
RMS-TM: A Comprehensive Benchmark Suite for
Transactional Memory Systems

Gokcen Kestor
∗

Barcelona Supercomputing
Center

gokcen.kestor@bsc.es

Vasileios Karakostas
Barcelona Supercomputing

Center
vasilis.karakostas@bsc.es

Osman S. Unsal
Barcelona Supercomputing

Center
osman.unsal@bsc.es

Adrian Cristal
IIIA - Artificial Intelligence
Research Institute CSIC -

Spanish National Research
Council

adrian.cristal@bsc.es

Ibrahim Hur
Barcelona Supercomputing

Center
ibrahim.hur@bsc.es

Mateo Valero
†

Universitat Politècnica de
Catalunya

mateo@ac.upc.es

ABSTRACT
Transactional Memory (TM) has been proposed as an al-
ternative concurrency mechanism for the shared memory
parallel programming model. Its main goal is to make par-
allel programming for Chip Multiprocessors (CMPs) easier
than using the traditional lock synchronization constructs,
without compromising the performance and the scalability.
This topic has received substantial research attention and
several TM designs have been proposed using various TM
benchmarks. We believe that the evaluation of TM propos-
als would be more solid if it included realistic applications,
that address on-going TM research issues, and that provide
the potential for straightforward comparison against locks.

In this paper, we introduce RMS-TM, a Transactional
Memory benchmark suite composed of seven real-world ap-
plications from the Recognition, Mining and Synthesis (RMS)
domain. In addition to featuring current TM research issues
such as nesting and I/O and system calls inside transactions,
the RMS-TM applications also provide a mix of short and
long transactions with small/large read and write sets with
low/medium/high contention rates. These characteristics,
as well as providing lock-based versions of the applications,
make RMS-TM a useful TM tool. Current TM benchmarks
do not explore all these features. In our evaluation with
selected STM and HTM systems, we find that our bench-
mark suite is also scalable, which is useful for evaluating TM
designs on high core counts.

∗G. Kestor is Ph.D. student at Universitat Politècnica de
Catalunya, Barcelona, Spain
†M. Valero is the director of Barcelona Supercomputing Cen-
ter, Barcelona, Spain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel programming

; D.0 [Software]: [benchmark suite]

General Terms
Performance, Measurement, Experimentation

Keywords
transactional memory, benchmark suite, performance mea-
surement

1. INTRODUCTION
While innovations in process technology increase the num-

ber of transistors on a die, the performance gains from more
complex cores and larger caches diminish. Therefore, chips
with multiple cores have quickly become a de-facto stan-
dard. Multi-core systems have the potential for significant
performance improvements, but the complexity of parallel
programming and the difficulty of writing efficient and cor-
rect code limit the effective use of these systems.

New programming models have been proposed to ease
the development of parallel applications that perform well
on multi-core architectures. Transactional Memory (TM)
[16] is one of such programming models that enables pro-
grammers to perform multiple memory operations atomi-
cally without worrying about the complexity issues associ-
ated with other programming models such as locks. How-
ever, it is unclear whether TM implementations provide suf-
ficient performance when compared to locks, in particular
fine-grained locking.

Although multiple Software TM (STM) [15, 21, 30, 32]
and Hardware TM (HTM) implementations [8, 14, 22, 34]
have been proposed, there are still open research issues, in
addition to performance, such as handling nested transac-
tions, I/O operations, system and library calls inside trans-
actions. Moreover, performance comparison of TM-based
applications against their equivalent lock-based versions is
crucial for the justification of further research in this area
as well as for convincing the industry to implement TM sys-
tems in commercial products. One major aspect of perform-

335

ing functional and performance evaluation of TM systems is
the development of a good TM benchmark suite.

We identify six desired properties for a TM benchmark
suite: (1) the suite should include both the lock-based and
TM-based versions of the same benchmarks, (2) the bench-
marks should have good scalability, (3) the benchmarks should
represent real-world applications, (4) the benchmarks should
encompass a wide range of different TM behaviors, (5) the
benchmarks should include open research issues for TM re-
searchers, and (6) the benchmark suite should be useful in
evaluating both STM and HTM systems.

