
Performance Modeling of Distributed Collaboration 
Services 

Toqeer Israr 
School of Information & Technology, 

University of Ottawa  
800 King Edward Avenue, Ottawa, 

Ontario, Canada K1N 6N5  
1 613 562 5800 x 6433 

tisra051@uottawa.ca 

 Gregor v. Bochmann 
School of Information & Technology, 

University of Ottawa  
800 King Edward Avenue, Ottawa, 

Ontario, Canada K1N 6N5  
1 613 562 5800 x 6205 

bochmann@site. uottawa.ca 
 

 

ABSTRACT 
This paper deals with performance modeling of distributed 
applications, service compositions and workflow systems. From 
the functional perspective, the distributed application is modeled 
as a collaboration involving several roles, and its behavior is 
defined in terms of a composition from several sub-collaborations 
using the standard sequencing operators found in UML Activity 
Diagrams and similar formalisms. From the performance 
perspective, each collaboration is characterized by a certain 
number of independent input events and dependent output events, 
and the performance of the collaboration is defined by the 
minimum delays that apply for a given output event in respect to 
each input event on which it depends. We use a partial order to 
model these delays. The paper explains how these minimum 
delays can be measured through testing. It also provides general 
formulas by which the performance of a composed collaboration 
can be calculated from the performance of its constituent sub-
collaborations and the control structure which determines the 
order of execution of these sub-collaborations. Proofs of 
correctness for these formulas are given and a simple example is 
discussed throughout the paper.   

Categories and Subject Descriptors 
D.2.8[Software Engineering]: Metrics - Performance measures 

General Terms 
Algorithms, Measurement, Performance, Verification. 

Keywords 
performance modeling, software performance, partial order, 
collaborations, UML Activity Diagrams, distributed applications, 
web services. 

 

1. INTRODUCTION 
Various kinds of models are used for a system design and 
development process.  Amongst several notations, some are UML 
Activity Diagram[15], Use Case Maps (UCM)[5], the Process 
Definition Language(XPDL), Business Process Execution 
Language (BPEL), Web Services Choreography Description 
Language (WS-CDL) [19] and Petri Nets.  All these mentioned 
notations can potentially be decomposed into sub activities and 
further into sub-sub-activities.  Most of these notations, though, 
assume the basic activities in the decomposition to be allocated to 
a single system component.  However, most of the applications 
have activities which are modeling collaborations between several 
system components, for instance an interaction between a client 
and a server.  To this end, a modeling paradigm based on 
collaborations has been proposed [1] which can be represented 
through a combination of UML Collaboration diagrams and a 
partially ordered set of input and outputs. 

 

While the realization of distributed designs for such collaboration 
services often pose tricky questions for the correctness of the 
required communication protocols in terms of the messages being 
exchanged between the different system components participating 
in the realization of the distributed service (see for instance [1] 
and [6]), we concentrate in this paper on the performance aspects 
of such collaborations. We use the concept of partial orders to 
model the temporal relationships between the different sub-
activities within a collaboration, and use ideas from the PERT 
(Project Evaluation and Review Technique) technique [8] 
commonly used for project management. We also build on a 
testing technique developed for systems that implements a 
behavior defined in terms of a partial order relationship between 
input events and output events [4], and show how a similar 
technique can be applied for performance analysis of distributed 
applications.  We base our analysis on the collaboration roles 
involved and we make the assumption that each role can be 
implemented by a multi-threaded component. 
 

The paper is structured as follows. In Section 2, we review the 
modeling paradigm based on collaborations and introduce an 
example.  This section also describes the rules that underlie the 
concepts of strong and weak sequencing.  In Section 3, we discuss 
how such system models can be modeled using partial orders. In 
Section 4, we introduce performance considerations, mainly 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICPE’11, March 14–16, 2011, Karlsruhe, Germany. 
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00. 
 

475



related to the delays implied by the execution of the different sub-
activities within collaborations. A general timing constraint is 
established which determines the earliest time that a given output 
event of a collaboration can be produced. Inspired by the testing 
procedure of [4], we will also show how the parameters 
determining the performance of a collaboration can be measured.  
In Section 5, we propose and prove formulas to calculate the 
performance of composite collaborations, and applied to a 
simplified version of the running example introduced earlier. 

