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ABSTRACT
We consider measurements that are arising from a next generation
network and present advanced mathematical techniques to cope
with the analysis and modeling of the gathered data. These statisti-
cal techniques are required to study important performance indices
of new real-time services in a multimedia Internet such as the de-
manded bandwidth or delay-loss profiles of packet flows during a
session. The latter data sets incorporate strongly correlated or long-
range dependent time series and heavy-tailed marginal distributions
determining the underlying random variables of the data features.
To illustrate the proposed statistical analysis concept, we use traces
arising from the popular peer-to-peer video streaming application
SopCast.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques, model-
ing techniques

General Terms
Performance

Keywords
Data analysis, heavy-tailed distributions, long-range dependence,
NGN traffic characterization, peer-to-peer packet traffic

1. INTRODUCTION
Nowadays, peer-to-peer (P2P) video and live TV applications

generate a rapidly growing proportion of the overall Internet packet
traffic. In the current setting these real-time applications can use an
overlay network. It is established among the corresponding clients
on the hosts of the users to disseminate the shared multimedia in-
formation in a swarm like fashion by means of an underlying net-
work infrastructure at its bottom (see Fig. 1). The latter employs
the TCP/IP protocol stack with certain quality-of-service (QoS) en-
hancements.
The multimedia information such as MPEG-4 encoded video files

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

Figure 1: Peer-to-peer overlay network

is normally decomposed into fixed sized pieces called chunks, dy-
namically send into the overlay network by the source of the orig-
inal multimedia object and then continuously disseminated piece-
wise among the peer population based on index information.
The clients of the overlay called peers can retrieve this multimedia
information by means of these chunks from other peers contribut-
ing to the generated overlay network of a certain group of clients
that is sharing the same multimedia file and additionally offer their
stored pieces of a demanded object. In the relevant cases studied
here, the P2P media sharing protocol establishes a full mesh at the
overlay, provides means to identify the clients in the overlay by a
tracker service and employs a pull protocol to manage the access
of a peer to the requested content stored at the neighbors. Thus,
the peers combine client and server roles on an equal basis. A peer
which has collected all pieces of a certain segment of a real-time
media stream without any gaps will assemble the latter into the
original media frames and then start to deliver it by its streaming
engine to a user observing the streamed multimedia content.
Gaps in the stream must be filled in advance requesting missing
pieces of the stream from the peer population by appropriate sig-
naling messages. Hence, a composite stream of multimedia content
and signaling packets is incoming to and outgoing from a peer in
the overlay network and traversing its underlying access link.
The key issue is that peers in such a P2P overlay network may ran-
domly join or leave the overlay structure. Then leaving peers cause
a loss of all their stored multimedia data and, hence, downgrade the
quality of experience of a user watching the multimedia stream (cf.
[5]). The problem is known as churn issue of P2P networks.
It is the objective of our statistical investigations to provide a gen-
eral, solid mathematical methodology to define, analyze and esti-
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mate important quality indices of such packet traffic carrying real-
time information over a P2P network. For this purpose we have
to control the loss and delay profiles of the information flows at
the packet layer, but not at the peer layer (cf. [5]). If multimedia
traffic from certain peers that is requested by an interested peer is
missing or heavily delayed, it cannot contribute to the aggregated
flow feeding the streaming engine of a user. Therefore, the latter
has to send the same object requests to other peers which generates
an additional delay. This operation implies that we must propose
an evaluation method regarding the losses and delays of the packet
flows of a shared multimedia stream that are transmitted to an ob-
serving peer along the network infrastructure.
Considering the control of the transmission quality, it is the objec-
tive of our study to propose the delay of a successful packet delivery
along a bottleneck link, the lossless time of a packet transmission
and the corresponding byte loss as new quality indices of a contin-
uous stream of multimedia packets. These three indices are studied
since they substantially impact on the visual interpretation of a live
stream. In this regard we do not take into account the failure rate
of the peers as a source of loss (cf. [5]).
The analysis of the marginal distributions and means of these in-
dices and the estimation of their corresponding quantiles are pro-
posed here. High quantiles close to 100% reveal approximate upper
bounds on the quality indices of a flow. The quality of the packet
transmission process is good if the high quantiles of the delay are
relatively small. High quantiles of the lossless (or burstless) peri-
ods indicate those values which can only be exceeded with a negli-
gible small probability. Relatively large lower quantiles of the loss-
less periods may imply a good quality of the transmission process.
Furthermore, quantiles of both the delays and lossless periods can
be compared with the mean or maximum of the inter-arrival times
(IATs) between packets to assess the stability of the transmission
process.
To achieve these QoS assessment goals, we consider statistical prob-
lems arising in P2P packet transmission like the dependence and
heaviness of the tail of the underlying distributions of the quality
indices. These issues may seriously disturb the estimation of the
quality indices. To compute the new indices, we only analyze the
corresponding IATs of packets, the associated packet lengths (PLs)
and corresponding instantaneous transmission rates of a packet flow
towards a single representative peer of the overlay.
To illustrate our concepts, we study the aggregated packet flow of a
P2PTV application that is exchanged by a selected peer on a wire-
less bidirectional link. It is generated by the popular dissemination
platform SopCast. In our study we do not aim to compare the fea-
tures of other important P2PTV applications.
Measurement studies of relevant P2PTV applications like PPlive,
PPStream, SopCast, and TVants have already been performed, for
instance by [6, 14, 16] and [17] among others. In [14] the traffic
properties and peer behavior of each application has been consid-
ered at the packet level distinguishing the direction of the transmis-
sion and the signaling and video traffic. The traffic directions are
shown to be similar with regard to energy spectra for all four ap-
plications (cf. [14]). The descriptive statistics of the IATs between
packets, the packet size and rate, the peer lifetime and the through-
put have been used as major indices of the traffic characteristics.
In [6] the behavior of P2PTV applications is considered at the flow
level where peer nodes act as content servers. The IATs between
flows, the flow size, as well as the arrival rate and the duration of
the flows were selected as major characteristics. It has been shown
that the distributions of these indices belong to the class of heavy-
tailed distributions. In [16] the operational mechanism of SopCast
has been investigated.

