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ABSTRACT
Energy efficiency optimizations of computational resources
continue to be of growing importance for both classical da-
tacenter workloads as well as high performance computing
environments. New hardware generations introduce more
and more energy efficiency features, resulting in a power
consumption variation by at least a factor of four between
idle and full load. Even the power consumption of different
full-load workloads can vary substantially, clearly showing
that there is energy saving potential apart from the tradi-
tional “race to idle”. In this paper we present a configurable
CPU frequency governor that adapts processor frequencies
based on performance counter measurements instead of pro-
cessor load. We use the SPEC OMP benchmark suite to
determine the potential of our approach and present gover-
nor configurations for two up-to-date x86 64 microarchitec-
tures. Moreover we show that substantial follow-up work is
required to assess further efficiency optimization potential
in this field.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General—Linux ; D.2.8 [Soft-
ware Engineering]: Metrics—performance measures

General Terms
Performance, Measurement

Keywords
energy efficiency, DVFS, frequency governor, performance
counter

1. INTRODUCTION
The past decade has brought some disruptive changes to

the HPC community. While in previous years we focused
strongly and often solely on performance, energy efficiency
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has now become a second and even equally important metric.
The ever-increasing power consumption of commodity com-
puter hardware forced vendors to build more sophisticated
power saving capabilities into their hardware. Operating
system developers are steadily adapting to these features in
order to use hardware resources more efficiently. Most re-
cently, middlewares and even applications are exposed to
aspects that are relevant with respect to energy efficiency
optimizations.

While these developments allow to run software more en-
ergy efficient, more progress needs to be made and newly
emerging hardware features are continuously offering new
opportunities. Among the power-saving techniques used in
current processors is Dynamic Voltage and Frequency Scal-
ing (DVFS), one of the major attempts to increase energy
efficiency of computing systems by adapting the voltage and
frequency of compute cores or other processor parts to the
current system load. As the consumed power is proportional
to the frequency and the squared voltage, a reduction in both
significantly reduces the processors power consumption.

The Linux operating system offers two so-called CPU fre-
quency governors that reduce the frequency of idling pro-
cessor cores automatically [8]. The strategy of the onde-
mand governor is to adapt the processor frequency abruptly
(i.e. from lowest to highest) while the conservative governor
changes frequencies step-by-step. However, both base their
decisions solely on the load of the processor core. The load
is determined by the amount of time that the core is ac-
tually performing work (as opposed to running the kernel’s
idle loop). We argue that this approach is neither precise
enough nor sufficient, as the load of a processor core is likely
not an adequate measure to determine the general needs for
a specific hardware set-up and the optimal configuration in
terms of energy efficiency.

In this paper we introduce a more sophisticated governor.
The frequency decisions are based on the more informative
metric instructions per memory access. The governor uses
the Linux kernel perf events to access hardware performance
counters, hence the name pe-Governor. To evaluate this
governor we use SPEC OMP, a thread parallel benchmark
suite for shared memory systems [1]. SPEC OMP consists
of eleven different benchmarks which can be executed on
different working set sizes. These benchmarks represent real
world applications from different scientific fields. Moreover,
the benchmarks of the SPEC high performance group are
currently under consideration for an extension that targets
power efficiency [4].

481



There are three key contributions of this work:

• A Linux CPU frequency governor that can control the
frequency of each processor core in a shared memory
system based on standard Linux performance events
without need of hardware or software modifications
and on various processor architectures.

• A metric as basis for the frequency scaling decisions
along with a tuned parameter setting for two major
x86 64 implementations by AMD and Intel.

• Measurement results of two x86 64 systems using the
thread parallel SPEC OMP suite to validate the ef-
fectiveness of the governor, the metric and our tuned
parameter settings.

The paper is organized as follows: Section 2 highlights
our approach for a more sophisticated frequency governor
and Section 3 describes our software and hardware test en-
vironment. Section 4 lists performance and energy efficiency
results for SPEC OMP benchmarks on two different x86 64
systems. Section 5 topics previous work in this field. Fi-
nally, Section 6 points out strength and weaknesses of our
approach and details ongoing and future work.

