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ABSTRACT
Enterprise IT environments have seen a sharp growth in con-
tent use due to the popularity of on-demand data-intensive
applications. In turn, the huge demand in content has spawned
off major developments such as growth and distribution of
computing nodes as well as the adoption of various imple-
mentation technologies. Given the complexity brought to
the makeup of business computing environments in address-
ing the above-mentioned factors, the critical planning task of
determining the appropriate infrastructure sizes for support-
ing firm Quality of Service (QoS) guarantees becomes a very
challenging undertaking to fulfil. Benchmarking methods
are widely employed in calibrating attainable performance
in IT solutions, but these have the drawback of present-
ing output performance metrics as composite measurements
that only give an end-to-end perspective. As an enhance-
ment to benchmarking approaches, we explore the use of
Performance Monitoring Counters (PMCs) in obtaining de-
tailed operational performance of CPU and memory hard-
ware. Performance Monitoring Counters (PMCs) are on-
chip registers found on most modern processor hardware.
We use PMC-derived measurements to validate cache per-
formance trends that have been derived analytically, and in
the course of validations, PMC data is also used to investi-
gate the nature and character of surges in cache miss events,
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which emerge as the memory load generated by runtime pro-
cesses increases.

Categories and Subject Descriptors
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General Terms
Measurement, Performance

Keywords
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1. BACKGROUND
In order to cope with the increase in resource needs that

are associated with emerging user applications, business IT
solutions today are largely characterised by expansions in in-
frastructure domains such as the ever-increasing numbers of
computing nodes and the dispersion of resources over wide
geographic locations. In addition, other major developments
such as the proliferation of implementation technologies are
having just as significant an impact on defining the shape
of the IT landscape. Given the interplay of these dominant
trends, the following tasks which are vital to the infrastruc-
ture planning exercise are becoming increasingly complex to
carry out: (a) establishing performance trends emanating
from IT implementations (b) calculating the Service Level
Agreement (SLA) parameters for service provisioning and
(c) making decisions regarding the sizes of infrastructure
deployments required to ensure that IT services that are
delivered to user environments fall within satisfactory QoS
thresholds.

In order to quantify the performance levels that can be
provided by IT solutions, benchmarking methods are gener-
ally employed and the output metrics associated with spe-
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cific implementations established through physical measure-
ment. Some benchmark approaches specifically target the
performance of application routines thereby leading to met-
rics being captured and presented as user-level performance
indicators. Example benchmarks which are application-related
include the Transaction Processing Performance Council (TPC)
metrics for transaction processing and database operations
on server hardware [6], and the SAP benchmarks for various
workload configurations associated with enterprise applica-
tion routines such as Sales Distribution (SD), Assemble-to-
Order (ATO), Cross Assemble Time Sheet (CATS), Mate-
rial Management (MM), Production Planning (PP), Finan-
cial Accounting (FI) and Human Resources Payroll (HR)
services [23]. However, a major drawback with application
benchmarks is the software-based overheads emanating from
the utility programs that are set up to calculate the output
performance metrics derived from measurements. Further-
more, the output metrics are essentially compound perfor-
mance indicators that reflect the overall application response
as perceived at end user level. Thus, the application bench-
marks provide very little information about the response
patterns of low-level infrastructure operations in relation to
applied user loads.
In contrast to application-based benchmarks, hardware-

specific benchmarks such as the Standard Performance Eval-
uation Corporation (SPEC) CPUmeasurements provide met-
rics that are used in the calibration of the performance of
processor and memory hardware [4]. Essentially, the SPEC
CPU metrics for both floating point and integer operations
are presented as ratios, which are calculated from the com-
parisons of throughput and response times that are obtained
from CPU and memory hardware of various server hard-
ware kits. The normalisation of results is achieved through
comparisons conducted with respect to corresponding met-
rics obtained from processor and memory hardware of the
Sun SPARC Ultra Ultra Enterprise 2 reference machine that
uses a 296 MHz UltraSPARC II processor [3][5]. In other
approaches that employ server hardware benchmarks, the
performance of CPU and memory architectures is consid-
ered in the context of parallel processing implementations
as in [1][16][27], while hardware benchmarks for disk drive
systems are considered in [25]. Even though it is possible
to gain improved understanding of the operational capa-
bilities of respective server hardware kits from hardware-
related benchmarks, the output metrics provided are still
not detailed enough given that they are calculated as lumped
parameters derived from measurements of combined opera-
tional stages inside the server hardware. As an example,
the SPEC CPU benchmarks are based on grouping the pro-
cessor, caching and system memory functions into a single
measured operation. As a result the SPEC CPU data pro-
vide very little insight as to the inner workings of the various
components of server processor architecture or the resource
consumption patterns at each of the respective operational
stages in response to the varying quantities of user requests
being handled by the server.
In order to further explore and understand the CPU and

memory QoS that is provided by server nodes, this paper
focusses on hardware operational performance and we pro-
pose a performance monitoring and evaluation strategy that
uses data gathered by the on-chip registers called Perfor-
mance Monitoring Counters (PMCs), which form part of the
processor chipsets of most modern CPU hardware architec-