In our study we use an approach based on Wald’s equation, a high
quantile estimation (i.e. a quantile close to 100%) and the ex-
ceedances of the instantaneous transmission rates of a composite
P2P flow of multimedia and signaling packets over a threshold to
estimate the means and quantiles of the delay of a successful packet
delivery to a peer, the associated byte loss and the lossless time.
Great attention is devoted to demonstrate the proposed statistical
methodology by examples of real SopCast flows.
We have proved in [10] that the IAT sequence of a live TV appli-
cation generated by a SopCast client constitutes a weak long-range
dependent (LRD), self-similar and heavy-tailed stochastic process
with infinite variance and finite mean. This LRD property of Sop-
Cast flows that impacts the QoS parameters has also been con-
firmed by [14].
In contrast to [14] we explain here the mechanism of this impact.
We use a fluid model of a bufferless logical transmission channel
of the packet streams. Then we assume that the required instan-
taneous transmission rate of a packet flow can be approximated
by the ratios Ri = Yi/Xi, i = 1, n, where {Xi, i ∈ INn},
INn = {i ∈ IN|i ≤ n}, {Yi, i ∈ INn} and {Ri, i ∈ INn} de-
note the IATs between packets, the PLs and the rates of transmis-
sion. Roughly speaking, the dependence of the IATs causes clus-
ters of packets whose arrival times are close to each other. Due
to relatively small IATs within clusters the demanded transmission
rates of the corresponding packets may exceed the available ca-
pacity of the transmission channel at a bottleneck link. This be-
havior generates a loss and delay regarding the successful packet
delivery which substantially impacts on QoS. Considering the cor-
responding packet stream with its variable bitrate requirement, the
latter rates determine in this way its equivalent bandwidth subject
to these QoS constraints. The weak dependence and a finite mean
of the IATs allow us to estimate the expectation of the IAT by the
sample mean1 and hence, to estimate the mean lossless time and
the mean delay.
The quality indices, i.e. the delay of a successful packet deliv-
ery, the lossless time and the byte loss, may be dependent random
variables (r.v.s) for a sufficiently low available channel capacity.
Therefore, we propose a so called declustering of the flow data to
estimate the quantiles of these quality indices. The reason is that
the estimators of the quantiles require independent r.v.s. A declus-
tering implies the separation of the observations of the underlying
random indices into independent blocks. Then we can select the
maxima within these blocks called block maxima as new represen-
tatives of our data set. Further, we estimate the quantiles of the
delay, byte loss and lossless time by means of the distributions of
their block maxima that behave statistically independent. It has
been shown in [10] that the distribution of the maxima of the IATs
of a SopCast flow obeys a Generalized Extreme Value (GEV) dis-
tribution (cf. [12]).
The delay of a packet delivery may not only be caused by the loss
of packets but also by large IATs between packets which are re-
lated to a silence period of the source or a peer failure. Therefore,
the study of the distribution of the sample maximum of the packet
IATs and its quantiles may be important, since large delays in the
packet delivery of video chunks may severely reflect on the visual
interpretation of a live stream.
In the paper we also investigate the impact of the signaling traffic
on the proposed quality indices and compare these indices both for
a composite traffic flow which includes both signaling packets and
video content and the pure video traffic of a SopCast session.
The paper is organized as follows. In Section 2 we describe the

1This follows from the law of large numbers.
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measurement setting of the P2P SopCast video flows. In Section 3
the signaling packets are excluded from the underlying composite
SopCast flow to investigate the pure video traffic. In Section 4 the
estimation of the means and quantiles of the quality indices, i.e. the
delay, the byte loss and the lossless time, is formulated and the mo-
tivation of further packet traffic characterization is explained. The
rest of the paper contains the characterization and the estimation of
the quality indices of monitored SopCast video flows in Section 5.
In particular, the high quantiles of the quality indices are estimated.
The means of the delay, the byte loss and the lossless time of the
total traffic are estimated by the underlying P2P data in Section 5.2.
Finally, the findings are summarized in the conclusions.

2. MEASUREMENT SETTING
To collect appropriate P2PTV traces of SopCast sessions, a mea-

surement study has been performed by the Computer Networks
Laboratory at Otto-Friedrich University Bamberg, Germany, dur-
ing the second quarter of 2009. It has focused on a typical scenario
of a wireless access to the Internet.
The test bed has been developed to study the basic operation of the
P2PTV streaming system SopCast in a representative home envi-
ronment of a subscriber (cf. Fig. 2). In this wireless scenario a

Figure 2: Wireless test bed

SopCast client is running on a desktop PC IBM Thinkcentre with
2.8 GHz Intel Pentium 4 processor, 512 MB RAM under Windows
XP Home. It is attached by a Netgear WG111 NIC operating the
IEEE802.11g MAC protocol over a wireless link to the correspond-
ing ADSL router acting as gateway to the Internet.
Watching a popular sport channel, representative traces arising from
sessions of 30 minutes have been gathered by Wireshark on the data
link layer at the portable host. Since it is our main objective to pro-
pose a common methodology for the proper estimation of important
quality indices regarding the packet transmission of a multimedia
stream, the possibly low accuracy of the IATs recorded by a Wire-
shark agent does not constitute principle problems.
Subsequently, we shall use these gathered P2PTV traces to illus-
trate our mathematical approach and all related difficulties of the
applied statistical analysis.

3. COMPOSITE P2PTV TRAFFIC AND ITS
VIDEO CONTENT

We consider a packet trace of the superimposed flows exchanged
with a single observed peer in the overlay network during a Sop-
Cast session (cf. Fig. 1). The recorded composite packet traffic that
is incoming to and outgoing from the peer uses UDP as transport
protocol and contains both large-sized, frequent packets with small
IATs in terms of packet clusters corresponding to the exchange of

(a)

(b)

Figure 3: (a) Scatter plots of the packet lengths of the compos-
ite SopCast traffic; (b) IATs between packets of the aggregated
flow to one peer together with their 99.9% empirical quantile
corresponding to 0.2 (solid horizontal line).