2. THE PE-GOVERNOR
The basic idea behind the pe-Governor is twofold:

1. use hardware performance counters for an on-line char-
acterization of the workload that is running on a pro-
cessor core, and

2. optimize the configuration of the processor core in or-
der to run the workload as power efficient as possible.

One example for this approach would be the detection
of an inefficient use of the hardware prefetchers based on
performance counters and the subsequent (temporarily) de-
activation of the prefetcher. Other usage scenarios are pos-
sible. However, we currently focus on the characterization
of workloads in terms of memory boundedness. If the tasks
on one CPU are memory bound, its frequency (and thereby
voltage) can be decreased to a certain level without sacri-
ficing main memory performance. If implemented properly,
the performance impact on the application can be minimal
while the energy savings are substantial.

The pe-Governor is implemented as a kernel module that
can be installed on Linux systems running kernel 2.6.33 or
higher. It uses the perf events system interface to add per-
formance counters for each logical processor core in order
to measure the number or rate of variable hardware perfor-
mance events. In our case we measure the number of exe-
cuted instructions and the number of last level cache (llc)
misses in a certain time interval. Based on these numbers we
determine the rate instructions per llc-miss that presumably
allows us to estimate how strongly the current CPU load is
bound in its performance due to main memory accesses (we
refer to this as memory boundedness).

Consistent to other loadable modules, the pe-Governor is
installed in the running kernel using insmod. It can then be
activated using the sysfs interface for CPU frequency gov-
ernors (/sys/devices/system/cpu/cpufreq/). Upon acti-
vation the module adds the hardware performance counters
and establishes a daemon that is activated every 10 millisec-
onds. At this rate, the daemon retrieves the performance

counter data for the last measurement interval, determines
the memory-boundedness of the current workload, and ad-
justs the core frequency accordingly. To avoid a frequently
changing frequency, the actual frequency is determined as
the highest proposed frequency for the last two measure-
ment intervals.

The governor configuration includes several threshold val-
ues that determine when frequency changes should occur.
As the optimal configuration is highly system-dependent,
the thresholds as well as the target frequencies can be adap-
ted through the sysfs interface. Four threshold files can be
used to define intervals for different levels of memory bound-
edness. Using the frequency files, each memory bounded-
ness level can be mapped to user-defined processor clock
frequencies. In this example configuration

• threshold_4 = 200

• threshold_3 = 100

• frequency_4 = 3000000

• frequency_3 = 2000000

the system would change a core’s clock frequency to 3 GHz
when there are at least 200 instructions per llc-miss, to
2 GHz for at least 100 instructions per llc-miss and to the
minimal frequency for all other (<100) rates. Another sysfs
file allows users to redefine the sampling interval of the gov-
ernor.

Figure 1 shows an eight second section of an event trace
gained from the SPEC OMP benchmark fma3d. We use
the VAMPIR performance suite [2] to visualize the event
trace. The illustration depicts the timeline of the program
execution with the OpenMP threads, the power consump-
tion while running the benchmark, and the frequency of the
processor core that runs the master thread. The power con-
sumption is measured using the Dataheap infrastructure [4]
while the clock frequency is recorded using the kernel tra-
cepoint events. These two additional event streams are
merged into the program trace using the VampirTrace plu-
gin counter interface [9].

3. TEST SETUP
We use two different dual-socket machines with state-of-

the-art x86 64 processors as test systems to evaluate the
pe-Governor. One system is powered by Intel Westmere pro-
cessors, while the other machine has AMD Istanbul CPUs.
Table 1 provides a detailed lists of the configuration of both
systems. The test workload is provided by the thread par-
allel SPEC OMP benchmark suite in version 3.2, compiled
with the Intel compiler suite version 11.1. Each OpenMP
thread is pinned to one physical processor core.

