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ABSTRACT

This paper introduces a new method to predict performance
requirements of mobile devices’ software tasks using system
models describing the hardware and software. With the
help of clustering algorithms and linear regression, behav-
ioral models of software tasks are generated automatically.
These models are used to project the runtime of representa-
tive parts of the software tasks. The runtime of representa-
tive execution parts is determined with instruction-accurate
simulations which are not feasible for whole executions. The
inputs for the projection task a model of the hardware plat-
form and input data parameters, especially the data size. A
major advantage of this approach is that the developers do
not have to estimate the performance requirements them-
selves. In this way the method helps to seamlessly integrate
the performance analysis process into the development pro-
cess. The paper introduces the ideas in detail and presents
an evaluation of the proposed method for typical software
tasks of mobile devices.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems—Modeling techniques

General Terms

Experimentation, Performance

1. INTRODUCTION
In the area of embedded and mobile devices there is a

strong need to predict the performance of future systems
without building hardware prototypes. Due to short prod-
uct cycles, cost pressure during development, and a rapid
growth in this area with additional applications of the de-
vices, e.g., multimedia smart phones, it is desirable to per-
form performance analyses without hardware prototypes. In
the literature a number of performance engineering meth-
ods are introduced. The Software Performance Engineering
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(SPE) process is probably the best known [26]. The basis
of all these methods is the specification of resource require-
ments for all software tasks and the specification of hard-
ware components’ capabilities. In early development stages
of completely new systems, this information has to be esti-
mated, because no predecessor system is available for mea-
surements. The development of mobile devices is usually
not started from scratch, but developers can often reuse al-
ready existing implementations of certain software tasks [4].
For the performance analysis this has the advantage that
performance requirements for these tasks can be better de-
termined. The general recommendation to obtain meaning-
ful figures for resource requirements is to use measurements,
because the accuracy of the requirement specifications has a
direct influence on the accuracy of the overall performance
analysis.

In performance analysis a typically required information
is the amount of CPU time per software task. These per-
formance values are usually scaled with a processor speedup
rate to adjust them to the modeled hardware. We show that
this approach can lead to undesirable results in the area of
mobile devices. Especially in the area of mobile systems
this can result in wrong design decisions because hardware
and software have to be carefully matched. A subsequent
modification of the hardware is not as easy as for desktop or
server systems because the upgrade capabilities are very lim-
ited. Since ARM processors are widely deployed in mobile
systems, this paper focus on ARM processors [2, 3, 28].

In the area of mobile devices with configurable hardware
platforms and a wide variety of hardware modification pos-
sibilities, it is a challenging task for developers to estimate
the performance impact of hardware modifications on the
runtime of algorithms. Moreover, software developers think
in units of the input data when they specify workloads for a
scenario, but the performance requirement annotations need
to be specified in CPU time. For example, consider a use
case containing a software task of compressing a photo with
the jpeg algorithm. If the performance scenario is changed
and a photo with a higher resolution and more pixel is used
as input for the use case, the performance requirements in-
crease and have to adapted by the developer. When the
hardware platform is changed, the required CPU time has
to be updated, too. Developers have to be enabled to vary
input data parameters in an easy way. The determination
of performance requirements is an additional effort, which
inhibits the smooth integration of performance analysis in
the development process. At this point it could be desirable
if resource requirements would be determined automatically
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based on the input data parameters and the modeled hard-
ware. Therefore, a method is required that predicts the
performance requirements with the help of the indication
of the program, the input data parameters, and a model of
the hardware platform. The goal of our method is to auto-
matically generate performance requirement estimations of
software tasks for the specified hardware platform. These
predicted requirements do not need to be scaled with a pro-
cessor rate because the tool already took the hardware set-
tings into account.

The rest of the paper is structured as follows. Section 2
presents shortcomings of the usage of simple processor speed-
up rates and motivates our method. Section 3 gives a short
introduction into the modeling of hardware platforms with
UML. Section 4 describes the properties of program execu-
tions which form the basis for our ideas of behavioral model
creation. The creation of the behavioral models is described
in section 5. Afterwards an evaluation of the method is pre-
sented in section 6. Section 7 concludes the paper. Related
work is introduced in the respective sections where needed.

2. MOTIVATION FOR BEHAVIORAL

WORKLOAD MODELS
Common performance engineering methods require the

annotation of software tasks with the expected resource re-
quirements. The SPT profile and its successor, the MARTE
profile, introduce and define these annotations and their
properties. For example, the MARTE profile specifies to
include the required demand on the executing CPU in time
units in the annotation of a software task [21]. Figure 1
presents an example adapted from the official MARTE pro-
file document. The tasks are annotated with a ≪PaStep≫

annotation and the requirements on the executing processor
are specified in the hostDemand tag in time units, i.e., 0.5
ms and 2.5 ms, respectively.

Figure 1: Annotation example adapted from the of-

ficial MARTE profile specification.

In the same way as software tasks are equipped with anno-
tations specifying their non-functional properties, hardware
components are also equipped with annotations. The exe-
cuting component, i.e., the CPU, is annotated with a prop-
erty specifying the relative speedup compared to a reference
processor. The processor rate is used to adapt the speci-
fied software requirements to the modeled hardware. These
performance requirement specifications are the basis of the
performance analysis and the performance predictions of the
system under development.

5
1

0
1

5
20

25
3

0

b
lo

w
fi
s
h

_d

b
lo

w
fi
s
h

_e

b
z

ip
2_c

b
z

ip
2_d

c
jp

e
g

c
jp

e
g200

0

c
rc

d
ijk

s
tr

a

d
jp

e
g

d
jp

e
g200

0 m
a

d

p
gp

_d

p
gp

_e

ri
jn

d
a

e
l_d

ri
jn

d
a

e
l_e

s
tr

in
gs
e

a
rc

h

s
u

s
a

n
_s

ti
ff

m
e

d
ia

n

ti
m

e
 p

e
r i
n

s
t.

 [n
s
]

Figure 2: Box plots of the average time per instruc-

tion for program input pairs on an ARM9 with an

instruction cache of 16 KB and a data cache of 8 KB.