video information and small-sized, rare packets with large IATs
carrying signaling information (cf. [14], [16]). It has been pointed
out by [14] that SopCast produces more signaling traffic than other
P2P systems such as PPLive, PPStream and TVAnts. Signaling
packets have fixed PLs that correspond to horizontal lines in the
scatter plot shown in Fig. 3(a). It can be expected that they instan-
tiate PLs which are less than or equal to 130 bytes UDP payload.
To investigate the mean delay of a successful packet delivery to the
observed peer and the mean lossless time of pure video traffic, we
exclude from this composite traffic those packets whose lengths are
less than 130 bytes. In [16] the lengths of SopCast signaling pack-
ets are indicated by a UDP payload of {28, 42, 46, 52, 80} bytes
and video content by packets of {377, 497, 617, 1081, 1201, 1320}
bytes. In [14] the joint probability distribution of the PLs and the
IATs of the mentioned P2PTV applications has revealed two main
clusters of packets: small packets whose lengths is less than 200
bytes with large IATs and large packets whose lengths is larger than
1000 bytes with small IATs. The scatter plot of the video packets of
our illustrative SopCast session shows that there are three classes
of video packets with relatively large IATs, namely, one class with
PLs larger than 1000 bytes and two classes with PLs centered ap-
proximately at 600 bytes and at 180 bytes (see Fig. 3(a)). There are
many frequent packets of different size larger than 130 bytes, too,
which is in agreement with [16].
The virtual exclusion of the signaling traffic which is located mostly
between clusters of video packets may increase the IATs of these
video packets corresponding to the inter-cluster times (see Fig. 4(a)).
This can lead to large video packets with virtually larger IATs and
smaller rates than those ones related to the total traffic, see Table 1.
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Table 1: Description of the IATs between packets, PLs and transmission rates arising from the aggregated flow to an observed peer.
R.V. Type of Sample Min Max Median Mean StDev Skew- Kurtosis

Traffic Size ness
IAT Total traffic 6.553 · 104 2.1 · 10−5 0.625 5.58 · 10−4 4.934 · 10−3 0.016 13.56 313.087
[sec] Video traffic 1.798 · 104 2.6 · 10−5 2.691 3 · 10−3 0.018 0.072 10.623 199.478

PL Total traffic 6.553 · 104 60 1506 84 400.308 545.451 1.14 −0.649
[bytes] Video traffic 1.798 · 104 132 1506 1362 1256 274.048 −2.679 6.171

Rate·10−5 Total traffic 6.553 · 104 9.601 · 10−4 544.8 1.763 12.616 30.543 8.845 115.633
[bps] Video traffic 1.798 · 104 7.129 · 10−4 523.8 4.194 10.407 42.21 9.368 91.849

Looking, for example, at Fig. 4(a), the exclusion of the expected
”signaling” packets with the numbers 6 and 7 increases the IAT be-
tween the packets 5 and 8.
The non-zero skewness and kurtosis of the IATs (see Tab. 1) imply
a deviation from the normal distribution. Further the mean of the
IATs is larger than the median. It indicates a long tail of the corre-
sponding distribution of the IATs. The numerous exceedances over
the empirical quantile at 99.9% in Fig.3(b) indicates that this dis-
tribution may be heavy tailed. The heaviness of the tail of the IATs
is derived by a calculation of the tail index and the mean excess
function (cf. [10], see subsection 4.2.3).

4. STATISTICAL DATA ANALYSIS AND ES-
TIMATION OF THE QUALITY INDICES

4.1 Packet Delivery Delay, Lossless Time and
Byte Loss

To develop our general methodology regarding the statistical anal-
ysis of dependent packet data, we subsequently consider a general
packet flow and try to evaluate the quality of its transmission at
a bottleneck link of the underlying packet-switched transport net-
work. Let us assume that the corresponding IATs between the
packets of a flow are random quantities Xi. We follow a fluid
flow approach and describe the packet transport at the bottleneck
link by a bufferless channel. We assume that a total packet loss is
caused by the exceedances of the instantaneous transmission rates
Ri = Yi/Xi of corresponding packets of lengths Yi and IAT Xi

over the available capacity u of the bufferless channel.
A bufferless system is a realistic model for real-time applications.
Regarding the voice and video transmission the usage of a large
packet buffer may lead to delays and a poor interpretation of the
data at the receiver.2

Such packets whose rates exceed the capacity threshold u occur
in clusters (see Fig. 4(a)). Within the observation period we ob-
serve N2(u) such clusters that we enumerate by an index variable
C(u) ∈ {1, . . . , N2(u)}. We denote the first packet of a cluster
C(u) by its corresponding index iC(u) and its last packet by jC(u)

(see Fig. 4(a)). We determine a cluster as a set of packets that
are directly surrounded by two consecutive packets iC(u) − 1 and
jC(u) + 1 whose corresponding rates do not exceed the capacity
threshold u, whereas the rates of all packets iC(u), . . . , jC(u) in
the cluster cross u. Fig. 4(b) depicts numerous bursts of the rates
of an underlying P2P video stream during a SopCast session.
The underlying physical capacity up of the bottleneck link results
from the settings of the transport network. The virtual capacity u
is determined as an equivalent bandwidth of our recorded packet
stream in the applied fluid flow approach. It may be equal to some
quantile of the transmission rate of the packet stream. The logical
2A channel with a buffer requires a special investigation and is be-
yond the scope of the current paper.

(a)

(b)

Figure 4: (a) Packet loss in terms of clusters of packets, the
delay of a successful packet delivery due to loss in the clusters,
and the lossless time corresponding to a selected channel capac-
ity u. (b) Transmission rates arising from a video stream of a
P2P SopCast session calculated by the ratios of the PLs to the
IATs.

transport channel can be used by different streams if u < up holds.

According to our fluid flow approach the delay of a successful
packet delivery is determined by the time between the delivery of
two consecutive packets whose related rates drop below the capac-
ity u of the bufferless channel (see Fig. 4(a)). Formally, it is deter-
mined by a sum over a random number T1(u) of observations Xi

of the generic r.v. X of the IATs,

d(u) =

T1(u)∑
i=1

Xi (1)

Here the r.v.

T1(u) = min{j ≥ 1 : Rj+1 ≤ u|R1 ≤ u} (2)
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denotes the number of IATs between consecutive packets whose
corresponding rates do not exceed the capacity threshold u. For
simplicity, we re-enumerate here the IATs and PLs between non-
exceedances of the process {Ri} in (1) and (5), and further between
exceedances in (3) and (4), respectively, such that they are starting
from 1 again.
The delivery delay d(u) may be caused by a packet loss in the
clusters (for example, the time between R1 and R5 or R7 and R10

in Fig. 4(a), where Ri denotes the rate of the ith packet) or by
a packet gap due to a lack of peers with the required multimedia
information or missing traffic from certain peers.
To exclude the latter delay, we consider the delay in a cluster C(u)

d∗(u) =

T2,C(u)(u)∑
i=1

Xi, (3)