tures [9][10][11][13][20]. Unlike the SPEC CPU benchmarks,
which provide high-level data in a format that is largely
opaque in so far as the internal performance and resource
utilisation trends occurring within the CPU and memory
architecture are quantified, the PMCs provide rich sets of
information that can help illuminate performance issues as-
sociated with the main components of the memory and pro-
cessor hardware. By targeting appropriate PMC events for
collection during performance monitoring sessions, it is pos-
sible to obtain performance data relating to the hardware
functional stages such as processor cores, thread instances,
multilevel caches and system memory elements as well the
support operations for address translations for both data
and instruction fetch operations [7][8][14][16]. Another ad-
vantage of using PMCs is that the process of invoking mon-
itoring registers is largely non-intrusive since the data is ob-
tained from on-chip counters whose operations are ordinar-
ily separate from CPU cores. As such, no significant addi-
tional workload is applied on processor and memory opera-
tions apart from the interrupt operations that track specified
events of interest.

It is also worth taking note of the fact in order to speed
up application responses in many enterprise IT implemen-
tations, there is a rising trend in the adoption of in-memory
database strategies [2][12][24][26]. The in-memory database
techniques ensure that user data is initially transferred from
the backend database into the system-memory buffer, where
it is kept for the almost the entire duration of the com-
putational operations. Hence with most of the compute
operational processes being confined to CPU and memory
hardware due to increased use of the in-memory computing
functionality, the merits of our proposal to initially consider
server performance in terms the CPU and memory hardware
operation is further strengthened.

A further point to emphasize is that while the proposal
to use hardware counters for performance monitoring offers
greater insight into the trends associated with the internals
of CPU and memory elements, our approach is meant to
provide a complementary rather than an alternative strat-
egy to the application and hardware benchmarks that have
already been reviewed in this section. Thus, we consider the
PMC-driven approach to be potentially useful as a follow-up
strategy in those enterprise scenarios where the initial met-
rics from top-level measurements may indicate the need to
address IT resource provisioning and configuration in the in-
frastructure if SLA and QoS parameters are to be protected.
The PMC-based methods can be therefore employed to de-
termine the specific operational elements in the hardware
resource fabric where reconfigurations are required and can
also indicate appropriate remedies based on the observed
resource consumption patterns.

The rest of the paper is organised as follows: We present
a brief overview of Performance Monitoring Counters by
highlighting some the well-known packages for CPU per-
formance profiling used in modern generations of processor
hardware. In attempting to unpack and quantify the per-
formance trends associated with the operational elements of
the CPU and memory hardware, we consider the analytical
models of Cache Miss Ratios and Processor Service Time.
The Processor Service Time is the amount of time spent by a
runtime process executing at CPU and interacting with the
memory. The analytical characterisations of CPU Service
Time trends and Cache Miss Ratios are derived from the
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memory load imposed on the respective stages of multi-level
cache hierarchy of the CPU architecture. The elements of
the memory hierarchy are the sources, from which the run-
time processes executing at the processor core requests ob-
tain input data. The AMD CodeAnalyst profiler is then used
to validate the assumptions and characterisations leading up
to the models for performance trends. The paper concludes
by considering additional investigations using PMCs to es-
tablish the source and character of sharp increases in cache
miss events, which occur with a regular pattern as the mem-
ory load that is imposed on the CPU hardware architecture
increases.

2. PMC-BASED STRATEGIES
As stated in the previous section, performance monitor-

ing registers are becoming a standard feature of the CPU
chipsets on motherboard kits from leading vendors of pro-
cessor hardware [9][10][20]. Running as separate functional
units from the processor core and memory elements on the
computer hardware, the PMCs have the ability to track the
occurrence of a comprehensive set of runtime events, which
are associated with the executions of scheduled processes
running on a machine. Key categories of hardware function-
ality, for which information can be obtained from monitor-
ing registers, are as follows: (a) CPU cores and threads, (b)
multi-level caches and system memory, (c) Input/Output
operations, (d) Bus Transfers and (e) Special Instructions.
To take advantage of the functionality provided by PMCs,

a number of software interfacing packages have been devel-
oped and these enable user-defined access to selected oper-
ational events of interest. The interfacing strategies involve
working with two sets of performance Application Program-
ming Interfaces (APIs), with one set targeting hardware-
specific features of the performance monitoring registers and
the other group of libraries enabling bindings to the op-
erating system kernel. To ensure that the event monitor-
ing procedure is non-intrusive, the performance APIs are of
lightweight design and as such impose very little overhead
whenever monitored events are counted, recorded, collated
and presented to the user environment for interpretation.
Some of the popular middleware profiling tools that have
system-wide ability to access performance monitoring regis-
ters include the OProfile [17] and Performance Application
Programming Interface (PAPI) [27][28] packages. Other per-
formance profiling packages such the Intel VTune [16][18]
and Advanced Micro Devices CodeAnalyst [9][14] are opti-
mised to collect detailed event data on vendor-specific hard-
ware, while the Hardware Performance Monitoring Counter
(HWPMC) is designed for FreeBSD platforms [19].
In the initial set of experiments that are considered in this

paper, our interest is primarily on establishing the trends in
the processor service times as the loading levels that are
presented on the CPU hardware vary. Given that the dura-
tions of the effective CPU service times whenever scheduled
runtime processes execute on the CPU are dependent on
memory access times, we focus on the events associated with
CPU core and thread operations as well as cache and system
memory accesses. We use the AMD CodeAnalyst as a pro-
filing tool to collect the measurements data. Our choice of
CodeAnalyst in the experiments was largely influenced by
the need to obtain detailed results from the AMD Athlon
server hardware on which the performance monitoring runs
were carried out.