Although there are multiple benchmark suites [2, 7, 13,
35, 38] proposed for evaluating TM systems, none of those
has all of the above-mentioned properties. For example, the
STAMP benchmark suite [7] does not include lock-based
versions of its applications, SPLASH-2 [35] does not pro-
vide a wide range of TM characteristics, Atomic Quake [38]
cannot be used to evaluate HTM systems. Previous work by
Hughes et al. [17] also pointed out that existing TM work-
loads have similar characteristics in terms of transactional
behaviours and that there is need of more comprehensive
benchmarks. In this paper, we introduce such a benchmark
suite, RMS-TM. Apart from having a wide range of transac-
tional and run-time characteristics, RMS-TM presents chal-
lenging features such as nested transactions, I/O operations
and library calls inside transactions, which are common op-
erations in real applications.

To construct our benchmark suite, we develop a step by
step methodology for choosing candidate TM benchmarks
from among a set of real-world applications, and we reim-
plement the selected applications by using the TM program-
ming model. The final result is a new benchmark suite that
includes different applications from the Recognition, Mining,
and Synthesis (RMS) domain. We use RMS applications be-
cause these applications have high relevance to mainstream
workloads, and they are proposed as good workloads to eval-
uate future multi- and many-core systems [19].

This paper makes the following contributions:

• We introduce a new benchmark suite, RMS-TM, that
consists of lock-based and transactified versions of seven
applications from BioBench [1],MineBench [25], and
PARSEC [4] benchmark suites. RMS-TM has a wide
range of transactional and run-time characteristics that
qualify it as a new and comprehensive benchmark suite
for evaluating both STM/HTM designs. The applica-
tions in our benchmark suite feature the following: 1)
representative real-world applications, 2) nested trans-
actions [23, 26], 3) large amount of I/O operations [3],
system [33] and library calls inside atomic blocks, 4)
complex function calls and control flow inside atomic
blocks, 5) various mix of long/short transactions with
different sizes of read/write sets, 6) low/medium/high
contention rates, and 7) good scalability.

• We develop a methodical procedure to construct our
benchmark suite from candidate applications. We first
divide the application selection process into static and
dynamic pre-transactification phases, and then, in the
transactification phase, we transactify the selected ap-
plications from their original lock-based parallel im-
plementations. This process ensures that the selected
applications satisfy the desired properties for a TM
benchmark suite.

• We evaluate our benchmark suite using three differ-
ent TM implementations (one STM and two HTMs),
namely Intel-STM [32], EazyHTM [34], and Scalable
TCC [8] and we show that RMS-TM can be used in
the evaluation of both STM and HTM systems.

We find that the RMS-TM applications present vary-
ing percentage (1.5%-95.7%) of time spent inside atomic
blocks with small and large read (a few bytes to 3 MB)
and write (a few bytes to 493 KB) sets, and with low
and high contention (0.0%-88.4% abort rates). We also
find that our benchmarks have good scalability (Intel
STM 4.7×, EazyHTM 6.0×, and ScalableTCC 6.3×,
on average, for eight threads).

The rest of this paper is organized as follows. The next
section summarizes prior work. Section 3 covers our method-
ology for selecting and transactifying representative TM bench-
marks. In Section 4 we describe the applications in our
benchmark suite, and we evaluate them in Section 5. Fi-
nally, we provide concluding remarks in Section 6.

2. RELATED WORK
In this section, we briefly review some of the previously

proposed TM benchmarks to highlight their advantages and
disadvantages in evaluating TM systems. We categorize
TM benchmark suites into micro-benchmarks (TM micro-
benchmarks [11] and The Haskell STM Benchmark Suite [28]),
parallel benchmarks (SPLASH-2 [35]), and other bench-
marks with more complex transactional characteristics (STM-
Bench7 [13], Lee-TM [2], WormBench [37], STAMP [7],
Atomic Quake [38]. and QuakeTM [12].

TM micro-benchmarks contain single data structures, such
as hash tables, linked lists, B-trees, etc. These benchmarks
are useful for providing basic-level insights into TM designs,
but they do not exhibit different TM characteristics, and
they are not representative of realistic workloads.