T2,C(u)(u) = min{j > 1 : Rj+iC(u)−1 ≤ u|RiC(u)−1 ≤ u}

caused only by a packet loss in the clusters. Here, T2,C(u)(u) =
jC(u)−iC(u)+2 is the random number of IATs between the packets
in the cluster C(u). Formula (3) differs from (1) since T2,C(u)(u)
cannot be equal to 1.
The delay due to packet loss in the clusters highly impacts on the
quality of experience that is perceived by a user observing the mul-
timedia stream. The impact of a lack of packets and, hence, of
the IATs on the perceived quality depends on the context. If traffic
from certain peers is missing, it may cause severe difficulties for the
receiver to decode the media frames, although the IATs could re-
main relatively small. However, the IATs and their quantiles could
be even smaller if those packets were not lost. Hence, monitoring
the IATs and their quantiles (see [10]) can be useful to control the
quality of experience.
According to our fluid flow model of the channel the byte loss is
only generated by clusters. It is determined by

b(u) =

T2,C(u)(u)−1∑
i=1

Yi, (4)

where T2,C(u)(u) − 1 = jC(u) − iC(u) + 1 denotes the number
of packets in the cluster C(u). This loss is caused by the packets
iC(u), . . . , jC(u) of lengths Yi whose rates Ri exceed the capacity
threshold u of the bufferless channel.
The lossless time (or the burstless period)

l(u) =

T3,C(u)(u)∑
i=1

Xi, (5)

T3,C(u)(u) = min{i ≥ 1 : Ri+jC(u) > u|RjC(u) > u}

following a cluster C(u) is the time between the arrivals of two
consecutive packets jC(u) and iC(u)+1 whose rates exceed the ca-
pacity threshold u. Here T3(u) = i = iC(u)+1 − jC(u) coincides
with the number of IATs between consecutive packets jC(u) and
iC(u)+1 whose corresponding rates exceed u.
The IATs within clusters determine also the lossless times. The
IATs outside clusters may be equal to the delays d(u).
During a monitored session one can get some number N2(u) ≥ 1
of clusters in the observations. Thus, we obtain corresponding se-

quences of delays

dm(u) =

T1,m(u)∑
i=1

Xi, m = 1, N1(u),

d∗m(u) =

T2,m(u)∑
i=1

Xi, m = 1, N2(u),

byte losses

bm(u) =

T2,m(u)−1∑
i=1

Yi, m = 1, N2(u),

and lossless (burstless) periods

lm(u) =

T3,m(u)∑
i=1

Xi, m = 1, N3(u)

arising within the time interval of the observation. Here N1 de-
notes the number of delays, N2 the number of clusters, and N3 the
number of burstless periods. The notation Tj,m, j ∈ {1, 2, 3}, de-
notes the corresponding values of Tj,· arising from the m-th delay,
cluster and burstless period, respectively.

4.2 Analysis of Distributions, Quantiles and
Means of the Quality Indices

Considering a fixed value of the capacity threshold u of a bot-
tleneck link, the introduced performance characteristics {dm(u)},
{d∗m(u)}, {bm(u)}, {lm(u)} related to the transmission of the
considered packet flows to a selected peer are random variables
(r.v.s). We assume in the following that the stationarity property
has been validated with regard to these random entities (cf. [10]).
To study the arising performance isssues in terms of the defined
QoS indices such as the delay-loss profile and the required equiva-
lent bandwidth of a flow subject to QoS constraints, it is necessary
to analyze the distributions and means of these r.v.s, and to estimate
their quantiles. The problem is that these characteristics as well as
the IATs {Xi, i ∈ INn} and PLs {Yi, i ∈ INn} of a flow of sample
size n may be dependent r.v.s and that the underlying generic r.v.
X governing these IATs may have infinite variance.

4.2.1 Declustering the Data
The statistical analysis of dependent, stationary data like the de-

fined quality indices {dm(u)}, {d∗m(u)}, {bm(u)}, {lm(u)} re-
quires the application of a declustering procedure. It means that the
partitioning of the data of a P2PTV trace into independent blocks
is necessary before a classical statistical analysis can be applied.
Then one can deal with representatives of these data blocks simi-
lar to independent data and apply appropriate statistical estimation
techniques.
The main feature of dependence is determined by the presence of
clusters or conglomerates in the data. The more observations we
have, the more visible are the clusters (see Fig. 4). Since data in
the clusters contain approximately the same information, increas-
ing the sample size n does not substantially improve the accuracy
of an estimation process. If θ ∈ [0, 1] denotes the extremal index
of the corresponding time series (cf. [2]), it implies that only the
nθ-part of the observations are effective. Thus, one can construct
estimates by representatives of the clusters, e.g., maxima within
clusters (see Fig. 5).
Let Mn and M̃n denote the maxima of a gathered sequence of de-
pendent r.v.s {X1, ..., Xn} and of a sequence of associated inde-
pendent r.v.s {X̃1, ..., X̃n} with the same distribution function (df)
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Figure 5: The independent block maxima {Mj , j = 1, [nθ]}
of the initial data {Xi, i = 1, n} consist of the nθ-part of the
observations and denote just some observations {Xi} that are
maximal within data blocks.

F (x) = IP{X ≤ x}, respectively (cf. [2]). By the theory of ex-
tremes

IP{Mn ≤ un} ≈ IPθ{M̃n ≤ un} = F nθ(un) (6)

holds typically for sufficiently large sample size n and an appropri-
ate level un.
Then (6) implies that one can operate with the dependent data by
means of the extremal index θ in the same way like with indepen-
dent ones. Regarding an i.i.d. sequence it holds θ = 1. A value
θ < 1 provides some indication about the clustering behavior and,
hence, a dependence in the underlying sequence. The reciprocal
1/θ determines the mean size of the occuring clusters (cf. [2]).
To estimate the fundamental parameter θ, we can use the popular
blocks and runs estimators (cf. [15]). Let

Mi,j = max{Ri+1, ..., Rj}.
Let k denote the number of data blocks, and r = [n/k] be the
number of observations in each block where [·] denotes the integer
part of a real number. Then the blocks estimator

θ
B

(u) =
n

∑k
j=1 1(M(j−1)r,jr > u)

rk
∑n

i=1 1(Ri > u)
(7)

is based on the understanding that a cluster is a block of data with
at least one exceedance over the threshold u (cf. [2], [15]). Here
1(A) denotes the indicator function of the event A.
Regarding the runs estimator

θ
R
(u) =

(n− r)−1 ∑n−r
i=1 1(Xi > u, Mi+1,i+r ≤ u)

n−1
∑n

i=1 1(Xi > u)
, (8)

a cluster is defined as a block of data with some number of ex-
ceedances over the threshold u and at the same time the following
r observations drop all below this threshold u. From a statistical
perspective, the runs estimate is slightly superior since it has a bet-
ter asymptotic bias than the blocks estimate (cf. [15]).
In practice, the optimal selections of the threshold u and the num-
ber of blocks k (or r) constitute a difficult issue that has no precise
analytic answer up to now. It is the simplest way to estimate θ by
that value θ̂ ∈ {θB

(u), θ
R
(u)} which corresponds to the stability

region of the plot (u, θ(u)) over a range of thresholds u.