3. CACHE MISS TRENDS FOR FULLY
ASSOCIATIVE CONFIGURATIONS

We consider the theoretical characterisations of Proces-
sor and Memory hardware performance by recalling basic
expressions of runtime performance on CPU and memory
hardware architectures of computing implementations:

TCPUService = TCPUExec + TMemStall, (1)

where the CPU Service Time, TCPUService is the effective
duration of CPU occupancy for an active runtime process
using the CPU resource. The CPU Service Time, is made
up of the Memory Stall Time, TMemStall that is consumed
in fetching data from memory and the Processor Execution
Time, TCPUExec which is spent in performing the compu-
tational operations within the CPU cores’ functional ele-
ments, the Arithmetic Logic Unit (ALU), Floating Point
Unit (FPU) and register assembly.

In term of processor cycle consumption, CPU Service Time
can alternatively be expressed as:

CycleT ime(ExecutionCycles+MemStallCycles) (2)

The Average Memory Access Time, AMAT , for an N-level
cache hierarchy is given by the general expression:

AMAT = TCacheHit1 +

N∑
K=1

(MissRatioK)(TMissPenaltyK)

(3)
The Cache Miss Ratio is the number of cache miss events
expressed as a fraction of total cache access operations. In
terms of processor cycle consumption and cache performance,
memory stall time can be expressed as follows:

MemStallCycles = MemAcesses(MissRatio)(TMissPenalty)
(4)

Next, we consider the cache miss ratio as a function of user
load by making a number of assumptions about the key pa-
rameters having a bearing on the performance patterns on
an L1 (D) caching system. Note that the cache performance
trends that we consider in our analysis are derived from ca-
pacity misses in a fully-associative cache configuration. Ac-
cording to the fully-associative cache mapping approach, the
main memory blocks occupied by a process image can be
mapped and transferred to a cache slot or cache line any-
where in the cache memory. The lines or slots are uniform
subdivisions in the cache and main memory stages, and the
partitions are usually 32 or 64 bytes in size. Other contrib-
utory factors to cache miss ratios such as compulsory and
conflict misses are considered as negligible offset parame-
ters in the analytical treatment. Also noteworthy in our
models is the assumption that all the user requests have ho-
mogeneous characteristics i.e. their memory requirements
and processor execution time needs are considered uniform.
Yet another simplification we make for the initial the model
is that the available memory and CPU time on the server
are unaffected by competition from background job routines
that may also be running on the server. We define the fol-
lowing parameters:

• Average memory needs per user = m bytes

• Number of simultaneous users = N

• Maximum simultaneous users before L1 Cache Capac-
ity Misses occur = N1max
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• Cache Memory Capacity = M bytes

Thus, the total user memory needs = Nm bytes and the
excess memory requirements = (N - N1max)m. Assuming
that the risk of cache misses is spread across all the active
N users whenever cache memory capacity is exceeded, then
the following expression is derived:
Cache Miss Ratio = N−N1max

N
.

For a single level cache system, Equation (3) can there-
fore be modified to take into account user load so that the
equation for Average Memory Access Time becomes,

AMAT = CacheHitTime1+(
N −N1max

N
)(PenaltyT ime1).

(5)
Since CPU Service Time is equal to the sum of CPU Execu-
tion Time and AMAT as in Equations (1) - (4), the processor
service time can thus be expressed as a function of user load
by the following expression:

ExecTime+CacheHitTime1+(1−N1max

N
)(PenaltyT ime1).

(6)
In considering the data access trends for a level-two cache

system on the AMD Athlon hardware, the CPU cycles for
memory access per user process are derived from the sum-
mation of Cache Hit Times of the Level 1 and Level 2 stages
and the Memory Stall Times associated with cache accesses
in the main memory whenever consecutive cache misses oc-
cur in the L1 (D) and L2 stages.

Total CPU Service Time = Processor Execution Time +
CacheHitTime1 + (MissRatio1)(MissPenalty1) + (MissRa-
tio2)(MissPenalty2).

Also, the data access times can be expressed as follows:
Miss Penalty Time1 (for Level 1 Accesses) = Cache Hit
Time2 (for data fetched at L2 cache stage) + Miss Penalty
Time2 (for Level 2 Cache Accesses), where the Miss Penalty
Time for Level 2 Cache accesses is the same as the Hit Time
for main memory accesses associated with the data that is
fetched on System Memory stage. Assuming cache capacity
misses for the L1 (D) and L2 stages, where exclusive cache
policies are coupled with fully-associative mapping of cache
stages to main memory, then the cache miss ratio for the L2
stage are expressed as follows:
Cache Miss Ratio (Level 2) = N−N1max−N2max

N−N1max
.