The Intel Westmere processors provide the architectural
event Last-Level-Cache-Misses for each logical processor of
the test system. The unit mask of this event is 0x41, the
event code is 0x2E. We disable the TurboBoost technology
for our measurement runs. Hyperthreading (HT) is enabled
but not used when running the benchmarks, therefore only
one thread is running on each physical processor core.

AMD processors do not support a native per-core last level
cache-miss event, as the last level cache (L3) is part of the
Northbridge. The event code for last level cache-misses is
0x4E0. This event can be counted per core by using the unit
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Figure 1: pe-Governor scaling frequency for fma3d benchmark

mask 0x?7, in which the first half-byte encodes the processor
core whose events are counted. However, one cannot use the
same performance counter register on multiple cores of one
processor to measure Northbridge events. Although this is
ensured by the Linux perf events infrastructure, the hard-
ware limitation of only four available performance counter
registers cannot be circumvented. This limits the number of
cores that can measure Northbridge events simultaneously
and we therefore only use four of the available six cores per
AMD processor for our benchmark runs.

Table 1: Configuration of our test systems

System
Intel Software Sun

Evaluation System Fire X4140

Operating
Linux 2.6.35.23 Linux 2.6.35.4

System

Processor
2x Intel 2x AMD

Xeon X5670 Opteron 2435
Number of

2x 6 Cores 2x 4 Cores
used Cores
Core clock 2.93 GHz 2.6 GHz
Uncore/

2.66 GHz 2.2 GHz
NB clock
TDP 95 W 115 W

QPI 4.8 GT/s
coherent

Interconnect
(19.2 GB/s)

HT3 2.2 GHz
(17.6 GB/s)

Codename Westmere-EP Istanbul
Technology 32 nm HKMG 45 nm SOI
L1 cache 2x32 KiB per core 2x64 KiB per core
L2 cache 256 KiB per core 512 KiB per core
L3 cache 12 MiB per chip 6 MiB per chip

IMC channels 3x RDDR3 2xRDDR2
Memory type PC3-10600R PC2-5300R
Memory size 12 GiB (6x 2 GiB) 16 GiB (8x2 GiB)

Chipset Intel 5520 nVidia MCP55

Power
Ablecom Delta Energy

supply
PWS-801P-1R Systems

885W A221 658W

Table 2 lists our configuration of the pe-Governor. The
thresholds for the memory boundedness rate and the cor-
responding processor clock frequencies have been optimized
for the two test systems through a series of benchmark runs.
Especially for the AMD system it is likely that further im-
provements of the settings could be achieved by testing more
thoroughly.

Table 2: pe-Governor settings

Intel Test System SUN X4140

threshold 4 175 50
frequency 4 2926000 2600000
threshold 3 100 01

frequency 3 2128000 14000001

Figure 2 depicts the design of our power measurement in-
frastructure. Attached to the test systems are ZES Zimmer
LMG95 or LMG450 power analyzers that record the power
consumption of the systems at a rate of 10 samples per sec-
ond. A power measurement daemon on a separate system
(the Collector) is used to configure the power analyzers and
read the measurement data from the devices. The Collector
forwards the recorded power values to the so-called Dataheap
server that stores all measurement data along with their in-
dividual timestamps for later analysis. We use a command
line client to query the average power consumption for a cer-
tain interval from the Dataheap server. This client is used to
perform an (automated) post mortem merging of benchmark
results and power measurement data. One of the advantages
of this approach is that the power measurement itself does
not influence the benchmarks in any way [9].

4. TEST RESULTS
We use our test systems to determine the runtime, total

energy consumption, and average power consumption for the
SPEC OMP benchmarks. The ondemand governor serves as
a reference and we quantify the difference between the on-
demand results and the pe-Governor results in percent. Our

1This setting prevents the system to fall back to 800 MHz,
which would reduce the memory bandwidth significantly.
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Figure 2: System setup for power measurements

experiments have shown that the results for the ondemand
and the performance governor are very similar as both rarely
reduce the clock frequency due to the very high computa-
tional load generated by the benchmarks.