4.2.2 Features of the Distributions
The distributions of {dm(u)}, {d∗m(u)}, {bm(u)}, {lm(u)}

could be Gaussian according to the central limit theorem if the
number of terms in the sums increases and if the IATs {Xi} and
PLs {Yi} were independent and identically distributed (iid) r.v.s,
each having finite variance. Evidently, the variance of the PLs is fi-
nite. The normality can follow if the PLs are weak dependent. This
property is valid for the IPTV application SopCast (see Section 2,
[10]) and hence, its byte loss is asymptotically Gaussian.
According to the generalized central limit theorem the distributions
could be stable if the iid condition is fulfilled, but the variance of
{Xi} is infinite. The problem arises when {Xi} and {Yi} are de-
pendent, which is more realistic in practice. In this case the limit
distribution of the sum may be stable under certain mixing condi-
tions if the variance of the summands is infinite.3 This implies that
the variance of the sum will be infinite. The latter leads to the pes-
simistic conclusion that the delay may have asymptotically infinite
variance (i.e., as the sample size increases to infinity) if the IATs
are dependent with infinite variance. The optimistic conclusion is
that the lossless time may also have an infinite variance. This is
valid for the IPTV application SopCast whose IATs are found to be
weak dependent with infinite variance (cf. [10]).

4.2.3 Quantile Estimation of the Quality Indices
Considering the continuous df F (x) = IP{D1 ≤ x} of a r.v. D1

the quantile x = xp of level 1−p, p ∈ (0, 1), is specified by defini-
tion as the solution of the equation 1−F (xp) = IP{D1 > xp} = p.
To estimate the quantiles accurately, the observations of the corre-
sponding r.v. have to be statistically independent. However, the
underlying r.v.s of {dm(u)}, {d∗m(u)}, {bm(u)}, {lm(u)}may be
dependent for a sufficiently low threshold u. This is caused by the
dependence of the clusters of packets that are located close to each
other for low u.
To deal with independent observations, we have to perform a declus-
tering of the data if it is possible. For this purpose, the data are
separated into equal-sized blocks J1, ..., JN . Then one can find the
maxima M(Jj) within these blocks and estimate their quantiles.
Namely, let

Mj = M(Jj) = max{D(j−1)s+1, D(j−1)s+2, ..., Djs}, j = 1, N,
(9)

be the block maxima derived from the observations {Dm} of some
quality index. The size of each block s is a parameter that should
be selected in such a way that the independence and a sufficient
number of block maxima are provided. Unfortunately, checking the
dependence cannot be done easily and automatically and requires
several tests.
The dependence structure of the block maxima of each r.v. Mt

modeling {dm(u)}, {d∗m(u)}, {bm(u)}, {lm(u)} is derived from
the sample autocorrelation function (ACF)

ρ̂(h) =

N−h∑
t=1

(Mt−MN )(Mt+h−MN )/

N∑
t=1

(Mt−MN )2 (10)

for the lag h, where MN = (1/N)
∑N

i=1 Mi holds, the Ljung-
Box’s Portmanteau test (cf. [3]),

Q = N(N + 2)

h∑
j=1

ρ̂2(j)/(N − j) (11)

3See [1] for a survey on recent results regarding limit distributions
of sums of dependent r.v.s..
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and the Runde’s Portmanteau test with tail index α (cf. [13]),

QR = (N/ ln N)2/α
h∑

j=1

ρ̂2(j), (12)

N = [n/s] denotes the number of block maxima selected from the
sample of size n, and [·] is the integer part of a real number. A
selection procedure for the block size is described in Section 5 re-
garding the illustrative SopCast data.
The finiteness of the variance of the r.v. M1 and, more generally,
the heaviness of the tail of its distribution is an important criterion
for the further selection of a test on independence of the observa-
tions. It is well known that for heavy-tailed distributions not all
moments are finite in contrast to light-tailed distributions. Runde’s
test is appropriate if the variance of the generic r.v. M1 is infinite,
i.e. the distribution is heavy tailed. If the distribution of the generic
r.v. M1 is regularly varying, i.e. the distribution function (df) is
given by

G(x) = 1− `(x)x−α, α = 1/γ ≥ 0,

where `(x) is a slowly varying function, this corresponds to 0 <
α < 2. The tail index α further shows the shape of the tail. It is
known that α may indicate the number of finite moments of the r.v.
M1 if the distribution is regularly varying. Namely, IEMβ

1 < ∞
is satisfied if β < α holds. The Pareto distribution G(x) = 1 −
(x/k)−α, x ≥ k > 0, for instance, is regularly varying.
The presence of regular variation and heavy (or light) tails of the
r.v. M1 can be checked by the sample mean excess function

eN (u) =

N∑
i=1

(Mi − u)1(Mi > u)/

N∑
i=1

1(Mi > u). (13)

An increase of eN (u) implies a heavy-tailed distribution. Its linear
increase indicates a Pareto-like regularly varying distribution. A
constant value means that the distribution is exponential. The de-
crease implies that the distribution is light tailed.
Considering the specified quality indices, the estimation of the ex-
tremal index θ allows us to calculate their quantiles and the quan-
tiles of their maxima. By (6) we realize that the (1− p)th quantile
xp of the maximum Mn corresponds to the (1−p)1/(nθ)th quantile
of the distribution F (x), i.e.

1− p = IP{Mn ≤ xp} ≈ F nθ(xp).