Therefore, Average Memory Access Time, AMAT is equal
to:
CacheHitTime1 + (MissRatio1)(PenaltyTime1) + (MissRa-
tio2)(PenaltyTime2).
In exclusive caching policies, only a single copy of a cached
item can be kept in the L1 and L2 cache memory stages i.e.
the cached copy is in either the L1 or L2 cache, not in both
caching levels. Inclusive caching policies on the other hand
permit both the L1 and L2 cache memories to contain same
cached data.
The Average Memory Access Time for L1 and L2 Cache

thus becomes:
AMAT = CacheHitTime1 +(PenaltyTime1) (N−N1max)

N
+

(PenaltyTime2) (N−N1max−N2max)
N−N1max

.
It is worth emphasising that an important assumption

made in the analytical derivations of the expressions for the
Average Memory Access and CPU Service Times is that the

application requests being responded to by the CPU and
memory hardware require the same instruction to be exe-
cuted at runtime.

4. CACHE MISS TRENDS FOR N-WAY SET
ASSOCIATIVE CONFIGURATIONS

With N-Way set associative mapping, the space on each
of the memory elements of the CPU hardware architecture
is subdivided into slots or sets, which are then allocated or
mapped according to specific ratios that are fixed between
the Main Memory and L2 Cache, and between the L2 and
L1 cache stages. While the proportional mechanism fixes
the ratio of slot allocations between the memory stages for
the N-Way set associativity approach, the multi-way map-
ping feature introduces a degree of flexibility by a factor
of N to the number of slots where a cached copy can be
placed in whenever it is obtained from higher caching levels.
Thus, the N-way set associativity approach is a compromise
between the direct mapped caching technique, which has a
rigid allocation to a single cache block and the fully asso-
ciative mapping strategy that permits all cache blocks to be
used. Figure 1 shows the proportional mapping employed
between L1 and L2 cache, between the L2 and main mem-
ory stages of CPU hardware architecture that is based on
N-Way cache associativity.

We make the following assumptions for the executing pro-
cesses and the configuration of the memory hardware. Let
Nm be the required memory for the input data parameters
to be used by the running processes that are generated by N
users, with each user-generated process consuming m bytes
at runtime. Let α be the ratio of the memory mapping of
cache slots between L1 and L2 cache stages, and β the ratio
of the cache slot mapping between the L2 Cache and Main
Memory. Therefore, the allocations of memory in the L1
and L2 caches for N user initiated processes based on as-
sociative mapping are αβNm and βNm respectively. Simi-
larly, the Cache Miss Ratios for L1 and L2 cache stages are
(Nm−αβNm)

Nm
and (Nm−αβNm−βNm)

(Nm−αβNm)
respectively. Assuming

perfect locality of reference for the data accesses on the L1
and L2 caches, the miss ratios therefore simplify to (1−αβ)

and (1−αβ−β)
(1−αβ)

respectively.

If we introduce the average locality factors for the data
access patterns to L1 and L2 caches which are assumed to
be λ and µ respectively, then the cache miss ratios for L1

and L2 stages are (1− λαβ) and (1−λαβ−µβ)
(1−λαβ)

.

The Average Memory Access Time for associative map-
ping becomes,
AMAT = HitT ime1 + (1− λαβ)(PenaltyT ime1)

+ (1−λαβ−µβ)
(1−λαβ)

(PenaltyT ime2).

The Average Processor Service Time for associative map-
ping then becomes,
TCPUService = ExecT ime+HitT ime1+(1−λαβ)(PenaltyT ime1)

+ (1−λαβ−µβ)
(1−λαβ)

(PenaltyT ime2).

5. MAIN CONSIDERATIONS FOR
EXPERIMENTAL SCENARIOS

The internal structure of the AMD Athlon 64X2 processor
hardware that is used in the experimental studies is made
up of the following functional components: (a) one dual core
processor, (b) one 64-Kbyte Level 1 Data Cache 1 i.e. L1

394



�
�
�
��
�
��

�
�
	


�
��
�

�
�
��
��
�
�
�

�
�
��
�

�
�
��
��
�
�

�
�
��
�

�
�
��
��
�
�

����

�	
�

�

�

�

�����

�����	










�����	���	

����������

�������		�

���	







��		

����

�

�







����

����

����

����

����







����

����

�����

������

�	����










����������

�������		�

����������

���������
�����������

���������

����������

��������

��������

Figure 1: Proportional allocation of memory slots
according to associative mapping.

(D) Cache and one 64-Kbyte Level 1 Instruction Cache 1
i.e. L1 (I) Cache per core (c) one 512-Kbyte unified Level 2
cache that contains both data and instructions and (d) 960
Mbyte Double Data Rate (DDR2) DRAM system memory.
The access operations on the L1 D-cache and I-Cache units
of each CPU core are supported by the page-mapping infor-
mation that is contained in the data and instruction trans-
lation look-aside buffers (TLBs) respectively. The Victim
Buffer (VB) unit also provides important support function-
ality for accelerated exclusive-cache operations by holding
recently evicted data from the L1 cache as they await trans-
fer to the L2 cache stage. The D-TLB and I-TLB are 24
and 32 entries in size and VB can hold up to 16 cache lines,
where each cache line on the AMD Athlon 64X2 architecture
is equal to 64 bytes.
To enable the study of the main CPU performance trends

(such as Processor Service Times, Average Memory Access
Times and the incidence of Cache Misses) with respect to
user-generated loads being handled by the CPU and memory
hardware, the CodeAnalyst’s Event-based Profiling feature
is invoked and the relevant hardware operations are selected
for capture by the PMCs. The following event categories
summarise the hardware operations of interest that are se-
lected for collection in the measurement profiles defined in
CodeAnalyst:

• Data Cache Events encompassing Total Data Cache
Accesses and Misses, Level Cache 1 Refills from System
and L2 Cache memory, Cache Lines Evictions to L2
cache and System memory and TLB Misses for L1 and
L2 cache stages.