The Haskell STM Benchmark Suite consists of ten appli-
cations that are implemented with Haskell, which features
TM as a first-class language feature. Most of the applica-
tions in this benchmark suite are micro-benchmarks.

SPLASH-2 contains eight parallel applications and four
computational kernels. This benchmark suite focuses on ap-
plications that utilize little synchronization between threads,
and it does not provide various sizes of critical sections or
different conflict rates. Therefore, this benchmark suite is
not fully capable of evaluating the underlying TM system
and discovering interesting transactional behaviors.

STMBench7 presents an application to analyze STM sys-
tems. This benchmark provides a coarse-grained and medium-
grained locking implementation that can be compared to its
equivalent transactified version. The benchmark performs
complex and dynamic operations on a large data structure,
so it has only relatively long transactions.

Lee-TM benchmarks feature long and realistic workloads
that consist of sequential as well as coarse- and medium-
grained lock-based, transactional, and optimized transac-
tional implementations. This benchmark suite is useful for
comparing different lock and transactional implementations;
however, it only features different implementations of the
same algorithm.

WormBench is a highly configurable transactional appli-
cation. This synthetic application is useful mostly to mimic

336

Table 1: Applications that pass the Static Pre-Transactification step.
Application Domain Locking Type Nested Function Special Operations Barrier

Locking Calls in Critical Sections Synchronization
Hmmsearch sequence profile searching coarse-grained no yes I/O, memory management no

operations, library calls
Hmmpfam sequence profile searching coarse-grained no yes I/O, memory management no

operations, library calls
Hmmcalibrate calibrate profile HMMs coarse-grained no yes memory management no

operations, library calls
Apriori association rule mining coarse-grained yes yes memory management yes

fine-grained operations
PLSA dynamic programming fine-grained no yes none no
Rsearch pattern recognition mining fine-grained no yes memory management no

operations no
ScalParC classification coarse-grained no no none yes

fine-grained
UtilityMine association rule mining coarse-grained yes yes memory management yes

fine-grained operations
Bodytrack computer vision fine-grained no yes library calls yes
Fluidanimate fluid simulation fine-grained no no none yes
Freqmine frequent item set mining fine-grained no no memory management no

operations no

existing TM applications rather than discovering unknown
usage patterns of emerging transactional applications.

STAMP is a benchmark suite that consists of eight ap-
plications with 30 different sets of configurations. The in-
put data for the applications present a wide range of run-
time transactional characteristics, e.g., varying transaction
lengths, read/write set sizes, and degree of contention. This
benchmark suite provides sequential and transactional ver-
sions of the applications, but it does not provide their lock-
based versions; thus, TM researchers cannot compare TM-
based and the equivalent lock-based implementations.

QuakeTM and Atomic Quake are rich and complex trans-
actional memory applications. QuakeTM is parallelized from
the sequential version of Quake game server using TM, while
Atomic Quake is derived from the parallel lock-based ver-
sion of the server. These benchmarks exhibit irregular par-
allelism, have I/O and system calls, error handling, and in-
stances of privatization. In addition, inside transactions,
there are function calls, memory management, and nested
transactions. However, these benchmarks can only be used
for evaluating STM systems due to their size and complexity.

In comparison, RMS-TM includes lock-based and TM-
based implementations of seven real-world applications that
have a wide range of TM characteristics in terms of trans-
action lengths, read/write set sizes, and contention. This
benchmark suite is suitable for evaluating both STM and
HTM systems. In addition, unlike most other TM bench-
marks, RMS-TM presents many desirable properties, such
as nested transactions, I/O operations, and system calls in-
side transactions.

3. THE TRANSACTIFICATION PROCESS
In this section we describe our methodology for construct-

ing the RMS-TM benchmark suite. To create our bench-
mark suite, we develop a two-step procedure: (1) we apply
static and dynamic pre-transactification to select applica-
tions from among a set of candidate benchmarks, and (2)
we transactify the selected applications.