We shall estimate high quantiles close to 100% to determine ap-
proximate upper bounds of the delivery delay, lossless time and
byte loss.
We can suppose that the size s of the blocks is selected in such a
way that the corresponding block maxima are independent. Then
the quantiles of the quality indices Di may be estimated by means
of the quantiles of the independent block maxima Mj of these in-
dices and we get:

1− p = IP{Mj ≤ xp} ≈ IPsθ{D1 ≤ xp} = F sθ(xp) (14)

It means that the (1− p)sθth quantile xp of the block maxima Mj

corresponds to the (1− p)th quantile of a quality index Dm.
To estimate the (1− p)sθth quantiles of the block maxima, we will
use the well-known Weissman’s estimator [18]

x̂p = M(N−k0)

(
k0 + 1

(N + 1)(1− (1− p)sθ)

)γ̂

, (15)

k0 = 1, N − 1. Here M(1) ≤ M(2) ≤ . . . ≤ M(N) denotes the
order statistics of the sample {M1, ..., MN} of the block maxima
and γ̂ is some estimate of their extreme value index γ. The latter

is the reciprocal of the tail index α determining the shape of the df
of the underlying r.v. Mj . The estimate (15) uses a Generalized
Pareto distribution

Ψ(x) =

{
1− (1 + γx/σ)−1/γ , γ 6= 0

1− exp(−x/σ), γ = 0

σ > 0, x ≥ 0 for γ ≥ 0 and 0 ≤ x ≤ −σ/γ for γ < 0, as model
of the tail of the corresponding distribution.
Regarding (15), only the k0 largest statistics are used instead of the
whole sample. The same k0 can be used in the estimator γ̂ of the
block maxima Mj . We shall apply the popular Hill’s estimator

γ̂H (N, k0) =
1

k0

k0∑
i=1

ln M(N−i+1) − ln M(N−k0) (16)

to estimate γ (cf. [7, p. 6]). One can select k0 corresponding
to the stability interval of the Hill’s plot {k0, γ̂

H (N, k0)}, k0 =
1, 2, ..., N −1 or automatically by a bootstrap method (see [7, Sec.
1.2]). The simplest way is to take k0 = [

√
N ]. The bootstrap

estimate is obtained by averaging the Hill’s estimates which are
constructed over some number B of bootstrap re-samples from the
underlying sample with repetitions. This minimizes approximately
the mean squared error.
In conclusion, a generic algorithm regarding the quantile estimation
of the quality indices looks as follows:

1. We determine a threshold u as some empirical quantile of
the instantaneous transmission rates Ri = Yi/Xi using the
sequences of the IATs {Xi} and PLs {Yi} of a packet flow.

2. Based on the IATs and PLs of the packet traffic and the se-
lected threshold u we construct samples of the general deliv-
ery delays {dm(u)} and delays within the clusters {d∗m(u)},
the byte losses in the clusters {bm(u)} and the lossless times
{lm(u)} by (1), (3), (4), (5).

3. We form data blocks of a selected size s such that we get
statistically independent block maxima, see (9).

4. We estimate the extremal index θ of each sample by (7) and
(8).

5. Finally, we estimate the quantiles of the corresponding qual-
ity indices by (14)-(16) using the quantiles of their block
maxima Mj .

4.2.4 Mean Value Analysis
To estimate the means of the quality indices, we suppose that

the conditions of Wald’s equation are satisfied. Therefore, we sup-
pose that the pairs of the r.v.s (Tj,m(u), Xi), j ∈ {1, 2, 3}, and
(T2,m(u), Yi) are mutually independent, and IEXi < ∞, IETj(u) <
∞, j ∈ {1, 2, 3} hold.
Then the means of the delivery delay, the lossless time and the byte
loss can be determined by Wald’s equation which yields

IE(dm(u)) = IE(T1,m(u))IE(Xi),

IE(d∗m(u)) = IE(T2,m(u))IE(Xi),

IE(lm(u)) = IE(T3,m(u))IE(Xi),

IE(bm(u)) = (IE(T2,m(u))− 1)IE(Yi).

The corresponding sample estimates can be calculated by

d(u) = T1,m(u)X, (17)
d∗(u) = T2,m(u)X∗ (18)

l(u) = T3,m(u)X, (19)
b(u) = (T2,m(u)− 1)Y ∗, (20)
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where X , Tj,m(u), j ∈ {1, 2, 3} are the sample averages of the
IATs {Xi} and {Tj,m(u)}, respectively. X∗ and Y ∗ are taken
over the IATs and PLs within clusters. X∗ 6= X holds since the
IATs within clusters may be on average different from the IATs
corresponding to all packets. For example, X∗ < X holds re-
garding our SopCast data since video packets that form clusters are
more frequent than signaling packets. Similarly, Y ∗ > Y follows
since clusters contain video packets that are larger than the signal-
ing packets.
To use the formulas (17)-(20), we have to check the pairwise inde-
pendence between the r.v.s Tj(u) and Xi, j ∈ {1, 2, 3} and, T2(u)
and Yi, and the finiteness of IEXi, IETj . Since Tj(u), j ∈ {1, 2, 3},
depend on the rate, one has to check the dependence between the
IATs Xi and the transmission rates Ri and between the PLs Yi

and the rates. This can be done by an estimation of copulas and
Pickand’s function (see [7, 8, 11]) and it is beyond the scope of the
paper.
The independence of the duration of a connection and the trans-
mission rate is shown to be realistic for streaming media and P2P
networks since the transmission durations are given by the lifetime
of a user on the P2P networks, while the rates are given by the max-
imum upload bandwidth (cf. [4]). In [8] the approximate mutual
independence of the IATs and the rates and the dependence be-
tween the PLs and rates have been revealed for the SopCast packet
flow investigated here. Hence, formula (20) cannot be used for the
considered SopCast data. However, one can use (20) for any other
IPTV applications when their PLs and rates are mutually indepen-
dent.
The sample average is a reliable estimate of the mean if the obser-
vations are independent or weak dependent and the expected value
of the underlying r.v. is finite. For example, we can estimate IE(Xi)
and IE(Yi) by X and Y in case of a SopCast flow since the first mo-
ments of the IATs and PLs are shown to be finite and the IATs and
PLs are weak dependent r.v.s (see [10]). X and Y cannot be used
if the IATs and PLs are heavy long-range dependent sequences. To
overcome this problem, one should decluster the data (see subsec-
tion 4.2.1) and estimate the mean of the block maxima as an upper
bound of the expected value. It is worthwhile to mention that the
distributions of Tj(u) are asymptotically close to a geometric dis-
tribution for sufficiently high thresholds u (see [9]).

5. APPLICATION OF THE METHODOLO-
GY TO REAL P2PTV TRAFFIC

In the following we shall apply the proposed statistical method-
ology to the packet traffic gathered at an observed single peer in the
P2P overlay network during a Sopcast session.