2. MODELING DISTRIBUTED 
COLLABORATION SERVICES 
An example of Cab Dispatcher System (CDS) is presented in 
Figure 1.0.  It consists of 5 sub-collaborations and 3 roles – client, 
dispatcher and cab.  For each of these roles, there exists an input 
event (client requesting cab, dispatcher being available, and cab 
being available) and an output event (client reaches their 
destination and makes payment to driver, cab signs off, and 
dispatcher signs off).  These input and output events are initiating 
and terminating events, respectively of this CabDispatcher 
collaboration.  Initiating event[1] represents the starting of an 
action in the collaboration, for which there are no other actions in 
that collaboration that precedes that action.  Similarly the 
terminating event [1] represents the end of an action in a 
collaboration, for which there is no other action in a collaboration 
that succeeds this action in that flow of execution.   

These initiating and terminating events should not be confused 
with the starting and the ending events.  The starting event 
represents the starting of an action for a given role, for which 
there are no other actions in that collaboration for that role, that 
precedes that action.  Similarly, an ending event represents the 
end of an action for a given role, for which there are no other 
actions in that collaboration for that role that succeeds that action.  
A starting(/ending) event can be an initiating(/terminating) event 
but does not have to be whilst an initiating(/terminating) event has 
to be one of the starting(/ending) events.   

In order to define the behaviour of a collaboration, we use 
Bochmann’s [1] diagram notation, based on UML Activity 
Diagram as shown in Figure 1.0.  For each of these sub-
collaborations, initiating events are represented by dark dots “●” 
while terminating events are represented by thick vertical bars “ 
▌”.  If an event is an initiating (/terminating) aspect and a 
starting(/ending) event, then only the initiating(/terminating) 
event) is modeled on the diagram.    More discussion on events 
will follow in context of partial ordering.  We also note that the 
initial node not only models the start of all the flows in a 
collaboration, but also represents the starting events of all the 
roles involved.   

We consider the example of cab dispatcher system.  The client 
(Cl) requests a cab from the dispatcher (Di).  The cab, when 
available, comes in and the dispatcher adds the cab to the queue 
of available cabs.  The dispatcher also concurrently services the 
client’s requests.  The client, while waiting for the cab, has the 
option to cancel the cab.  Once there is a cab in the queue, the 
dispatcher assigns the cab to the client and goes back and waits 
for more cabs and clients.  The dispatcher does this for n times 
and after that, the dispatcher ends the shift.  Meanwhile, the cab 
takes the client to the destination and is paid for the services 

rendered, upon which the sequence for the cab and for the client 
then ends.  This system can accept new clients and drivers, which 
would be serviced as long as the dispatcher continues to loop and 
execute.  

w

w

w

w

R: 
Request 

Cab
Cl

I: Initialize 
& add to Q CabDi

C: 
Cancel

Cl

w

m: Meet 
& Drive

Cl

A: 
Assign 
Cab

CabDi

Di

Di

Cab

 
Figure 1.0 – Collaboration of Cab Dispatcher System 

3. DESCRIBING COLLABORATIONS 
WITH PARTIAL ORDERS 
3.1 Partial Orders 
Inspired by Partial Order Input Output Automata (POIOA) [4], an 
extension of Input Output Automata, we introduce Partial Order 
Systems (POS).  In a POS, each collaboration has a set of 
independent initiating events, which trigger the execution of some 
internal actions resulting in a set of output events.  A Partial Order 
System realizes this dependency relationship between a set of 
input and a set of output events.   

3.1.1 POS of a Single Collaboration 
For a given collaboration, each initiating and starting event 
represents an input event of a POS.  Each terminating and ending 
event represents an output event of a POS.  We use the previously 
discussed notation to model initiating input event (dark dot “●”), 
starting input event (unfilled dot “o”), terminating output event 
(thick vertical bar “ ▌” ), and ending output event (thin vertical 
bar “|”) in a POS. The output events are not ordered relative to 
one another directly but each output has a dependency on the 
inputs as indicated by the arrows “”.  There also exists a set of 
derived dependency amongst the input and the output events 
relative to each other also, shown by the dashed arrow.  This 
dependency may exist between an initiating event and an ending 
event of two different roles. 