2.1 Performance Engineering and
Mobile Systems

In the area of mobile devices, developers have a bigger in-
fluence on hardware details than in the development of desk-
top and server software systems. Therefore, the application
of this approach raises the following questions: How does
the processor rate change when an additional cache level is
introduced? How does the processor rate change when a
slower memory module is used? Are simple processor rates
sufficient at all to reflect different platform configurations
that are available for mobile systems?

2.2 Shortcomings of Processor Rates
The standard approach from the hardware developers’

point of view is to simulate standard benchmarks on hard-
ware models of the different configurations and determine
an average speedup. This speedup value would be used as
processor rate to adjust the performance requirements. We
simulate executions of typical algorithms for mobile systems
with several inputs on different platforms to answer the ques-
tion whether it is a valid approach to use a unique average
speedup value to adjust the performance requirements of all
software tasks. The programs are taken from the MiBench
suite [16] and the MediaBench II suite [14]. The first suite
is specialized on embedded and mobile devices and the lat-
ter suite focuses on multimedia algorithms. Input data for
the simulation runs are taken from the MiDataSet collec-
tion [15].

In order to be able to compare runtimes of different pro-
grams and executions of the same program with different
input data sizes, we calculate the average time required for
the execution of one instruction for each execution. Figure
2 shows a box plot of this average time per instruction for
several executions with different inputs of typical mobile de-
vice algorithms simulated on a standard OMAP board with
an ARM processor and an instruction cache of 16 KB and a
data cache of 8 KB [28].

It can be seen that the average time per instruction differs
significantly for the programs. For example, the average
time per instruction in case of the pgp decryption (pgp d)
program is several times higher as the values for the jpeg
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Figure 3: Box plots of the average time per instruc-

tion for program input pairs on an ARM9 with an

instruction and data cache of 32 KB and a unified

2nd level cache of 128 KB.

algorithms. Outliers, which are drawn as circles in the box
plot, occur nearly for all algorithms. These are executions
with very small input files, so that the initialization phase
is the dominant part in the execution which influences the
average time per instruction value.

Figure 3 shows the average time per instruction for the
same algorithms, but on a platform with a different cache
hierarchy, i.e., 32 KB instruction and data cache and a uni-
fied second level cache of 128 KB. In general, it can be seen
that the average time per instruction decreases, but the time
per instruction does not decrease by the same factor for all
algorithms. For example, on the first platform configura-
tion, the average time per instruction for jpeg compressions
(cjpeg) is higher than for jpeg decompressions (djpeg). But
on the platform with larger caches the situation for these al-
gorithms is vice versa. The same can be observed for dijkstra
and djpeg.

2.3 Program-specific Processor Rates
These analyses show that it is not sufficient to determine

one average processor rate to reflect the performance influ-
ence of platform changes like cache and memory modifica-
tions. A solution might be to determine processor rates for
single programs or for groups of programs. This would be
a valid approach if the executions could be accurately cap-
tured by mean values. However, during the execution of
programs particular parts reoccur, e.g., loop bodies or func-
tions. If only one program part reoccurs and characteristics
like instruction mix and memory access patterns are simi-
lar, an average processor rate per program may be sufficient.
However, usually several program parts reoccur during a
program’s execution. These parts can have completely dif-
ferent characteristics, so that the performance influence of
platform modifications can be different. Figure 4(a) shows
average time per instruction during an execution of the pgp
decryption program. The average time per instruction is de-
termined for fixed intervals of 100,000 instructions. These
intervals are plotted on the x-axis and the corresponding av-
erage time per instruction is denoted on the y-axis. It can
be seen that phases with different times per instruction ex-

ist. Figure 4(b) shows the average time per instruction for
intervals of a jpeg compression execution. The plot has a
different structure, but once again it can be seen, that dif-
ferent program sections with different performance demands
are executed. Therefore, it is not sufficient to determine one
average processor speedup even on the granularity of single
programs, because platform modifications can have different
performance impacts on program parts and the occurrence
of program parts can depend on the input data size.

(a) pgp decryption

(b) jpeg compression

Figure 4: Time per instruction values for executions

of pgp decryption and jpeg compression. The time

per instruction is calculated for intervals of 100,000

instructions.

These results show that specifying meaningful values for
performance requirements and resources is not an easy task.
Especially in the context of mobile system design, where
developers modify the hardware of the system, it is a chal-
lenging task to determine good performance estimations.

2.4 A Performance Engineering Process for
Mobile Systems

A possibility to increase the accuracy of requirement es-
timations for software tasks that are already implemented
are instruction-accurate simulations of selected executions.
These simulations would have to be integrated in the per-
formance engineering process. Figure 5 presents a schematic
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Figure 5: Standard performance analysis cycle.

overview of the performance analysis cycle used in standard
software performance engineering methods, e.g., [26].

Since the selection of the hardware platform is also part of
the system design process in mobile systems development,
the simulation of the software tasks on detailed hardware
models would have to be integrated into the performance
analysis loop in the step “add software and hardware re-
source requirements”. In this adapted approach the detailed
hardware simulation would become part of the performance
analysis loop. Unfortunately, these simulations are very time
consuming, i.e., runtimes of days or even weeks. There-
fore, it is not practical to have these detailed simulations
in the loop to find the optimal software/hardware settings.
Moreover, these simulations are based on real executions of
programs requiring input data files. Our goal is to enable
developers to specify the input parameters and the size of
the input data only. Therefore, the time-consuming simula-
tions have to be removed from the loop and more abstract
workload models are required. Figure 6 presents an adapted
performance engineering process which addresses the afore-
mentioned requirements. The detailed hardware simulation
of existing algorithms is replaced with a detailed hardware
simulation that takes behavioral models as input. These
simulations are intended to be orders of magnitudes faster
than instruction-accurate simulations of complete program
executions and base on input parameters instead of input
data. The behavioral models have to be created in a pre-
requisite step which has to be independent of the hardware
configuration. In this way, the behavioral models are valid
for all modeled hardware platforms in the analysis loop. Of
course, the usage of the behavioral models leads to less ac-
curate performance estimates than instruction-accurate sim-
ulation of complete program executions. Nevertheless, the
advantages of the behavioral models are that no real input
data is required during the analysis cycle and resource re-
quirements for any input data size can be easily predicted
within a reasonable amount of time. These advantages out-
weigh the disadvantage of losing some accuracy.