4.1 Intel Xeon X5670 Test System
Table 3 presents the results of our pe-Governor running

on an Intel Westmere system. The energy-saving poten-
tial is substantial, as we can achieve a power reduction of
up to 11%. However, the runtime for single benchmarks is
increased by up to 5.3 % compared to the ondemand gov-
ernor. This shows that either the frequency decisions of
the pe-Governor are inappropriate for some benchmarks or
that the induced overhead due to slow p-state transitions
or inert frequency adaption is too high. One possible rea-
son for wrong frequency assignments are prefetchers that
influence the number of memory references. In average, the
pe-Governor increases the runtime by 1.58 % while at the
same time providing a 3.88 % and 2.37 % reduction in power
and energy consumption, respectively.

Table 3: Changes due to usage of pe-Governor on
Intel X5670 Test System

benchmark runtime (s) energy (kJ) power (W)

310.wupwise 0.51 % -1.58 % -2.08 %
312.swim -0.46 %2 -11.50 % -11.09 %
314.mgrid 0.78 % 0.43 % -0.35 %
316.applu 1.20 % -5.77 % -6.90 %
318.galgel 5.11 % -1.36 % -6.15 %
320.equake 1.96 % -3.51 % -5.37 %
324.apsi 5.33 % 2.80 % -2.40 %
326.gafort 1.46 % -4.21 % -5.58 %
328.fma3d 2.14 % -0.89 % -2.97 %
330.art -0.89 %2 -0.87 % 0.02 %2

332.ammp 0.21 % 0.43 % 0.22 %
Min -0.89 % -11.50 % -11.09 %
Max 5.33 % 2.80 % 0.22 %

Average 1.58 % -2.37 % -3.88 %

4.2 AMD Opteron X4140 Test System
Table 4 presents the results of our pe-Governor running

on an AMD Istanbul test system. Compared to the results
for the Intel system, the governor does not perform equally

well on the Opteron. The maximum runtime increase is
7.12 %, mostly due to a governor configuration that is not
yet optimal for the AMD test system. Still, the pe-Governor
performs better then the ondemand governor in some cases
and also on average. The average energy consumption per
benchmark is reduced by 1.36 %. The pe-Governor reduces
the energy consumption for eight out of eleven benchmarks.
It is interesting to note that the benchmark with the biggest
performance degradation is now applu, as opposed to galgel
on the Intel system. Moreover, applu shows a 5.77 % reduced
energy consumption on the Intel platform compared to a
2.84 % increase on the AMD system. This clearly demon-
strates how different the individual characteristics of the two
x86 64 microarchitectures are.

Table 4: Changes due to usage of pe-Governor on
Sun Fire X4140

benchmark runtime (s) energy (kJ) power (W)
310.wupwise 2.12 % -0.29 % -2.36 %
312.swim 1.51 % -8.87 % -10.22 %
314.mgrid 0.51 % 0.26 % -0.25 %
316.applu 7.12 % 2.84 % -4.00 %
318.galgel 2.94 % -1.61 % -4.42 %
320.equake -0.26 %2 -0.33 % -0.07 %
324.apsi 1.76 % 0.08 % -1.65 %
326.gafort 1.39 % -4.64 % -5.94 %
328.fma3d 1.99 % -1.89 % -3.81 %
330.art 0.00 % -0.15 % -0.15 %

332.ammp -0.60 %2 -0.41 % 0.19 %2

Min -0.60 % -8.87 % -10.22 %
Max 7.12 % 2.84 % 0.19 %

Average 1.68 % -1.36 % -2.97 %

5. RELATED WORK
Keller et al. propose a performance event driven CPU

frequency governor called VAMOS [5]. Although they do
not explicitly name the metric they base the frequency de-
cision on, the paper implies that it is the number of float-
ing point operations per second (FLOPS). FLOPS however
is unsuitable as a base for a frequency decision, as integer
based workloads do not generate floating point events but
can also be memory- or cpu-bound. The authors use perf-
mon as interface to measure FLOPS, which implies the need
for a kernel-patch to run the governor. The BLAS routines
SMXV and DGEMM are used to verify the result of this
work.