Consider the AssignCab sub-collaboration in Figure 2.0a, 
involving 1 initiating input event (initiated by dispatcher), and 2 
terminating output events (cab getting assigned and dispatcher 
updating the cab available queue).  Event AO1’ can only occur 
after the event AI1 has occurred, but for the event AO2’ to occur, 
both events, AI1 and AI2, must occur first.  We can write this as 
(AI1 AO1’), (AI1  AO2’) and (AI2  AO2’).   

476



Assign
Cab

AI1

AO1’

AI2

AO2’

Dispatcher Driver

 
Figure 2.0a – POS of the Assign Cab sub-collaboration  

3.1.2 Modeling with Partial Orders  
In Fig 1.0, AssignCab is weakly sequenced with Meet&Drive, 
which is abstracted by ClientServing collaboration in Fig 2.0b.  
This helps us realize when each role is available, before and after 
the weak sequence operation. 

MI1

MO2’MO1’

MI2

Meet 
& Drive

Assign
Cab

AI1

AO1’

AI2

AO2’

Dispatcher CabClient

CO1 CO2 CO3

CI1 CI2 CI3

Client Serving (Weak Sequencing)

 
Figure 2.0b – POS of 2 Weakly Sequence Collaborations 

In the ClientServing collaboration of Figure 2.0b, AssignCab shall 
execute as soon as inputs are available for Cab and Dispatcher.  
Since Client is involved only in Meet&Drive, the Client could 
potentially start executing Meet&Drive as soon as a Client input is 
available. 

MI1

MO2’MO1’

MI2

Meet 
& Drive

Assign
Cab

AI1

AO1’

AI2

AO2’

Dispatcher CabClient
CI1 CI2 CI3

AOF

CO1 CO2 CO3

Client Serving (Strong Sequencing)

 
Figure 2.0c – POS of two Strongly Sequenced Collaborations 

Since AssignCab and Meet&Drive are weakly sequenced, local 
ordering applies amongst the roles involved.  Hence, the cab can 
start as soon as it completes AssignCab.  As soon as execution of 

the dispatcher completes in AssignCab, it does not wait for the 
execution of Meet&Drive and it can start its next collaboration 
after ClientServing.  The Client could have potentially started 
Meet&Drive before the completion of AssignCab, but it could not 
since Cab is the only initiating role in Meet&Drive and hence 
Client has to wait for the cab to start Meet&Drive before it starts 
its execution. 

In Figure 2.0c, we model the same two sub-collaborations, but 
now we assume they are strongly sequenced.  As discussed 
before, this means that all the initiating events in Meet&Drive will 
occur only all the terminating events of the previous 
collaboration, AssignCab, have occurred.  We call this condition 
Final Action event – when all the terminating events have 
occurred, denoted by AOF (Final Output of sub-collaboration 
AssignCab).  The time of all of the initiating events for the next 
collaboration, Meet&Drive, is the time of the Final Action event 
of the previous collaboration, AssignCab. 

3.1.3 Modeling Alternatives with Partial Orders 
Having an operator to model alternatives is a very common and a 
useful concept in UML.  However, we had to improvise as Partial 
Ordering does not allow modeling of alternative paths.  Inspired 
by the choice symbol in UCM[5], we introduce a new symbol in 
Partial Ordering to represent a choice in a system.  As can be seen 
in Figure 2.0d, it is a rectangular box with multiple branches 
stemming out, with each branch having an event associated with 
it.   