The method frees developers from the necessity to anno-
tate software tasks and hardware resources with estimated
performance requirements and processor rates. Instead, de-
velopers are enabled to simply specify the crucial input data
parameters of the software tasks and model the hardware in

Figure 6: Optimized performance analysis cycle

with behavioral models in the analysis loop.

detail, so that the performance demands can be automat-
ically predicted. The method takes the program, crucial
input parameters, and the hardware model as input to pre-
dict the required CPU time. From the developers’ view, the
tool is a black box as depicted in figure 7.

Figure 7: The developers’ view of the method is a

black box which takes the software task, input data

parameters, and a hardware model as input.

3. DETAILED PLATFORM MODELING

WITH UML/SYSML
Our method requires a detailed hardware modeling to sim-

ulate requirements of software tasks’ executions in detail.
Since the de facto standard for modeling in the area of soft-
ware and performance engineering is UML, the hardware
modeling should also be enabled with UML and its pro-
files MARTE and SysML. In [23] we introduced a modeling
approach for embedded and mobile device hardware, espe-
cially ARM processor based platforms. In the following, we
present the most important ideas and aspects of the mod-
eling approach. Due to the decomposition and refinement
capabilities of UML, it is possible to seamlessly integrate
a detailed hardware specification in a model primarily fo-
cused on software aspects. The components of the platform
are modeled with basic block diagrams and internal block
diagrams of SysML which are similar to UML’s class di-
agrams and composite structure diagrams, respectively. In-
stances of hardware components which are defined as blocks,
are used as parts in internal block diagrams. Figure 8 de-
picts an internal block diagram specifying the architecture
of an ARM9 system. The cache hierarchy and connections
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between the caches, the bus, and the memory system are
modeled. Stereotypes defined in the MARTE profile are
applied to enhance the model with semantics. Since the
MARTE profile does not provide detailed enough annota-
tions to model the processor pipeline in the required level
of detail, we introduced new stereotypes to model the pro-
cessor internals in UML [23]. These UML diagrams can
be used to automatically configure the instruction-accurate
platform simulator. In this way the detailed hardware mod-
eling is seamlessly integrated in the system model and can
be automatically used for the performance predictions.

Figure 8: Internal block diagram specifying an

ARM9 example system.

4. KEY CONCEPTS OF THE METHOD
This section introduces the key concepts of our method.

The basis of the method are the following properties of pro-
gram executions. In the following, these properties are listed
and are examined in detail afterwards.

1. Programs have one or more input data classes. An
input data class is characterized by the code which is
executed by the program while processing input data.
Members of the same input class have similar executed
program code parts.

2. Single program executions have recurring phase behav-
ior. The same or similar parts of the program code are
executed at different times during execution.

3. The recurring phases are very similar for program ex-
ecutions of inputs from the same input class.

4. The length and occurrence of recurring phases depend
on the size of the input data.

The first observation, stating that programs can have in-
put classes, is already reviewed in literature of different
areas. For example, in the context of compiler optimiza-
tions, representative runs are used as a basis to identify
hot paths in programs [6]. Eeckhout et al. examine the in-
put variability of programs to enhance the design of bench-
mark workloads and to reduce the number of program ex-
ecutions required to cover the workload space [9, 13]. Wall
used matchings between two executions of a program on
the level of functions to determine the difference in execu-
tions of the same program [29]. We adapted these matchings

to be usable on the level of basic blocks. A basic block is
a section of code with only one entry and one exit point.
Basis blocks have a much finer granularity than functions.
The original matchings are based on the frequency of func-
tion calls, we adopted the metric and use the coverage of
basic blocks so that not only the frequency is considered
but also the size of a basic block. The coverage of a ba-
sic block bb for a given program execution is defined as:
coverage

bb
= frequency of bb ∗ size of bb in instructions

overall number of instructions
. Figure 9

presents a box plot of frequency matching scores for sev-
eral executions of pgp encryption. The n frequency matching
score between two profiles, A and B, is defined as the sum of
coverages in profile B of the n basic blocks with the highest
coverage in profile A divided by the total of the sum of cov-
erages of the top n basic blocks of profile B. Values close to
1 indicate a high level of similarity between two executions.
For each execution, the box plot shows the matching scores
with all other executions. It can be seen that some execu-
tions differ and have lower average matching scores. In the
case of pgp encryption these are executions with small inputs
for which the start and end phase dominate the execution.
The other executions, however, show a high similarity and
belong to the same input class. In case of jpeg algorithms
and tiffmedian, images stored in gray colorspace lead to a
different execution profile than full color images (no figure
shown).
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Figure 9: Basic block frequency matching score for

executions of pgp encryption.

Next, we address property 2, which states that single pro-
gram runs have recurring phase behavior. Figure 10 depicts
a similarity matrix. A similarity matrix compares objects
with each other, and for each pair of objects a dot is plot-
ted. The color of a dot corresponds to the level of similarity
between the corresponding objects. For the matrix in fig-
ure 10 an execution of the pgp decryption algorithm is split
into fix length, non-overlapping intervals. These intervals
are compared with each other and the more similar two in-
tervals are, the darker the corresponding dot is drawn. Since
we want to demonstrate that a program exhibits recurring
phases of similar code regions, we determine basic block vec-
tors for each interval and calculate the similarity between
these vectors. A basic block vector is a vector containing
the frequencies of each basic block during the observed time
interval. Similar investigations for SPEC benchmarks can
be found in [24, 25]. As distance or similarity metric, re-
spectively, we choose the city block distance. The vectors
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are normalized so that the city block distance between any
pair of vectors is in the interval [0, 2].

In figure 10, intervals with a length of 100,000 instructions
are compared with each other. It can be seen that phase
behavior exists. Dark dots indicate a high similarity of the
corresponding intervals. If one takes a point on the diagonal
line of the coordinate system and follows the line parallel to
the x-axis, all dark dots on this line indicate a similar and
thus, recurring interval.

Figure 10: Similarity matrix of basic block vectors

of a pgp decryption execution with an interval size of

100,000 instructions.