We analyze three different benchmark suites: BioBench,
MineBench, and PARSEC. The applications in these bench-
mark suites are from the RMS domain, and they represent
future workloads [19]. The BioBench suite consists of bioin-

formatics applications that are developed using the Pthread

parallel programming model [6]. The MineBench suite is
designed considering data mining categories that are com-
monly used in industry problems. The applications in this
suite are implemented by using OpenMP [9]. The PARSEC
benchmark suite includes emerging applications that are
computationally intensive.

3.1 Pre-Transactification Phase
We choose applications from the candidate benchmark

suites using TM-specific usefulness criteria, e.g., having nested
transactions, irrevocable operations, system and library calls
inside atomic blocks, etc. To make an effective and compre-
hensive analysis, we divide the pre-transactification phase
into two sub-phases: static and dynamic. In the static phase,
we analyze source codes of the applications; in the dynamic
phase, we execute and profile the candidate applications to
calculate the amount of time they spend inside critical sec-
tions and to analyze their scalability.

3.1.1 Static Pre-Transactification
We use five criteria in the static pre-transactification phase:

(1) synchronization constructs used between lock blocks, (2)
type of locking granularity, (3) nested locking, (4) function
calls between acquiring and releasing locks, and (5) special
operations inside critical sections, e.g., I/O operations, li-
brary and system calls.

Table 1 shows the characteristics of the applications se-
lected in the static pre-transactification phase. We select
Hmmpfam, Hmmsearch, and Hmmcalibrate, because they
exhibit a large amount of I/O operations, system and library
calls, and relatively complex function calls inside critical sec-
tions. Hmmpfam and Hmmsearch also present a large num-
ber of instructions in coarse-grained critical sections. Appli-
cations that have a coarse-grained locking structure are good
candidates, because they spend a significant amount of time
waiting to acquire a lock; minimizing this synchronization
time is an important topic for TM research.

ScalParC, Apriori, and UtilityMine include both fine- and
coarse-grained locking, providing different types and sizes
of transactions. In addition, they use synchronization con-
structs between atomic blocks. We expect placement of syn-
chronization constructs between lock blocks to create inter-

337

Table 2: Time spent (%) inside critical sections for
the lock-based applications. The data sets used are
appended to the application name.

Application Number of Threads
1 2 4 8

Hmmsearch 0.3 0.4 0.4 0.5
Hmmpfam 11.1 12.0 14.2 20.6
Hmmcalibrate 3.9 4.2 4.8 5.6
Apriori-100 1.1 1.6 2.8 5.6
Apriori-1000-20 0.1 0.2 0.4 0.7
Apriori-2000-20 0.1 0.1 0.2 0.4
PLSA 0.0 0.0 0.0 0.0
Rsearch 0.0 0.0 0.0 0.0
ScalParC-A64-D125 0.0 0.2 1.0 1.9
ScalParC-A64-D250 0.0 0.1 0.6 0.8
ScalParC-A64-500 0.0 0.1 0.4 0.7
UtilityMine-1000-10-1 53.9 52.8 56.8 56.3
UtilityMine-1000-10-20 70.1 66.0 70.0 69.5
UtilityMine-2000-20-1 69.8 65.6 69.5 65.7
Fluidanimate 0.0 5.5 9.6 15.2
Freqmine 0.0 0.0 0.0 0.0
BodyTrack 0.1 0.2 0.3 0.2

esting TM characteristics, e.g., a high abort rate even when
an application does not spend much time inside transactions.
In fact, immediately after a barrier, all threads will attempt
to enter their atomic blocks at the same time, but only one
will commit successfully.

PLSA, Rsearch, BodyTrack, Fluidanimate, and Freqmine
pass the static pre-transactification phase as well as. Since
these applications have function calls inside critical sections,
it is difficult to statically determine the length of the trans-
actions and their read/write sets. In addition, some of these
applications have memory management operations inside
critical sections.

3.1.2 Dynamic Pre-Transactification
In the dynamic pre-transactification phase, we use per-

centage of time spent inside critical sections and scalability
as the evaluation criteria.