• L2 Cache and System Interface Events that in-
clude L2 Requests from L1 Misses and L2 Misses.

• Execution Unit Events that take into account Re-
tired CPU Instructions and CPU Clocks that are not
halted.

• Load/Store Unit Events that capture the number

of operational cycles which the Load and Store Queue
Unit is filled to capacity with miss requests from and
those waiting to refill the L1 caches.

It is worth emphasising that some of the events considered in
the paper such as Refills from L2 and System provide com-
pound metrics that will be investigated at sub-event level
[15] when experimental runs are generated. Based on the
selection of abovementioned operational events, key experi-
mental scenarios were defined to investigate and study these
phenomena:

• Trends in L1 (D) and L2 cache miss ratios. The
results from the PMC-based event monitoring are in-
terpreted and, comparisons are made with analytical
models that were developed for estimating cache per-
formance characteristics for both exclusive and inclu-
sive caching policies.

• Trends in the durations of CPU service times.
The results data obtained is used to calculate Clock cy-
cles per Instruction (CPI) and IPC values and, com-
parisons are made with derived characteristics from
theoretical models.

• Performance penalties arising from worst-case
caching scenarios. The performance degradations
that are considered, occur due to the enforcement of
Exclusive cache policies between the L1 (D) and L2
stages as well as the internal cache-size settings of VB
units.

In order to obtain the data points for the results that are
presented in this paper, a C++ program is used in the ex-
periments. The input load levels on the processor cores are
varied according to the number of specified threads that send
service requests to the CPU. Thus, each executing thread is
used as the basic proxy for user load in our experiments
and the memory consumptions levels, which are associated
with each user thread are specified in terms of the number
of input data parameters accessed for computational oper-
ations at the processor core. Detailed consideration of the
experimental runs that were conducted for the study of main
scenarios is featured in the succeeding sections.

6. EXPERIMENTAL INVESTIGATIONS
FOR N-WAY ASSOCIATIVE CACHES

The definitions for the experimental scenarios we consider
are based on generating workloads from a C++ application
for execution on the processor and memory hardware of the
AMD K8 Athlon architecture. The performance data per-
taining to the operational events that arise from the runtime
execution of application requests is captured by the AMD
CodeAnalyst tool.

The structural makeup of the test program is largely based
on the configuration of the SAP Sell-from-Stock routine,
which is made up of Process Components that generate
specific runtime requests to the server processor in terms
of dialog steps [22]. Typically, six process components or
transaction entities comprise the enterprise application rou-
tine and, within each transaction a number of dialog steps
are initiated for execution at the server hardware. Figure 2
shows the basic implementation of the business process com-
ponent in enterprise application solutions. The operations
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Figure 2: Basic makeup of Process Components in
enterprise application implementation.

performed by the dialog step executions range from creating
order items, retrieving and displaying order information and
updating customer data. Since our objective is primarily fo-
cussed on studying the performance of processor and mem-
ory hardware, one departure we make from actual SAP Sell
from Stock’s configuration in our workload definitions is that
the user requests are characterised as identical work items,
all of which are CPU and memory intensive in their resource
consumption characteristics. The Work Process (WP) rou-
tine, which is the runtime entity that actually executes the
scheduled dialog steps received from multiple users in the
real implementation, is represented by a multi-threaded pro-
gram and each thread instance represents a single user. In
order to represent the Sell from Stock configuration where
each user has its own set of data [21], the matrix definitions
that are specified for the test program for our experiments
ensure that each user thread has a specific set of input data
that it accesses during execution.
As an initial focus for the experimental measurement in

CodeAnalyst, we attempt to validate the theoretical perfor-
mance trends that have been derived for cache implementa-
tions which employ N-way associative mapping strategies in
the allocation of memory space on the L1 and L2 caching
stages. The specific trends that enable the validity of the
analytical trends to be determined are: (a) Variability of
Cache Miss Ratios and Clock cycles Per Instruction (CPI)
rates with respect to the quantity of user generated work-
loads and (b) impact of data locality on the Cache Miss
Ratios and CPI rates.
The load on the CPU and memory architecture is defined

in terms of the number of users and resource consumption
that is associated with each user entity. The number of
active users is determined by the number of threads that
will request double-precision parameters at the CPU cores
during runtime. Each user instance is defined in the C++
program such that it generates data requests to the mem-
ory and then performs arithmetic additions of the obtained
double precision parameters, which will have been fetched
from across 25 matrices. During the program execution each
user thread is locked to a specific row of each of 25 ma-
trices and the data fetch operation advances through the
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Figure 3: Data access across arrays of double preci-
sion parameters in 25 Matrices.

columns of double-precision data, which will then be added
together before updating the running total. Figure 3 shows
the basic access scheme that is employed in accessing the
double-precision values by user threads from 25 matrices.
The memory load on the Level 1 (Data) cache memory is
varied by uniformly increasing the number of users between
1 and 20 in order to come up with scenarios that generate
data points for validating the analytical characterisations
that have been defined for LI (D) and L2 caches’ request
and miss trends. During the measurement epoch, each of
the user instances cycles through the same set of operations
(involving data accesses, additions and updating the running
totals of double-precision parameters). The user request cy-
cles are punctuated by delays that have been defined in the
program by inserting a sleep time duration of 100 millisec-
onds.