Next, we show an example for the third property, which
states that recurring phases are similar not only within one
program execution, but are also similar to phases of other
program executions for inputs from the same input class.
For this reason we compare basic block vectors of two differ-
ent program executions with each other. Figure 11 depicts
the similarity matrix for two different executions of pgp de-
cryption. The similarity matrix is not quadratic in this case,
because the executions are of different length. Again, recur-
ring patterns can be seen, which demonstrates that similar
intervals exist. Since the comparison is based on the occur-
rence of basic blocks, this shows that the same program code
areas are executed.

Figure 11: Similarity matrix for intervals from dif-

ferent executions of pgp decryption.

Finally, we address the fourth property, which states that
the lengths or the occurrence of recurring phases depend
on the size of the input data. Figure 11 also underlines
this assumption, because the rectangles are not quadratic.
The dark parts are horizontally sustained and the intervals
of the execution with the larger input are drawn on the
x-axis. This demonstrates that from each recurring phase
more intervals are executed for the larger input file. For a
phase whose occurrence is independent from the size of the
input, the rectangle would be quadratic.

The presented properties of program executions are the
basis for our method of behavioral model creation. In the
following section the method is described in detail.

5. BEHAVIORAL MODELS CREATION
This section describes the key ideas and the algorithm

for our behavioral workload model creation. The goal is to
develop a method that generates behavioral models for soft-
ware tasks of mobile devices. The behavioral models shall
take input parameters of a software task as input and pre-
dict the runtime on a modeled hardware platform. The key
idea of the method is to find similar parts in a software task’s
executions for inputs from the same input class and to math-
ematically describe the relationship between the input data
sizes and the occurrence of recurring and similar parts. In
the following we assume that only executions belonging to
the same input data class are considered. The input data
classes can be found by analyzing several executions of a
program with different inputs and utilize basic block match-
ings as presented in section 4. At this point in the method
some domain knowledge or manual interaction is required to
identify the input data parameters which are responsible for
different execution paths, e.g., identifying the color palette
of images as an input data class parameter.

Figure 12 depicts the main steps of the method. First we
create processor instruction traces of a software task’s execu-
tions for different inputs. The traces are split into fix length
intervals. These intervals are compared with each other and
similar intervals are grouped together. The detected groups
are program phases of the software task. Then the number of
intervals for each phase and execution is determined. These
numbers in combination with the sizes of the input data are
used to determine a mathematical function describing the
relationship of input data size and number of intervals per
phase. Since an appropriate interval size is unknown a pri-
ori, we have to analyze a set of different interval sizes. This
aspect is discussed in more detail in section 5.4. Details and
challenges for each step are presented in the following.

5.1 Recording of Instruction Traces
In the first step, processor instruction traces for execu-

tions of software tasks are recorded. Instruction traces are
captured with the help of a modified version of the popular
processor emulator Qemu [7]. This modified version records
all executed instructions, accessed registers, and memory
addresses. These data are written into a buffer of the host
memory during execution. When the buffer is full, the em-
ulation is paused and the whole buffer is written onto hard
disk. In this way the effects of the emulation’s slowdown
due to the recording are minimized.

It is also possible to use our method with execution-driven
tools instead of trace-driven tools. The advantage of ex-
ecution-driven generation of interval characteristics and sim-
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Figure 12: Overview of the steps of the behavioral

model creation.

ulations is that no hard-disk storage has to be provided for
instruction traces. Nevertheless, we apply the trace-driven
approach due to the following reasons. An advantage of the
trace-driven approach is that reproducibility can be easily
guaranteed because once a trace is recorded it can be used
as input without unintended changes due to effects of the
execution environment. The disadvantage of huge storage
requirements is not as incisive for mobile device software
tasks as for SPEC benchmark traces because much less in-
structions are executed. The lack of freely available tools
supporting ARM processors is another reason, since the im-
plementation of a trace-driven simulator is less time consum-
ing than the implementation of the whole processor logic. A
possible candidate was the popular SimpleScalar simulator
[5], but the required SimpleScalar ARM compiler is out of
date and moreover, not all system calls are implemented in
case of ARM binaries. Therefore, we use our trace-driven
ARM processor based platform simulator [23] and Qemu.

5.2 Interval Characteristics
In the second step, the instruction traces are split into

fixed length intervals and characteristics for these intervals
are calculated. The behavioral models have to describe the
program behavior as a function of the input parameters.
Therefore, appropriate characteristics have to be found. In
the literature, different types of characteristics which de-
scribe the execution of a program are proposed [20, 12,
11, 13, 10, 18, 19, 22, 24, 25]. These characteristics can
be classified into architecture-dependent and architecture-
independent characteristics.
The architecture-dependent characteristics measure proper-
ties of the hardware during the execution of a program. For
example, the instruction and data cache miss rates or the
average required time per instruction are characteristics of
this class. The disadvantage is that these characteristics can
vary when the program is executed on different hardware as
already shown in section 2 in the average time per instruc-
tion figures for different platforms. Therefore, this charac-
teristic class is not appropriate for our analysis because the
behavioral models have to be usable for all hardware plat-
forms.
Architecture-independent characteristics can be divided into
code-based properties and properties of the instruction se-
quences, register, and memory accesses. Properties of the
latter type are for example the instruction mix, the live
time of registers, the reuse distance of memory addresses,

etc. In contrast, code-based characteristics describe the ex-
ecution with elements of the source code. The number of
function calls, loop iterations, or basic block occurrence are
examples for this class of characteristics. Code-based char-
acteristics have the disadvantage that only executions of the
same binary can be compared with each other, because the
functions and basic blocks are unique for a binary. In con-
trast, non-code-based characteristics can be used to compare
executions of different programs, e.g., the instruction mix
or memory access properties can be compared between two
completely independent programs. A disadvantage of the
non-code-based characteristics is that different functions or
different basic blocks can have the same or very similar non-
code-based characteristics, e.g., a similar instruction mix.
This introduces fuzziness into the characterization when the
behavior has to be analyzed. Since we need characteristics
to analyze the program behavior for executions of the same
program binary but with different inputs, the restrictions
of the code-based characteristics can be ignored. Therefore,
code-based profiles are best suited for our purpose and we
characterize the intervals with the help of basic block vec-
tors.