5.1 Data Analysis of a P2P Traffic Flow
We have applied the declustering approach and separated the

samples {dm(u)}, {d∗m(u)}, {bm(u)} and {lm(u)} into blocks
of equal size. The corresponding block sizes (i.e., the number of
observations in the block) are indicated in Table 2. Regarding a
relatively low capacity level u independent block maxima cannot
be obtained due to the strong dependence between the data blocks
in this case. Therefore, we have selected u = 107 bps which
corresponds to the 99.2% quantile of the instantaneous flow rate
Ri = Yi/Xi for our SopCast data (see Fig. 4(b)). The descriptive
statistics of {dm(u)}, {d∗m(u)}, {bm(u)} and {lm(u)} for this u
are summarized in Table 2.
Further we need to check the independence of the corresponding
block maxima. To select the right independence test, one has to
evaluate first the number of finite moments of the block maxima.

This can be done by means of the tail index and the mean excess
function (13). The tail index α = 1/γ of the corresponding block
maxima Mj has been calculated by a combination of the Hill’s es-
timator (16) and the bootstrap method with B = 100, see Table 2
(cf. [7]). The positive sign of the tail index implies that the tails of
the distributions of all considered quality indices are heavy.
We have also checked the mean excess functions (13) of the block
maxima of {dm(u)}, {d∗m(u)}, {bm(u)} and {lm(u)}. Assum-
ing regular variation, one may conclude from Fig. 6 that the dis-
tribution of the block maxima of {d∗m(u)} is Pareto-like, that of
{bm(u)} is a mixture of light-tailed and some heavy-tailed distri-
butions (the latter is in the agreement with the asymptotic normality
predicted in Section 4.2.2) and those of {dm(u)} and {lm(u)} are
mixtures of heavy- and light-tailed components with a domination
of the heavy-tailed regularly varying ones.
Regarding Table 2 one can state that the distribution of the block
maxima of the delivery delay in the clusters {d∗m(u)} is heavy
tailed and has infinite variance and mean since α = 0.77 < 1
holds. The block maxima of all other indices are heavy tailed with
finite variances since their tail indices satisfy α > 2.
The ”extraction” of the delay in clusters {d∗m(u)} allows us to
make the pessimistic conclusion that the mean of the maximum
of the delivery delay due to the loss of packets in the clusters d∗m
may be infinite for the selected threshold u.
The obtained block maxima have also been investigated regarding
their independence using the ACF (see Fig. 7), and the Ljung-Box
test as well as Runde’s test (see Tab. 3). The sample ACF (10) of
the block maxima of {d∗m(u)} cannot be calculated since the mean
and variance of these block maxima are infinite. Therefore, we
have used the modified estimate without a centering by the sample
mean (see [12]):

ρ̂(h) =

N−h∑
t=1

MtMt+h/

N∑
t=1

(Mt)
2.

Since the ACFs are all located inside the Gaussian confidence inter-
val (apart of a few points of the ACF regarding the block maxima of
{dm(u)}), one can expect that the block maxima may be indepen-
dent. This independence is derived by the Portmanteau tests (11)
and (12). Since the variance of the block maxima of {d∗m(u)} is
infinite, one has to check the independence of the block maxima by
Runde’s test. The block maxima of all other indices are checked
by the Ljung-Box test. Since the values of Runde’s statistic QR do
not exceed the critical values Qh(0.05) of the limit distribution of
QR for the 0.05 level given in [13], the null hypothesis regarding
the independence of the block maxima of {d∗m(u)} should be ac-
cepted. Since the values Q do not exceed χ2

0.05(h), where χ2
η(h)

denotes the ηth quantile of the chi-square distribution with h de-
grees of freedom, i.e., Pr{χ2 > χ2

η(h)} = η, 0 < η < 1, the
null hypothesis regarding the independence of the block maxima
of {dm(u)}, {bm(u)} and {lm(u)} should be accepted, too, see
Table 3.
In this manner we have proved the independence of the block max-
ima of the quality indices and can estimate the high quantiles (99%
and 99.9%) of these indices by formulas (14)-(16). For this purpose
we have additionally estimated the extremal index θ of each quality
characteristic by the estimators (7) and (8), where k = r = [

√
n]

is taken for the sample size n of a quality index, see Fig. 8. The
corresponding results are stated in Table 2. Note that the quantiles
may be larger than the maximal values of the quality indices.
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Table 2: Statistics of {dm(u)}, {d∗m(u)}, {lm(u)} [sec] and {bm(u)} [kB] of the P2P packet traffic and their block maxima given the
threshold u = 107 bps.

R.V. Sample Min Max Median Mean Block Tail index Variance θ : Quantiles
size size s α of block of block θ

B
/ 99% 99.9%

maxima maxima θ
R

dm(u) 65010 2.1 · 10−5 0.625 5.68 · 10−4 4.974 · 10−3 200 3.09 finite 0.45 0.358 0.628
d∗m(u) 187 5.66 · 10−4 0.141 3.43 · 10−4 2.55 · 10−3 4 0.77 infinite 0.51 0.185 3.654
bm(u) 187 0.640 6.81 1.092 0.801 4 15.132 finite 0.65/ 1.668 1.941

0.29 1.758 2.047
lm(u) 524 2.6 · 10−5 14.254 0.017 0.613 7 2.149 finite 0.58 6.528 19.933

(a) (b)

(c) (d)

Figure 6: Sample mean excess functions of the block maxima of (a) {dm(u)}, (b) {d∗m(u)} , (c) {bm(u)} and (d) {lm(u)} of the
composite SopCast traffic.

5.2 Mean Delay of Successful Packet Delivery
and Mean Lossless Time

We have calculated the mean delay of the packet delivery by (17)
and the mean lossless time by (19), both for the composite P2PTV
traffic and the pure video traffic. It is impossible to calculate the
mean byte loss per cluster by (20) due to the dependence of the
PLs and the rates derived for the SopCast data in [8]. The estimate
d∗(u) indicates the mean delay arising in the clusters of packets due
to the exceedances of the rates over the available capacity u. The
estimate d(u) indicates the mean delay caused by different reasons
including the loss in the clusters, the missing of packets and silence
periods.
The mean delay (see Fig. 9(a)) tends to decrease (the delay in the
clusters does not decrease in a monotone fashion) and the mean
lossless time increases (see Fig. 9(b)) as the quantile of the rate
u increases, see Table 4. Here u may be considered as the equiv-
alent bandwith that is required by the considered P2PTV flow on

a bufferless channel subject to QoS constraints on loss and delay.
The video traffic obeys a higher mean delay than the composite
traffic, see Fig. 9(a). This behavior was predictable since the sig-
naling traffic with small PLs and large IATs generates small rates
which mostly cannot exceed the assigned capacity threshold and,
thus, not generate any clusters of rate exceedances.
The mean lossless time of pure video traffic is larger than that of the
composite traffic, see Fig. 9(b) and Table 4. Their ratio increases
up to u = 32 · 105 bps and stabilizes for u > 107 bps, see Fig.
9(c).
The mean delay d(u) of the composite and video traffic tends to the
mean IAT for sufficiently large capacity (for u larger than or equal
to the 99%th quantile of the rate, see Table 1) since T1,m(u) ≈ 1
holds both for pure video and the composite traffic. The latter im-
plies the existence of a few clusters with a few packets for a high
threshold u. The mean delay in the clusters d∗(u) of both the com-
posite and pure video traffic tends to zero (slower for video traffic)
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(a) (b)