I2 I3

or

I2 I3

I1

I1

 
Figure 2.0d – Choice representation in POS  

3.2 Modeling Cab Dispatcher System with 
Partial Orders 

Client CabDispatcher

or

I1
I4

back to I2

RI1

RO1’

RI2 II1

IO1’

I3

II2

IO2’

CI1

CO1’

AI1

RO2’

CI2

AI2

MI1

MO2’MO1’

AO1’

I2
or

O1

MI2

AO2’

Request 
Cab

Initialize & 
Add to Q

Assign 
Cab

Meet & 
Drive

Cancel

Figure 3.0 – POS of the detail collaboration ProcessOrder 

In Figure 3.0, the Cab Dispatcher System is modeled as a Partially 
Ordered System.  From Figure 1.0, we know that there are three 
roles involved, driver, dispatcher and the client, resulting in 3 
initiating events, I1, I2, and I3 as shown in Figure 3.0.  Event I1 

477



leads to event RI1 and event I3 leads to event II2, which are 
initiating the RequestCab and Initiatlize&AddtoQ collaboration 
respectively.   

For the RequestCab sub-collaboration POS, RI1 and RO1’ are the 
initiating and the terminating events respectively.  Events RI1 and 
RI2, both, are the starting events also for the Cab and Dispatcher 
respectively, while RO1’ and RO2’ are the ending events for the 
Cab and Dispatcher roles respectively.  Hence, there are 
dependencies between the two inputs, RI1 and RI2, i.e.  (RI1 

RI2).  Also, the output event RO1’ will occur only after RI1 due 
to local ordering and same is true for RO2 and RO2’, i.e. (RO1’ 

RI1) and (RO2 RO2’). 

4. PERFORMANCE CHARACTERISTICS 
OF PARTIAL ORDER SPECIFICATIONS 
Bochmann et al., in [4] describe a method for testing a given 
Partial Order Input/Output Automata (POIOA) in order to 
determine whether this automaton realizes the partial-order 
relationships between input and output events as defined by a 
behaviour specification, also given in the form of a POIOA. This 
testing method proceeds as follows (adapted here to the simplified 
case where all input events are independent of one another). We 
assume that the set of input events is IS and the set of output 
events OS.  

For each input event ix ε IS, perform the following two steps: 

 Step 1:  Apply all inputs iy ε IS \ { ix } and observe all 
outputs that will occur. Call this set OS1.  

 Step 2:  Apply input ix and observe all outputs that will 
occur. Call this set OS2.  

 Note:  All outputs in OS1 have no partial-order 
dependency on input ix, while the outputs in OS2 
have a partial-order dependency on input ix. The 
union of OSI and OS2 should be equal to OS. 

We propose to extend this testing procedure by collecting at the 
same time some performance measurements, as follows: For the 
occurrence of each output om in the set OS2, we measure the 
delay between the time instance of the occurrence of input ix and 
the occurrence of the output om . We call this delay the Minimum 
Execution Time Delay (METD), written Δix

om, for the tested 
automaton.  

If the inputs are generated in an arbitrary order with arbitrary 
timing, it is clear that the time delay between the execution of an 
input ix and an output om that depends on the input can never be 
smaller than the METD Δix

om measured during the above testing 
procedure. We therefore have  

tom <= tix + Δix
om where tom and tix  are the time instants of 

execution of tom and tix  respectively. 

Considering that this relationship must be satisfied for all inputs 
on which tom depends, we get the  

tom = max x (tix + Δix
om),     (1) 

where we have assumed that the METD will actually be attained 
during this execution scenario, which may not be realistic if 
shared resources are involved in the processing of several inputs 
on which the output depends. 

The above formula shows that the performance characteristics of 
the partial-order specification can be given by stating for each 
output, the values of the METD  Δix

om in respect to the inputs on 
which that output depends.  

5. DERIVING GENERAL FORMULAS FOR 
STANDARD SEQUENCING OPERATORS 
Bochmann and his group in [1], has developed and implemented a 
methodology to derive component designs from global service 
and workflow specifications based on common sequencing 
operators described in UML Activity Diagrams and High-Level 
MSCs such as weak sequence, strong sequence, weak while loop, 
strong while loop, alternatives and parallel.  Each of the role’s 
behaviour is derived using transformation rules based on the 
sequencing operators.  

We derive the performance of the global collaboration based on 
the performance of each sub-collaboration, each sub-collaboration 
represented as a partial order system.  We wish to derive the 
general performance formulas which we can apply to the 
sequencing operators of sub-collaborations to yield the 
performance metrics of a global collaboration.   

