. Comparing and combining
profiles. Journal of Instruction-Level Parallelism, 2,
May 2000.

[12] M. D. Smith. Overcoming the challenges to
feedback-directed optimization (keynote talk). In
Workshop on Dynamic and Adaptive Compilation and
Optimization, pages 1–11, 2000.

[13] L. Wasserman. All of Statistics: A Concise Course in
Statistical Inference. Springer, 2003.

[14] C. Young and M. D. Smith. Better global scheduling
using path profiles. In Intern. Symposium on
Microarchitecture (MICRO), pages 115–123, Dallas,
TX, USA, 1998.

498