(c) (d)

Figure 7: ACFs of the block maxima of (a) {dm(u)}, (b) {d∗m(u)}, (c) {bm(u)} and (d) {lm(u)} of the composite SopCast traffic given
a Gaussian 95% confidence interval with the bounds ±1.96/

√
n and the sample size n of the corresponding quality characteristic.

Table 3: Results on block maxima by the Ljung-Box test and Runde’s test.
Lags Q of Block maxima χ2

0.05 Lags QR of Block Qh

dm(u) bm(u) lm(u) (h) maxima dast
m (u) (0.05)

10 14.722 1.761 8.242 18.3 2 5.518 13.53
20 29.362 10.339 15.827 31.4 3 6.228 16.32
30 38.882 15.956 21.93 43.8 4 8.066 18.28

5 13.708 19.17

Table 4: The mean lossless time l and, the mean delivery delays
d and d∗ for the total and the pure video SopCast traffic and
a channel capacity u determined by the empirical quantiles of
the rate.

Quality Rate quantiles
index 75% 95% 97% 99% 99.6%

u (kbps) 1370 5260 5680 7880 14000

Total l (msec) 20 99 167 471 1206

traffic d (msec) 6.575 5.193 5.084 4.986 4.954

d∗ (msec) 5.153 3.566 3.784 5.651 0.94
u (kbps) 733.4 2180 2900 14000 43935

Video l (msec) 72 362 605 1694 3638

traffic d (msec) 24 19 19 18 18

d∗ (msec) 29 30 25 17 16

due to the disappearance of the clusters. The mean delay is larger
for the video traffic since its mean IAT is larger after the virtual ex-
clusion of the signaling packets. The difference between d(u) and
d∗(u) is more significant for the composite traffic. For video traffic
the estimates are similar since video packets are located mostly in
the clusters. Without the signaling traffic the mean delay of the suc-
cessful packet delivery and the mean lossless time would be larger
than in the presence of the signaling traffic.

6. CONCLUSIONS
In our study measurements that are arising from a next genera-

tion network have been considered. We have presented advanced
mathematical techniques to cope with the statistical analysis and
modeling of these gathered data. This improvement is required to
study important performance indices of new real-time services in
a multimedia Internet such as the demanded bandwidth or delay-
loss profiles of packet flows arising from a peer-to-peer overlay
network during a multimedia session. The latter data sets incor-
porate strongly correlated or long-range dependent time series and
heavy-tailed marginal distributions determining the underlying ran-
dom variables of the data features such as the inter-arrival times or
instantaneous transmission rates of the packets.
We have used a fluid flow approach based on the model of a buffer-
less transmission channel to characterize the bandwidth demand
of a source flow with variable bitrate. The exceedances of the in-
stantaneous transmission rates of a flow over the capacity threshold
which are determined by the ratios of the inter-arrival times and as-
sociated packet lengths of a flow occur in terms of clusters. They
are considered as the main source of the packet loss and the delay
of a successful packet delivery.
Following these ideas, we have defined new quality indices with
regard to the packet transmission of a multimedia flow. The lat-
ter are specified in terms of the distributions, high quantiles and the
means of the delivery delay between successfully transmitted pack-
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(a) (b)

(c) (d)

Figure 8: The blocks (solid line) and runs (dashed line) estimates (7) and (8) of the extremal index of (a) {dm(u)}, (b) {d∗m(u)}, (c)
{bm(u)}, and (d) {lm(u)} against the threshold u. The intervals of approximate stability correspond to the estimate of the extremal
index (thin solid line).

ets, the lossless time and the byte loss. The clusters of threshold
exceedances of the packet proceess are caused by the statistical de-
pendence of the packets in an aggregated flow transmitted towards
a destination. Hence, the impact of the dependence of the flow data
and the heavy-tailed distributions of the underlying basic random
variables on the QoS indices can be evaluated by our methodology.
The advantage of the proposed methodology is given by its appli-
cability to dependent data with infinite variance and mean.
To illustrate the new methodology, we have investigated the packet
flows that are exchanged with a single peer and arising from the
P2PTV application SopCast. The high quantiles of the defined
quality indices are estimated for the composite packet stream in-
cluding signaling packets and video content. Further the means of
the delivery delay and the lossless time are compared both for the
composite traffic and the unadulterated video traffic. Regarding the
SopCast application the following conclusions can be drawn:

• Increasing the required equivalent bandwith of a flow leads to
a decreasing mean delivery delay and to an increasing mean
lossless time. This mean delay caused by different reasons
tends to the mean inter-arrival time. The mean delay caused
by the packet loss in the clusters due to the exceedance of the
bandwith threshold tends to zero due to the disappearance of
these clusters as expected.

• The quantiles of the delay show that the largest delivery delay
is caused by the clusters of those packets whose rates exceed
the equivalent capacity of the flow.

• The delivery delay and the lossless time may have an asymp-
totically infinite variance as the sample size increases to in-

finity due to the dependence and heavy tail of the packet
inter-arrival process.

• The byte loss is asymptotically Gaussian as the sample size
increases since the packet lengths are weak dependent and
their variance is finite.

• If the signaling traffic were not considered in the analysis, it
would increase the mean delivery delay and the mean lossless
time. A larger mean delay due to a lack of signaling packets
does not make the visual interpretation worse.

We are convinced that the presented concept can help to provide
a mathematically well defined methodology to analyze measure-
ments of distributed systems and, in particular, to evaluate relevant
QoS indices of new multimedia applications with variable bitrate
exclusively by means of these measured data. We have further
shown that this universal concept can also be applied to data with
underlying dependences and heavy-tailed distributions.
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