We already have devised a methodology to measure the METD, 
Δix

om, which is used in (1) to calculate tom.   In the next section, 
we propose and provide proofs for the various definition of Δix

om 
for collaborations composed of sub-collaborations sequenced with 
the above mentioned sequencing operators. 

5.1 Strong Sequence 
Proposition 1.0: 
If two sub-collaborations, sub-collaboration A with k inputs and 
k’ outputs and sub-collaboration B with h inputs and h’ outputs, 
are strongly sequenced and the METD for each sub-collaboration 
(ΔAix

AOy and ΔBIs
BOm) are known, then the METD for the 

composite collaboration(ΔAIx
BOm) are: 

ΔAIx
BOm = maxy=1..k’(Δ

AIx
AOy) + maxs=1..h(Δ

BIs
BOm)  (2) 

Proof: 
Figure 4.0 shows strong sequencing between two collaborations A 
and B and its resultant POS as discussed in Section 3.2.1.  We 
assume ΔAix

AOy and ΔBIs
BOm is known, either given or measured 

using methodology from section 4.2. 

AI1 AIk

AO1 AOk'

AOF

s

Strong Sequence POS Equivalent

A

BI1 BIh

BO1

B

BOh'

ΔAIx
AOy

ΔAIx
AOF

ΔBIj
BOm

A

B
 

Figure 4.0 – Analysis of Strong Sequence operator 

The delay from the Final Action event (AOF) relative to the input 
events of A, has the value: 
ΔAIx

AOF = maxy=1..k’(Δ
AIx

AOy)    (3) 
because it is, as defined in Section 3.2.1, the maximum delay 
between each of the output events relative to A’s input events. 

478



The METD for collaboration B for an input s to an output m is 
ΔBIs

BOm.  To calculate the maximum it would take to produce the 
output m, we take the maximum over all the given inputs: 
ΔBIj

BOm = maxs=1..h(Δ
BIs

BOm)    (4) 

Now it is clear from the right side of Figure 4.0, that the total time 
delay ΔAIx

BOm is the sum of ΔAIx
AOF and ΔBIj

BOm: 
ΔAIx

BOm  = ΔAIx
AOF + ΔBIj

BOm    (5) 
= maxy=1..k’(Δ

AIx
AOy) + maxs=1..h(Δ

BIs
BOm)  (6) 

 

5.2 Weak Sequence 
Figure 5.0 shows weak sequencing between two collaborations A 
and B, hence local synchronization between the roles of 
collaboration A and B.   Note, not necessarily all the roles which 
have an output event in collaboration A will have an input event 
in collaboration B.  We assume that roles 1 to g are participating 
in both collaborations A and B and roles g+1 to h are participating 
only in collaboration B, but not in A.  We further assume there is 
no dependency of any sort between any of the roles in 
collaboration B and the roles g+1 to h in collaboration A.  
Compared to strong sequencing, we consider not only initiating 
and terminating events, but also the starting and the ending events 
for a given role.  For the roles involved only in collaboration B 
and not in collaboration A, we assume the input events for these 
roles occur very early and any actions depending only on these 
events have completed.   

We are interested in the METD between the output events of 
collaboration B relative to the input events of collaboration A.  

Proposition 2.0: 
As shown in Figure 5.0, if two collaborations, A and B, are 
weakly sequenced, then the minimum execution time delay for 
the collaboration C is: 

ΔAIx
BOm = maxs=1..g (Δ

AIx
AOs + ΔBis

BOm )   (7) 

Proof: 
As discussed in Section 4.2, the METD of collaboration A is 
ΔAIx

AOy and collaboration B is ΔBis
BOm.   

 
From (4), we know the METD from any of the inputs to output m 
of collaboration B is ΔBIj

BOm = maxs=1..h(Δ
BIs

BOm).    