5.3 Identification of Common Phases
In the third step, we want to identify intervals which are

similar and group them together. This is a typical task for
cluster algorithms from the data mining area [27]. Differ-
ent cluster algorithms exist having their own pros and cons.
Some algorithms have been already utilized in related work.
Eeckhout et al. analyze the composition of benchmarks and
determine properties of programs of a benchmark suite to
analyze which parts of the workload space are covered by the
benchmark programs. They apply clustering algorithms on
vectors of microarchitecture-independent characteristics like
the instruction mix and register usage to detect programs
in benchmark suites which have similar hardware require-
ments. Since the number of elements they have to cluster
equals the number of program-input pairs in the benchmark
suites under study, they apply hierarchical clustering algo-
rithms. Hierarchical clustering algorithms are usually more
stable but also more time consuming than non-hierarchical
algorithms [27].
All cluster algorithms require a proximity or distance mea-
sure, respectively, to be able to compare objects with each
other. In our case the objects are intervals from the instruc-
tion trace for which basic block vectors have been deter-
mined. In principle any distance metric is possible, but the
city block distance has been successfully applied in similar
contexts and has the advantage that differences in the same
dimensions get a higher weight than with the Euclidean dis-
tance [25, 17]. In this way, a difference in the occurrence
of one basic block can not be compensated by small or no
differences of other basic blocks.

Since the number of executed unique basic blocks can eas-
ily reach thousands, the dimension of the basic block vectors
become large. Unfortunately, a large elements’ dimension-
ality hinders the clustering process. In case of a k-means
algorithm, the distances between the elements and already
identified groups have to be calculated several times. More-
over, the memory consumption of the basic block vectors
becomes a significant challenge and identifying similar vec-
tors becomes harder. This is known as the curse of dimen-
sionality, and so called feature selection methods have to
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be applied to reduce the number of dimensions [27]. Eeck-
hout et al. use principal component analysis (PCA) to trans-
form architecture-independent characteristic vectors of dif-
ferent programs into vectors of much smaller dimensionality,
thereby only losing a small amount of overall variance of the
data set. PCA is a mathematical method to find new di-
mensions that better capture the variability of the data. In
an iterative process, a new set of variables is determined.
These variables are linear combinations of the original vari-
ables and usually only a small number of these new variables
is required to capture a sufficient amount of the overall vari-
ance. The authors of Simpoint [17] use random projection
to transform interval basic block vectors into a space with
fewer dimensions. They empirically determine a value of 15
dimensions to be sufficient in finding the same number of
groups as with vectors of full dimensionality.

The first approach of using PCA has the drawback that
this analysis has to be executed on all basic block vectors
with full dimensionality. In our experiments it was not pos-
sible to apply PCA in all cases, because the amount of data
was too large. We apply some kind of irrelevant feature re-
duction and reduce the basic block vectors to the number
of dimensions necessary to cover a certain amount of the
program’s executions. The coverage of a basic block is de-
fined as the number of executed instructions belonging to
the particular basic block divided by the number of over-
all executed instructions. In this way, basic blocks that are
small and seldomly executed are not taken into account dur-
ing the analysis. Figure 13 presents the cumulative coverage
of basic blocks for several executions of the pgp decryption
program. The y-axis depicts the cumulative coverage of the
basic blocks and the x-axis lists the basic blocks sorted by
their coverage in a decreasing manner. The order of the
basic blocks is determined by first analyzing all executions.
For the sake of readability, the x-axis does not depict all ba-
sic blocks but is cut off after a coverage of 99%. The outlier
curves belong to the two smallest executions.

Table 1 gives an overview of the number of basic blocks
needed to reach a particular coverage level for different pro-
grams from the Mibench suite and inputs from the Mi-
DataSets collection. A coverage level of 90% does already
significantly reduce the dimension of the basic block vectors.
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Figure 13: Cumulative coverage of basic blocks for

executions of pgp decryption.

Table 1: Number of basic blocks for different cover-

age level.
coverage

program 85% 90% 95% 99% 100%

cjpeg 26 35 63 409 4661
djpeg 27 36 58 161 4832
pgp d 72 111 273 1005 5184
pgp e 138 272 552 1376 5061
dijkstra 5 6 8 80 3413
rijndael d 62 80 111 297 3871
rijndael e 65 86 119 278 3743
tiffmedian 29 76 332 1271 5128
bzip2comp 133 161 249 545 5533
bzip2decomp 82 115 185 520 5209

5.4 Finding Appropriate Program Phases
After reducing the basic block vectors for each interval to

the most frequently occurring basic blocks, these vectors are
used as input for the k-means algorithm which groups sim-
ilar interval vectors. The k-means algorithm requires that
the number of groups has to be specified a priori. Unfortu-
nately, the number of program phases of the software task
under study is unknown and has to be found automatically.
Moreover, different software tasks exhibit phase behavior
on different granularity levels, so that the number of pro-
gram phases can be influenced by the current interval size,
too. Therefore, we iterate over several numbers of groups
and choose the clustering with the best properties for our
behavioral model creation. In determining an appropriate
number of groups, a tradeoff exists between a fine grained
classification with many phases and a coarse classification
with only a few large phases. The two extreme cases in-
tuitively demonstrate this tradeoff. Assigning each interval
its own phase results in a very fine grained classification
with as much phases as intervals. This makes generation of
mathematical models basing on the number of phase mem-
bers imfeasible. On the other hand, putting all intervals
into one phase ignores the phase behavior of the program
executions. Since the goal is to capture the phase behav-
ior of programs in order to be able to construct models for
the relationship of phase occurrence and input data size,
the goodnees of the behavioral models of the current clus-
tering is estimated. For each combination of interval size
and number of program phases, a score (cf. next section) is
calculated to determine a combination which is well suited
for model creation. The combination of interval size and
number of phases, that achieves the best score is used for
the final behavioral model.