The principal definitions in CodeAnalyst involve (a) mak-
ing configurations for capturing specific CPU and memory
operational events that are of relevance to the validation of
L1 and L2 cache trends, (b) setting the duration of the mea-
surement profile, (c) specifying the initial delay time from
program launch before CodeAnalyst monitoring tool can be-
gin recording the specified hardware event metrics and (d)
specifying the launch of the C++ test program from Code-
Analyst so that its runtime execution along with the CPU
hardware performance monitoring can take place concur-
rently. A delay time of 20 seconds and a profile measure-
ment period of 25 seconds are specified in the CodeAnalyst’s
session settings facility. The following hardware events are
selected for monitoring:

• Data Cache Access (for both Levels 1 and 2)

• Data Cache Misses (for both Levels 1 and 2)

• Requests to L2 (Cache)

• L2 Misses

• CPU Clocks (Not Halted)

• Retired Instructions
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In order to isolate the data access events that only reflect
L1 (D) operations in the measurements that are captured in
CodeAnalyst, the sub-events relating Instruction Cache
(IC) Fills and Translation Lookaside Buffer (TLB)
fills are filtered out from the event specifications of L2 Re-
quests and Misses. Additionally, in order to obtain a clearer
indication of the number of data access and miss events re-
lated to L1 (D) operations, the following hardware events
are selected to provide a complementary set of metrics to
the ones mentioned above:

• Data Cache Refills from Level 2 or System Memory

• Data Cache Refills from System Memory
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Figure 4: Data Cache Access and Miss trends with
respect to User Load.

The trends in Figure 4 show that there is a linear in-
crease in both Data Access and Miss Events at the L1 (D)
as the number of user generated requests rises uniformly
from 1 to 20. The linear increases are conformity with the
analytical characterisations derived for miss ratios that oc-
cur in N-Way set associative caches as considered in Section
4. Similar trends for Level 2 cache requests and misses are
presented in Figure 5, which is also in agreement with the-
oretical derivations of N-Way cache set associativity.
The actual cache miss ratios calculated for the L1 (D)

and L2 stages are shown in Figure 6 and, in harmony the
analytical expression developed in Section 4, it can also be
established on the graphs that the average Instruction per
Cycle ratio for all load scenarios remains at approximately
the same level. While the cache miss ratio level for the L2
cache is fairly constant, the miss events are so high that
on average they constitute around 45 % of L2 Requests.
The poor cache performance at the L2 stage is accounted
for by the exclusive caching scheme that is employed by
the AMD Athlon hardware on which the monitored runtime
events execute. Since the exclusive caching policy seeks to
maximise the cache space on the hardware, only a single
copy of data can be kept in the cache memory area; in other
words a cached copy can only be in either the L1 or L2
memory. The enforcement of the exclusive caching policy
involves data copies being exchanged between the L2 hits
and L1 evictions, thereby resulting in the spatial locality
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Figure 5: Data Cache Access and Miss trends with
respect to User Load.

patterns that were in the L1 cache lines during the initial
input transfers from System memory being lost whenever
evicted data is moved up to the L2 memory.
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Figure 6: Data Cache Miss Ratio and IPC Rate
trends with respect to User Load.

In order to further establish the internal consistency of
the measurements of cache memory operations, additional
metrics were captured for comparisons with the principal
cache events that are used in our experimental studies. Fig-
ure 5 shows that L1 Data Cache misses are approximately
equal to L1 evictions of cache lines into L2 cache stage. The
number of cache refills from L2 that execute in response L1
Data Cache misses is almost equal to the number of cache
line evictions from the L1 memory. From the Level 2 cache
requests following L1 misses, requests are triggered to the
System Memory in event of L2 cache misses and as shown in
Figure 5, the System Memory Refills, which are in response
to unfulfilled data requests in the L2 cache are nearly equal
to L2 Misses.

6.1 Impact of Data Locality
Another factor that was considered in the theoretical deriva-

tion of cache miss trends is the impact of locality distance
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between the data parameters that are successively fetched
the executing program which is monitored. We study the
impact of spatial locality over the cache memory by con-
sidering the same basic configuration for data access shown
in Figure 3 but the respective scenarios involve data pa-
rameters being fetched across 25, 50 and 100 matrices. For
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Figure 7: Data Cache Miss Trends for accessing 100
double-precision parameters.