AI1 AIk

AO1 AOk'

w

Weak Sequence POS Equivalent

A

BI1 BIh

BO1

B

BOh'

A

B

AOg

BIg

ΔAIx
AOy

ΔBIs
BOm

ΔAIx
BOm

 
Figure 5.0 – Analysis of Weak Sequence operator 
It is quite clear from the right side of Figure 5.0, that the METD 
of the composed collaboration is the sum of the METD of both 
collaborations A and B.   
As this is not strong sequencing, there is no Final Action Event to 
synchronize the outputs of collaboration A.  To calculate the 
METD for the composed collaboration, note role s has to be the 

terminating role of collaboration A and also the starting role of 
collaboration B: 
ΔAIx

BOm = maxs=1..g (Δ
AIx

AOs + ΔBis
BOm )   (8) 

 

5.3 Generalization to Performance 
Distributions 
In the performance analysis, throughout this paper, we have only 
considered a fixed time for the time instants and for time delays.  
However, reality begs to differ.  Realistic scenarios also include 
time delays and time instants which that may vary and could be 
characterized by some kind of distribution – perhaps binomial, 
exponential, etc.  The distributions of the Minimum Execution 
Time Delays can be measured by performing the Test Suite of 
Section 4.3 several times and obtaining some statistics about the 
possible values. The properties of the distribution can then be 
realized by analyzing the resultant data, for each collaboration.  If 
the distribution of these time delays for each sub-collaboration is 
known, we can then calculate the time delays for a composition of 
these sub-collaborations.  For the sequential execution of two sub-
collaborations, the folding operation on the respective distribution 
can be used to obtain the distribution of the overall execution 
delay, which is easily evaluated in the case of Normal 
distributions. However, the determination of the distribution of 
the maximum of two existing distributions is more complex. We 
do not discuss these issues any further in this paper. 

[8] discusses Project Evaluation and Review Technique (PERT), a 
methodology for planning and scheduling interrelated tasks in a 
large system.  PERT is a concept similar to our work here, except 
for some differences.  Its basic idea is to optimize time and 
resource-constrained systems.   The idea is based on building a 
network model where the time delays are known, a concept very 
similar to Dijktra’s shortest route algorithm.  PERT methodology 
determines the path to the final goal with the maximum execution 
time and hence, the time instant when the goal can be reached. In 
order to deal with the distribution of execution times in the real 
world, PERT may consider the minimum, maximum and most 
probable execution time for each subactivity and, as a 
consequence, would be able to determine the minimum, 
maximum and most probable overall delay for reaching the goal. 

6. FUTURE WORK 
We note only the basic strong and weak sequence operation of 
Bochmann’s [1] sequencing operators were analyzed for 
performance.  We would like to consider the remaining operators, 
such as alternatives, parallel, loops(weak/strong), and the 
interruption operator.  An asset would also be an illustration of 
this methodology with a practical example. 

The possibility of using distributions for characterizing the time 
delays of collaborations would also be an interesting extension of 
this work, as mentioned in Section 5.3.  Perhaps, our work would 
benefit from analyzing complex systems with distributed time 
delays using methodologies such as Continuous Time Markov 
Chains. 

Implementation of the here proposed testing methodology and the 
performance derivation in a tool environment and to extend the 
algorithm for any possible scenarios which our work does not 
support will also be the next logical step.   

 

479



7. CONCLUSION 
We use Bochmann’s [1] method of representation to model 
collaborations and analyzing various scenarios.  We proposed a 
partial order representation to model these collaborations to help 
us with the performance analysis of a distribution system.  We 
proposed a general formula for a collaboration and proposed a set 
of formulas for various standard sequencing operators to derive 
the performance of a global collaboration given a set of sub-
collaborations sequenced with these sequencing operators. 

We believe that this approach to the performance modeling of 
distributed system designs is useful in many fields of application, 
including distributed workflow management systems, service 
composition for communication services, e-commerce 
applications, and Web Services. 

We plan to work on the tool support for the proposed testing 
methodology and performance analysis.  As well, we will also be 
extending our set of formulas to support various operators not 
considered in this paper as well as distributions for time delays. 

Acknowledgements: We would like to thank Dr. Guy Jordan for 
many interesting discussions on the problems and issues related to 
this paper. 