5.5 Linear Regression Models
In the fourth step, mathematical functions are determined

describing the relationship between input data sizes and
number of interval members per program phase and execu-
tion, i.e., for each program phase a separate model describ-
ing the relationship of input data size and number of inter-
vals of this phase is determined. The behavioral model for
the software task under study consists of these determined
functions. Linear regression is used to determine mathe-
matical functions describing the relationship of input data
size and interval members. Linear regression can not only
be applied to linear functions, e.g., y = β1 · x + β0, as per-
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haps the name suggests. The term linear refers to the linear
combination of the individual terms βi so that any mathe-
matical function can be incorporated into the model, e.g.,
a quadratic function y = β2 · x2 + β1 · x + β0. The model
can be non-linear in the regressor variable but is linear in
the βi parameter. We assume that the type of formula such
as the order of the polynomial, the e-function, etc., is pro-
vided as an input parameter to the algorithm. This is no
general restriction because several functions can be tested
and the best fit can be chosen automatically. Moreover, the
runtime class of the software task should be known by the
performance analyst. For each combination of interval size
and number of program phases these models are determined
to calculate a score. This score is the weighted sum of the
model residuals for each program phase. The weights are
calculated as the ratios between the number of instructions
belonging to the corresponding program phase divided by
the number of overall instructions. A smaller value of the
score indicates a better model.

Algorithm 1 presents a high-level description of the algo-
rithm which performs all aforementioned tasks. Since it is
not possible to iterate over all possible interval sizes, a dis-
crete set of interval sizes has to be provided. In the litera-
ture, large interval sizes of one to ten millions of instructions
are recommended, but the programs analyzed in the liter-
ature are usually part of the SPEC benchmark suites and
the aim is not to generate behavioral models. The SPEC
benchmark programs are very untypical for mobile devices,
e.g., gcc, ocean simulations, and extensive floating point cal-
culations. Therefore, we apply smaller interval lengths of
100,000 or 1,000,000 instructions.

Algorithm 1 High level description of the behavioral model
creation algorithm

Input: program binary, input data files, interval sizes,
list of program phase numbers
Output: representatives for program phases, behavioral
model (input size → runtime)

for all input data do

create trace
extract input data size
store basic block sequence

for all interval size in interval sizes do

for all basic block sequences do

create interval basic block vectors
reduce basic block vector dimension

for all k in program phase numbers do

perform k-means clustering algorithm
for all program phase in program phases do

linear regression(input sizes, #members)

calculate weighted score

determine best score
return behavioral model for best score

5.6 Runtime Predictions
After the combination of interval size and program phase

with the lowest weighted residuals has been found, the deter-
mined functions can be used to predict the numbers of pro-
gram phase members for arbitrary input data sizes. To pre-
dict the runtime for an arbitrary input data size for a given

hardware platform, the numbers of program phase mem-
bers have to be multiplied with representative runtimes of
the corresponding program phase. The representative run-
time for one program phase is determined by simulating one
or several intervals of the program phase on the modeled
hardware. The performance analyst can choose between two
strategies to determine a representative runtime. In the first
approach, only one interval is simulated. For this purpose,
an interval which is representative for the program phase
is selected. This is done by selecting the interval which is
closest to the center of the determined group during the
clustering process of step three. In the second approach, a
configurable amount of randomly selected intervals of each
program phase, e.g., 20 or 30, are simulated on the hard-
ware model and the average runtime is calculated. Both
approaches have pros and cons. The advantage of the first
approach is that only one interval has to be simulated so that
the required simulation time is minimal. The advantage of
the second approach is that the analyst obtains additional
information about the variability of the runtime of the pro-
gram phases. Moreover, with this approach it is possible to
estimate a distribution of the runtimes.

5.7 Summary
This section presented key ideas of our method for the gen-

eration of behavioral models. The single steps of the method
were described in detail and their individual challenges were
discussed. Program executions are split into intervals which
are characterized with the help of basic block vectors. The
dimension of these vectors is reduced and a clustering al-
gorithm is executed to find similar parts in all executions.
Finally, the determined program phases and the input data
sizes of the original executions are used to construct math-
ematical functions that describe the relationship of input
data size and number of program phase members. Repre-
sentative runtimes for each program phase are determined
by simulations of one or several intervals.

6. EVALUATION
This section presents results of the application of the in-

troduced method for typical software tasks of mobile de-
vices. The whole process of recording the execution traces
with Qemu, creating the interval basic block vectors, iden-
tifying input classes, and generating the behavioral models
for each input class was performed. The evaluation focuses
on a subset of the MiBench suite [16]: bzip2, dijkstra, jpeg,
pgp, rijndael, and tiffmedian.

bzip2 is a lossless data compression algorithm. The dijk-
stra algorithm calculates the shortest path between nodes in
a given graph. jpeg can be used for lossy image compression
and decompression. pgp is the Pretty Good Privacy public
key encryption and decryption algorithm. rijndael is the
new Advanced Encryption Standard (AES) algorithm, and
tiffmedian is an image processing algorithm that reduces the
color palette of images. The input data for the algorithms
are taken from the MiDataSet collection [15]. Some inputs
have been omitted due to their size which prevented them
to be loaded into the device’s memory.

6.1 Example Analysis of pgp decryption
In the following we use the pgp decryption algorithm as an

example to present intermediate results for the steps of the
method. Afterwards, results of runtime predictions for the
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aforementioned software tasks on different hardware plat-
forms are presented.

The input data class analysis for the pgp algorithms does
not reveal any special behavior depending on the type of
input, e.g., text or binary data. However, executions for
small input files lead to different basic block profiles which
was already presented in figure 9. Therefore, we restrict the
analysis to executions with at least 10 million instructions.
Next, the algorithm for finding a good combination of in-
terval length and number of program phases is executed.
Since the executions have lengths between approx. 10 mil-
lion and 200 million instructions, we choose interval lengths
starting with 100,000 instructions and ending at 1,000,000
instructions. For the number of possible program phases we
consider 1 to 10 phases.

Figure 14 shows a clustering of all interval basic block
vectors of the pgp decryption executions under study for an
interval length of 1,000,000 instructions. Since the dimen-
sion of the basic block vectors is too large to be displayed in
a two- or three-dimensional diagram, we applied PCA and
depict only the two variables with the highest variance (cf.
section 5). Both principal components cover nearly 80% of
the overall variance. It can be seen that groups of similar
vectors exist.
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Figure 14: Clustering of basic block vectors of pgp

decryption with a length of 1,000,000 instructions.