each monitored program operation the runtime execution
is made up of arithmetic additions of 100 double-precision
values that are obtained from the same row on each ma-
trix. Thus, data access of 100 double-precision parameters
for the 3 scenarios featured in the study of data locality in-
volves obtaining input parameters in the following ways per
request step: (a) 4 consecutive values on each matrix row
of the 25 matrices, (b) 2 consecutive values on each matrix
row of the 50 matrices and (c) a single value on each ma-
trix row of the 100 matrices. The results shown in Figure 7
present linear trends in cache misses that emanate from the
uniform rise in the number of users and the corresponding
increase in the allocated cache memory space that is fixed
by the N-Way set associative mapping of the assigned size
of the Data Segment (DS) in system memory. The manner
of accessing the input data for the three featured scenarios
determines the respective magnitudes of spatial locality as-
sociated with obtained data. In the case of 25 matrices the
data accesses have the lowest incidence of cache misses since
input operations take advantage of successive data param-
eter on each row before launching external requests to L2
or System memory in the event of cache misses. The cache
misses get progressively worse as the number of accessed
consecutive values is lowered to two and one for 50 and 100
matrices respectively.
The complementary graphs in Figure 8 also confirm low

data locality compromises cache performance. The two fea-
tured scenarios are based on accessing 75 parameters from
25 matrices by obtaining 3 consecutive values and accessing
75 matrices by getting a single value from each row. Also
shown in both Figures 7 and 8 is the regular occurrence of
huge surges in cache misses that even exceeds the data cache
accesses for certain load scenarios as number of users con-
tinues to rise. Detailed consideration of the phenomenon is
provided in the following subsection.

�����������	
������������

�
�
�
�
�
��
�
��
�
��
�
��
�
�
��
�

����������������������

�

����

�����

�����

�����

�����

� � � � � � � 	 
 �� �� �� �� �� �� �� �� �	 �
 ��

����	
������ ����� ����	
������ !����"

Figure 8: Data Cache Miss Trends for accessing 75
double-precision parameters.

6.2 Cache Miss Spikes in Detail
The following definitions were made for detailed exper-

imental investigations of the spike phenomenon in cache
misses as they occur during data access operations at L1
and L2 stages:

• Number of users - 160 (Fixed).

• Number of accessed double precision parameters - 4 to
200 (Increasing uniformly in steps 4).

• Number of matrices across which the double precision
parameters are fetched - 50.

On Figure 9 one of the featured trends is the linear increase
in the number of L1 Data Cache misses as the number of
requested data parameters by each user rises uniformly. In
the case of L1 (D) cache miss events, it can be seen that two
component characteristics contribute in shaping the pattern
shown on Figure 9, one of which component trend being
the linear rise in cache misses as the number of request data
parameters is increased. As presented in Figure 4, the linear
trend follows the analytical relationship that is defined by
basic expression, (1 − λαβ), for quantifying L1 cache miss
ratios associated with homogeneous memory load in CPU
cache systems that employ N-way set associative mapping
strategies for allocating cache memory space. The other
significant trend characterising the L1 Data Cache misses is
the regular occurrence of sharp rises in cache miss events at
intervals of 8, 16 and 32 parameters. These observed sets of
cache miss spikes are a superimposition to the linear trend
of L1 (D) misses and they thus combine to give the total
L1 Data Cache misses shown by Figure 9. The number of
total L1 Data Cache refills from the L2 Cache and System
memory levels are nearly equal to the cache miss event in the
L1 (D) cache and this relationship is in harmony with the
configuration shown in Figures 1 and 11, where as a result
of employing exclusive cache policies on the AMD hardware,
the L1 (D) cache misses are satisfied by the cache refills from
both the L2 cache and system memory.

The number of L2 cache requests follows the same pattern
associated with L1 Data Cache misses of regularly occurring
spikes that are superimposed onto the linear growth to the
number of request events to the L2 cache. It can also be
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Figure 9: Trends in L1(D) and L2 Cache Events vs
Load.

observed that L2 requests are significantly lower that the L1
Data Cache misses. The difference can be attributed to the
fact that some of the L1 (D) misses are satisfied in the Victim
Buffer entity, a small cache memory unit, that sits between
the L1 and L2 cache stages so that in line with exclusive
cache policies, the exchange of data copies between the two
cache levels is facilitated whenever an L1 miss results in a
cache hit at the L2 stage. Reference can be made to Figure
11 to establish the functionality offered by the VB. Thus, it
is only in the case of VB miss events that L1 (D) misses are
eventually directed as requests to the L2 cache.
The L2 cache misses to System memory result in refills to

the L1 (D) cache that are nearly equivalent to the number of
cache misses that occurred at L2 stage as shown in Figure 9.
It can also be observed that no spikes in cache miss events
occur at the L2 cache stage since there is no attached VB
between the L2 and System memory elements. Just as in the
case presented in Figures 5 and 6, there is a linear trend in L2
cache misses as shown in Figure 9. This linear rise in cache

miss events follows the analytical relationship, (1−λαβ−µβ)
(1−λαβ)