Free et al. [3] define two metrics that can predict the
energy-time trade-off. They propose that system software
designers use them for frequency scaling decisions. These
metrics are misses-per-operation (MPO) and slack (slack is
used to predict communication bottlenecks). In our work
we use misses-per-instruction and thereby implement parts
of their suggestions. However, our approach uses a CPU fre-
quency governor to adapt the frequency at runtime instead
of being set for a whole application based on its average
properties. This has the important consequence, that our
approach does not require any workload characterization or
user interaction. Instead, only the system administrator is

2Runtime decreases and power increases should not occur
and can be put down to influences by the operating system.
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responsible to setup the CPU frequency governor. However,
although being challenging to set up, individual workload
characterization is also by design more effective in terms of
energy savings.

Long et al. [7] use DVFS to slow down parts of parallel
programs to establish a higher compute balance while at the
same time saving energy. They determine critical paths of
an MPI parallel application during its runtime. In those
parallel fractions, which are not part of the critical path,
the frequency of the executing processors is reduced to a
point at which the program execution is just in time to not
slow down blocked communication with other ranks. They
additionally use Dynamic Concurrency Throttling (DCT)
to alter the number of OpenMP threads in hybrid-parallel
applications for memory bound OpenMP regions to further
reduce the power consumption.

Kotla et al. [6] propose a scheduling algorithm which mea-
sures the instructions per cycle rate as well as the miss rates
of the different cache levels. With the given data they de-
termine the reason for low IPC rates and the performance
loss for any given frequency. These results are compared to
a factor for the acceptable performance loss and frequencies
are scaled appropriately. While this approach is comparable
to ours, the authors focus on IBM POWER 4 processors,
while we propose results for Intel and AMD x86 64 proces-
sors. They also used a single-threaded privileged user-level
daemon, while we use a multi-threaded system-level daemon
that should reduce the overhead significantly. Moreover, we
actually implement a CPU frequency governor that can co-
exist with other tools that rely on hardware performance
counters provided by Linux perf events such as PAPI.

6. CONCLUSION AND FUTURE WORK
In this paper we propose a new CPU frequency governor

that bases its frequency scaling decisions on performance
counter data rather than the load of a specific CPU. It
thereby reduces the power consumption of memory-bound
tasks. Its major advantages are:

1. there is no need for recompiling, profiling or tracing
applications,

2. the governor can be loaded at runtime without dis-
turbing the operating system or workloads,

3. the governor configuration can be optimized for differ-
ent processor architectures and system characteristics.

Our benchmark results from two different x86 64 test sys-
tems show that the average power consumption while run-
ning a real-life-like workload can be reduced by up to four
percent or even more for very memory intensive applications.
Although the average runtime increases slightly, the energy
consumption (power consumption times runtime) can be re-
duced by up to two percent on average. However, some
workloads still do not respond well to the pe-Governor and
show a runtime increase of up to seven percent. Further ex-
periments and improvements in this area are necessary and
planned.

Our future work will cover several areas in which further
improvements appear to be achievable. In order to reduce
the effort needed to find good governor configurations we
plan to implement an auto-tuning algorithm that will de-
termine reasonable threshold values automatically. More-
over, the sysfs interface should be extended in order to al-
low programmers to have their applications write individual

threshold and frequency configurations. In a further step, a
compiler-wrapper or library-wrapper may improve the qual-
ity of frequency adaption for specific workload phases. We
also plan to address the issues that occur when we run the
governor on AMD processors with more than four cores.
Finally, the governor could be used to adapt more sophis-
ticated hardware features as for example uncore or GPU
frequencies, memory prefetchers, or cache configurations.
These adaptions are even more system-specific and will cer-
tainly require an advanced workload characterization.
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