In addition to the evaluation of the clustering with the
help of a standard clustering scoring, i.e., sum of squared
errors, an additional scoring basing on the residuals of the
linear regression is calculated. We set the regression func-
tion to be a polynomial of first degree, i.e., y = β1 · x + β0.
Figure 15 depicts the determined functions for each of the
detected program phases from the preceding clustering for
an instruction length of 1,000,000 instructions and four pro-
gram phases. The x-axis depicts the input data size and
the y-axis shows the number of cluster members per pro-
gram phase. The solid lines show the prediction function
and the dotted lines depict the 95% confidence interval of
the prediction.

In order to determine the best combination of interval size
and number of program phases, a score is calculated. This
score is the weighted sum of residuals for each of the pro-
gram phase regression models. The weight is determined as
the ratio of each program phase. In the same way, the scores
for all combinations of interval sizes and number of program
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Figure 15: Regression lines for the analysis of pgp

decryption with an interval length of 1,000,000 in-

structions and four program phases.

phases are determined. Figure 16 depicts these scores for
all interval sizes and number of program phases considered.
On the x-axis the interval sizes are drawn, the number of
program phases are denoted on the y-axis, and the z-axis
shows the score for the respective combination. A small
score indicates a better applicability of the combination to
be used as basis for behavioral model creation. In case of
pgp decryption, interval lengths of 500,000 or 1,000,000 in-
structions have good scores. Finally, the combination with
the best score is selected for the behavioral model creation.
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Figure 16: Visualization of the score that is used to

find the best combination of interval size and num-

ber of phases in case of pgp decryption executions.

6.2 Runtime Predictions
To evaluate the prediction accuracy of our method, we

simulate executions of software tasks on different platform
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models and compare the simulation results with the pre-
dicted runtimes. The platforms are modifications of OMAP
boards with an ARM9 processor and an ARM11 processor,
respectively. The ARM9 processor is modeled with a clock
frequency of 192 MHz, and the instruction and data cache
can be accessed in one clock cycle. An AMBA system bus
[1] connects the processor, caches, and the main memory
(cf. figure 8). In case of the ARM11 processor, a clock fre-
quency of 210 MHz is configured and a cache hierarchy with
a second level cache is used.

For each software task we perform a leave one out analysis
with the executions under study and compare the predicted
runtimes to the runtimes determined by simulations of the
complete instruction traces. For estimation of representative
runtimes of the detected program phases, the developers can
choose between the simulation of just one representative in-
terval or an average runtime determined by simulations of
several intervals (cf. section 5). In the following, we present
results for the representative strategy and the sample strat-
egy with 30 intervals. For the evaluation of the method, we
assume a perfect warmup of the hardware, e.g., caches.

Table 2 presents evaluation results of the prediction accu-
racy of our method. The table compares the two strategies
of determining representative runtimes with each other, i.e.,
representative vs. random samples. The modeled hardware
is an ARM9 processor with an instruction cache of 16 KB
and a data cache of 8 KB. The presented relative errors are
averages of all leave one out runs for the respective algo-
rithm. The standard deviation of these values is presented
as a precentage of the respective relative error. It can be
seen that our method predicts the runtimes with a feasible
accuracy. In general, the representative strategy performs
as good as the sample strategy, but in case of pgp encryp-
tion the prediction is not usable. In this case, the interval
closest to the cluster center is not a feasible representative.
Therefore, the recommendation is to use the sample strat-
egy, because outliers are of no consequence if the number of
samples is large.

Table 2: Mean relative errors for two prediction

strategies for different software tasks.
ARM9 i16/d8 ARM9 i16/d8

random 30 samples cluster representative

program rel.err.[%] std.[%] rel.err.[%] std.[%]

bzip2 d 24.46 28.28 22.42 27.82
cjpeg 11.94 14.13 21.53 16.45
djpeg 7.27 5.39 12.78 6.21
dijkstra 36.07 47.30 51.21 38.04
pgp d 10.31 7.84 13.62 10.16
pgp e 20.10 16.81 97.59 33.40
rijndael d 4.87 3.07 8.05 3.88
tiffmedian 12.80 10.44 16.77 10.55

Table 3 presents accuracy results for two different hard-
ware platforms while using the sample strategy with 30 sam-
ples. The first platform consists of an ARM9 processor with
an instruction and data cache of 32 KB and a unified 2nd
level cache of 128 KB. The second platform is equipped with
the same cache hierarchy but a faster ARM11 processor.
Variations in the accuracy of the predictions exist, but the
average relative errors are in a range that is suitable for per-
formance estimations. Though a completely accurate pre-

diction of the true runtimes is not to be expected, because
the individual executions, despite having similar basic block
profiles, exhibit slightly different time per instruction values.
This can be seen in figures 2 and 3, where for example the
pgp and tiffmedian boxes are stretched.

In case of dijkstra, the executed basic blocks are very simi-
lar (cf. table 1), but the algorithm works on the whole input
data and does not process it block by block. Therefore, data
cache effects become important for large inputs and intervals
of executions of small inputs are not necessarily representa-
tive for executions of large inputs although the same areas
of code are executed. With the help of reuse distances of
memory accesses it is possible to detect this effect [8].

Table 3: Mean relative errors for the prediction with

sample strategy for different software tasks on dif-

ferent hardware platforms.
ARM9 i32/d32/u128 ARM11 i32/d32/u128

random 30 samples random 30 samples

program rel.err.[%] std.[%] rel.err.[%] std.[%]

bzip2 d 30.79 31.78 30.71 32.32
cjpeg 10.46 10.93 10.43 10.93
djpeg 8.44 5.66 7.98 5.48
dijkstra 16.34 19.35 16,57 20.09
pgp d 8.30 7.15 8.21 7.10
pgp e 10.51 5.88 10.79 6.39
rijndael d 2.59 1.86 2.61 1.83
tiffmedian 10.18 8.76 11.19 9.53

7. CONCLUSION
This paper presented a method to automatically gener-

ate performance requirement estimations for software tasks.
System developers are enabled to just specify input data pa-
rameters and the size of the input data instead of resource
requirement estimations. The performance requirements of
the software tasks for the modeled hardware are automat-
ically predicted by our method. These predictions base on
behavioral models generated in a prerequisite step which is
not part of the performance analysis loop to find an op-
timal hardware/software configuration. The application of
the behavioral models is orders of magnitudes faster than in-
struction accurate platform simulations and required CPU
times for arbitrary input data parameters can be predicted.