,

derived for cache miss ratios associated with homogeneous
loads on memory hardware that employs N-Way set asso-
ciativity techniques for allocating cache memory space at
L1 and L2 stages.
The impact on program performance of surges in L1 (D)

cache misses are shown in Figure 10, where the retired In-
structions per Cycle (IPC) ratio falls from the average of
5.5 to around 4.3 when the number of data parameters re-
quested per user thread is either 32, 96 or 160. The IPC ra-
tio further dips to an average of 2.9 whenever the requested
data parameters are equal to 64, 128 or 192. The impact of
cache miss surges shown in Figure 10 is in contrast to the
trend presented in Figure 6, where the average CPI ratio of
0.18 (or IPC of 5.5) is maintained for all the featured data
points. The difference is due to the fact the experimental
scenarios, from which data points of Figure 6 were obtained,
are unaffected by sharp rises in cache miss ratios.
In order to understand the spike phenomenon in DC miss

events more fully, the component operational events at the
L1 data cache are isolated and analysed individually. Since
the components of L1 Data cache miss events cannot be
broken up and traced directly from the CodeAnalyst results
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Figure 10: Impact of Cache Miss Surges on Perfor-
mance.
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Figure 11: Exclusive caching using the Victim
Buffer.

data, use is made of the measurements data of L1 Data cache
refills from the L2 Cache and System memory, which consists
of sub events that can be filtered for individual analysis. As
has been stated in connection with the graphs in Figures 5
and 9, L1 DC Misses are equivalent to Cache Refills from
L2 cache and System Memory; hence the components of L1
cache misses can be determined from the sub events of total
cache refills into the L1 (D) memory. The sub events that
make up the L2/System refills are follows:

• Modified-State Lines in L2

• Owned-State Lines in L2

• Exclusive-State Lines in L2

• Shared-State Line in L2

• DC refills from System Memory

As already stated in connection with Figure 9, the magni-
tudes of cache miss spikes follow linear pattern, increasing at
regular intervals of 8, 16, and 32 parameters. From the ad-
ditional measurements to determine the components of the
L1 Data cache refills, which are associated with the cache
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miss surges, the results in Figure 12 show that it is the refills
of Exclusive-State Lines from the L2 cache for MOES cache
coherency protocols that account for spikes. Although not
shown in the graphs, the measurements conducted in Code-
Analyst confirm that the refills into L1 (D) associated with
the other MOES cache coherency states (i.e. the Modified,
Owned and Shared states) bear very little or no connection
to the steep cache miss rises, and as already highlighted from
considering Figures 5 and 9, the refills into L1 (D) cache
from System memory show a steadily increasing trend with
applied user load.
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Figure 12: L2 Exclusive Cache Refill Events vs Load.

Another noteworthy feature that is presented in Figure
12 is that three separate spike trains can be traced. The
magnitude of cache misses for each train approximate to a
straight-line graph that can be produced through the origin
as shown by the three lines obtained from joining the cache
miss peaks shown in Figure 11. The magnitudes, f(n), of the
exclusive cache cache miss events as well as the regularity of
cache miss occurrences with respect to number of accessed
parameters, n, is summarised by the relationship(s) shown
below.

f(n) =


0 if n = 4r with r a positive odd integer
M1n if n = 8r with r a positive odd integer
M2n if n = 16r with r a positive odd integer
M3n if n = 32r with r a positive integer

The respective gradients, M1, M2, and M3 are 1.12, 11.20
and 16.23 for the data access patterns considered in the par-
ticular scenarios whose results are shown in Figure 11. The
peaks in cache misses associated with M3 are responsible for
the most significant performance knocks as shown by lowest
IPC ratios in Figure 9. Given the deterministic nature of the
cache miss spikes, it thus possible to determine the points
where a severe fall in performance can occur. However, fur-
ther study is required in order to fully account for the mag-
nitude of the surges that punctuate cache miss trends as the
load on the cache memory increases.

7. CONCLUSION AND FURTHER WORK
We started by highlighting the challenge of characterising

performance in on-demand computing environments given
the complexity of the current makeup of IT infrastructures.

As an enhancement to current approaches that predomi-
nantly employ benchmarking methods, we proposed the use
of PMC-based measurements, which can monitor and cap-
ture detailed low-level operational events in the CPU and
memory hardware. We used PMC data to validate key
trends for L1 and L2 Cache Misses and Processor Service
Times that were derived analytically for homogeneous loads
executing on cache hardware that employs N-Way mapping
for allocating memory space. While the measurements are
consistent with main trends derived for L1 and L2 cache per-
formance, specific cache miss rates and CPU Service Times
can only be determined if the exact locality factors associ-
ated with the data access patterns for each runtime scenario
are known.

Another aspect that was considered in the experiments
was outbreak of spikes in the cache misses as the load on
cache memory levels increases. Although there is consis-
tency to the sharp increases in the cache miss events in
terms of regularity and magnitudes of cache misses, fur-
ther event monitoring is required to gain more clarity on
the inner workings of the cache memory hardware so that
the spikes can be theoretically characterised in terms both
specific points of memory loading and the number of cache
misses where steep rises occur.

On the basis of the above observations, further research
on this work will therefore entail the following: (1) Quan-
tifying or estimating the spatial locality factors associated
with specific data access schemes for homogeneous loads. (2)
Quantifying parameters, M1, M2 and M3 in order to pre-
dict and head off worst-case scenarios for application perfor-
mance that emanate from cache miss spikes. (3) Extending
the characterisations of cache miss ratios and AMAT to sce-
narios with mixed workloads. (4) Establishing the overall
CPU Response Time by considering CPU Waiting Times at
the scheduler and using queuing theory to estimate variabil-
ity of OS scheduling times with load. (5) Carrying out more
performance investigations on other CPU hardware archi-
tectures and platforms using PMC profiling tools.
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