8. REFERENCES 
[1] Bochmann, G.V.  Deriving component designs from global 

requirements, in: Proceedings on International Workshop on 
Model Based Architecting and Construction of Embedded 
Systems (ACES), Toulouse, 2008, pp 55-69 

 
[2] Bochmann, G.V.  A General Transition Model of Protocols 

and Communication Services, IEEE Transtions on 
Communications COM-28, April 1980, pp 643-650 

 
[3] Bochmann G.V. and Gotzhein, R. Deriving protocol 

specifications from service specifications, Proc. ACM 
SIGCOMM Symposium, 1986, pp 148-156 

 
[4] Bochmann, G.V., Haar, S., and Jourdan, G.V.  Testing 

Systems Specified as Partial Order Input/Output Automata, 
Proceedings of the 20th IFIP TC 6/WG 6.1 International 
Conference on Testing of Software and Communicating 
Systems: 8th International Workshop, Tokyo, 2008, pp 169-
183 

 
[5] Casselman, R. Use Case Maps for Object-oriented Systems, 

Prentice Hall, New Jersey, 1995 
 
[6] Castejón, H.N, Bræk, R., and Bochmann, G. v., “Realizability 

of Collaboration-based Service Specifications”. Proc. Of the 
14th Asia-Pacific Software Engineering Conference 
(APSEC 2007), IEEE Computer Society, December 2007 

 
[7] Castejón, H. N., Bræk, R., Bochmann, G.v., Realizability of 

Collaboration-based Service Specification. in Asia-Pacific 
Software Engineering Conference, Nov. 2007 pp73-80 

 
[8] Chinneck, J.,  Practical Optimization: A Gentle Introduction, 

online textbook, see 
http://www.sce.carleton.ca/faculty/chinneck/po.html. 

 
[9] Esparza, J. and Heljanko, K. Unfoldings - A Partial-Order 

Approach to Model Checking, New York: Springer-Verlag, 
2008 

 
[10] Grabiec, B, Traonouez, L., Jard, C., Lime, D and Roux, O.H. 

Diagnosis using unfoldings of parametric time petri nets.  in 
8th International Conference on Formal Modelling and 
Analysis of Timed Systems (FORMATS 2010), September 
2010, Vienna, Austria. pp 137-151 

 
[11] Kounev, S.  Performance Modeling and Evaluation of 

Distributed Component-Based Systems Using Queueing 
Petri Nets, IEEE Transactions on Software Engineering, 
v.32 n.7, July 2006, p.486-502 

 
[12] McMillan, K. Using Unfoldings to Avoid the State Explosion 

Problem in the Verification of Asynchronous Circuits, in 
Proceedings of the Fourth International Workshop on 
Computer Aided Verification, 1992, p.164-177 

 
[13] Merlin, P. and Faber, D.J. Recoverability of communication 

protocols, IEEE Transaction Communication, vol. COM-24, 
no. 9, Sept. 1976 

 
 [14] Naumovich, G., Clarke, L. and Cobleigh, J.  Using partial 

order techniques to improve performance of data flow 
analysis based verification. In Proceedings of the ACM 
SIGPLAN-SIGSOFT Workshop on Program Analysis for 
Software Tools and Engineering, Toulouse, France, Sept. 
1999. 

 
[15] OMG, Unified Modeling Language (UML), Version 2.1.1, 

February 2007 
 
[16] Razouk, R.R. The Derivation of Performance Expressions for 

Communication Protocols from Timed Petri Net models, 
ACM SIGCOMM Computer Communication Review, v.14 
n.2, pp 210-217, June 1984  

  
[17] Sifakis, J. "Use of Petri Nets for performance evaluation"; in 

Measuring, modeling and evaluating computer systems, 
North-Holland 1977, pp 75-93 

 
[18] Wolper, P. and Godefroid, P. Partial-order Methods for 

Temporal Verification. In Proc. 4th Int. Conference 
          on Concurrency Theory (CONCUR), volume 715 of 

Lecture Notes in Computer Science, Springer, 1993. pp 
          233–246 
 
[19] W3C, Web Services Choreography Description Language 

(WS-CDL), Version 1.0, December 2004 

 

480