Future work will focus on the evaluation of further algo-
rithms from the MiBench and MediaBench II suites and on
possibilities to estimate the accuracy of the predictions. Fur-
thermore, we will evaluate the usage of data address char-
acteristics in addition to basic block vectors in order to in-
crease the accuracy for algorithms such as dijkstra. More-
over, a detailed analysis of the required level of basic block
coverage would be interesting for reducing the runtime of the
clustering algorithm. Furthermore, a combination of our ba-
sic block coverage approach and random projection is also
promising. Our application of linear regression to determine
the relationship between the input data size and the number
of phase members could be enhanced by using genetic pro-
gramming. Interesting approaches to increase the accuracy
of the predictions are the application of variable length inter-
vals to determine similar parts in executions, and a special
treatment of the start and end phases.

357



8. REFERENCES
[1] ARM. AMBA Specification (Rev 2.0), May 1999.

[2] ARM Limited. ARM926EJ-S Technical Reference
Manual, 2003.

[3] ARM Limited. ARM11 MPCore Processor Technical
Reference Manual r1p0, Feb 2008.

[4] Arnold S. Berger. Embedded Systems Design: An
Introduction To Processes, Tools, And Techniques.
CMP Books, 2001.

[5] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
Infrastructure for Computer System Modeling.
Computer, 35(2):59–67, 2002.

[6] T. Ball and J. R. Larus. Efficient path profiling. In
MICRO 29: Proceedings of the 29th annual
ACM/IEEE international symposium on
Microarchitecture, pages 46–57, Washington, DC,
USA, 1996. IEEE Computer Society.

[7] F. Bellard. QEMU, a fast and portable dynamic
translator. In ATEC ’05: Proceedings of the annual
conference on USENIX Annual Technical Conference,
pages 41–41, Berkeley, CA, USA, 2005. USENIX
Association.

[8] C. Ding and Y. Zhong. Predicting whole-program
locality through reuse distance analysis. SIGPLAN
Not., 38(5):245–257, 2003.

[9] L. Eeckhout. Measuring Benchmark Similarity Using
Inherent Program Characteristics. IEEE Trans.
Comput., 55(6):769–782, 2006. Student Member-Ajay
Joshi and Student Member-Aashish Phansalkar and
Senior Member-Lizy Kurian John.

[10] L. Eeckhout, J. Sampson, and B. Calder. Exploiting
Program Microarchitecture Independent
Characteristics and Phase Behavior for Reduced
Benchmark Suite Simulation. In Proceedings of the
2005 IEEE International Symposium on Workload
Characterization, pages 2–12, Austin, TX, USA, 10
2005. IEEE.

[11] L. Eeckhout, H. Vandierendonck, and K. D.
Bosschere. Designing Computer Architecture Research
Workloads. Computer, 36(2):65–71, 2003.

[12] L. Eeckhout, H. Vandierendonck, and
K. De Bosschere. Workload Design: Selecting
Representative Program-Input Pairs. In Proceedings of
the 2002 International Conference on Parallel
Architectures and Compilation Techniques, pages
83–94, Charlottesville, VA, USA, 9 2002. IEEE
Computer Society.

[13] L. Eeckhout, H. Vandierendonck, and
K. De Bosschere. Quantifying the Impact of Input
Data Sets on Program Behavior and its Applications.
Journal of Instruction-Level Parallelism, 5:1–33, 2
2003.

[14] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf.
MediaBench II video: Expediting the next generation
of video systems research, 2009.

[15] G. Fursin, J. Cavazos, M. O’Boyle, and O. Temam.
MiDataSets: Creating The Conditions For A More
Realistic Evaluation of Iterative Optimization. In
International Conference on High Performance
Embedded Architectures & Compilers (HiPEAC 2007),
January 2007.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.

Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In WWC ’01: Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE
International Workshop on, pages 3–14, Washington,
DC, USA, 2001. IEEE Computer Society.

[17] G. Hamerly, E. Perelman, J. Lau, and B. Calder.
Simpoint 3.0: Faster and more flexible program phase
analysis. Journal of Instruction Level Parallelism, 7,
Sep 2005.

[18] K. Hoste and L. Eeckhout. Comparing Benchmarks
Using Key Microarchitecture-Independent
Characteristics. IEEE Workload Characterization
Symposium, 0:83–92, 2006.

[19] K. Hoste and L. Eeckhout. Characterizing the Unique
and Diverse Behaviors in Existing and Emerging
General-Purpose and Domain-Specific Benchmark
Suites. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 157–168, Austin, TX, USA,
4 2008. IEEE.

[20] T. Lafage and A. Seznec. Choosing representative
slices of program execution for microarchitecture
simulations: a preliminary application to the data
stream. In Workload characterization of emerging
computer applications, pages 145–163. Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

[21] OMG. A UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE). Object
Management Group, 2009.

[22] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John.
Measuring Program Similarity: Experiments with
SPEC CPU Benchmark Suites. In Proceedings of the
2005 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS 2005),
pages 10–20, Austin, TX, 3 2005. IEEE.

[23] L. Pustina, S. Schwarzer, and P. Martini. A
Methodology for Performance Predictions of Future
ARM Systems Modelled in UML. In Proceedings of the
2nd Annual IEEE International Systems Conference
Syscon 2008, 2008.

[24] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. SIGOPS Oper. Syst. Rev.,
36(5):45–57, 2002.

[25] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and Exploiting Program
Phases. IEEE Micro, 23(6):84–93, 2003.

[26] C. U. Smith and L. G. Williams. Performance
solutions: a practical guide to creating responsive,
scalable software. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2002.

[27] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison-Wesley, 2005.

[28] Texas Instruments. OMAP5912 Applications
Processor Data Manual, Dec 2003.

[29] D. W. Wall. Predicting program behavior using real or
estimated profiles. SIGPLAN Not., 26(6):59–70, 1991.

358