Table 2 shows that PLSA, Rsearch, Freqmine, and Body-
Track spend a very small percentage of their execution time
inside critical sections. These applications cannot stress
the underlying TM systems due to their short transaction
lengths, low transaction frequencies, and small read/write
sets; therefore, we filter out these applications. Even though
ScalParc and Apriori spend a short amount of time inside
critical sections, we maintained these applications in the
benchmark suite because they have several marked atomic
blocks and they use synchronization constructs, e.g., barri-
ers between consecutive atomic blocks. Apriori and Util-
ityMine have a high level (up to nine) of nested locking,
which makes them good candidates for evaluating TM sys-
tems with support for arbitrary levels of nested transactions.
From the Hmmer package, we select Hmmsearch, Hmmpfam,
and Hmmcalibrate. Although Hmmsearch spends a short
time inside critical sections, it is a crucial benchmark for
TM research because it has I/O operations and library and
system calls inside critical sections.

Figure 1 shows the scalability of lock-based applications
that we consider as good candidates for TM research. Notice
that all the benchmarks have a sub-linear speedup but they
scale well except when we use eight threads in parallel, i.e.,
all the avaliable processors in our experimental setup.

A
pr

io
ri

S
ca

lP
ar

C

U
til

ity
M

in
e

H
m

m
se

ar
ch

H
m

m
pf

am

H
m

m
ca

lib
ra

te

F
lu

id
an

im
at

e

M
ea

n

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads

S
ca

la
b
ili

ty

Figure 1: Scalability of the lock-based applications,
with the largest data sets, normalized to single-
threaded lock execution time with Intel STM.

3.2 Transactification Phase
We transactify the selected applications starting from their

equivalent lock-based versions by replacing locks with trans-
actions. To maintain the original semantics, we keep the size
of the atomic blocks as in the lock-based versions.

The transactification process is not straightforward be-
cause each application has a different parallelization strat-
egy. Moreover, each TM system poses specific challenges,
e.g., calls to pre-compiled library functions and I/O opera-
tions and system calls inside transactions. We now describe
the details of these challenges and our solutions for three TM
systems, namely Intel STM, EazyHTM, and ScalableTCC.

3.2.1 STM Implementation
Intel STM [32] consists of a C/C++ compiler and a high-

performance STM Runtime Library. The compiler instru-
ments all shared memory reads and writes inside transac-
tions by using read and write barriers. The flattening model
is used to support nested transactions, and weak isolation
between transactional and non-transactional code is pro-
vided. Transactions can be executed in optimistic or pes-
simistic mode. In both cases, the transactional writes up-
date the data in-place with strict two-phase locking, while
the transactional reads are executed optimistically or pes-
simistically. Serial execution mode is also provided to sup-
port transactions that contain irrevocable operations.

Intel STM compiler provides simple language extensions
to develop TM applications. The functions inside atomic
blocks should be marked as either tm_callable1 or tm_pure2.
Otherwise, if an unannotated function is called inside atomic
blocks, the compiler generates code that triggers serial ex-

1The compiler generates a clone function annotated as
tm_callable and translates each memory read and write to
a TM read barrier function and a TM write barrier function.
2The programmer guarantees that a function marked as
tm_pure does not access shared variables when it is called
from inside a transaction.

338

ecution unless it knows that the called function does not
require instrumentation. The applications that we examine
often allocate objects through the new operator and/or they
call external functions inside atomic blocks. The version of
the compiler that we use3 does not mark the new operator
as tm_callable implicitly although the object constructor
is marked. This causes transactions to run irrevocably. To
deal with this challenge we overload the new operator and
we mark it as tm_callable. Another challenge is associated
with function calls of precompiled libraries inside transac-
tions. To avoid executing these transactions in serial mode,
we reimplement some glibc string functions, such as strcmp,
strstr, strlen, and we mark them as tm_callable.

3.2.2 HTM Implementations
EazyHTM [34] and ScalableTCC [8] are recent HTM pro-

posals that provide scalable performance. Both TM sys-
tems are directory-based and implement lazy data version-
ing. The key feature of EazyHTM is separating conflict de-
tection and conflict resolution. Conflicts are detected while
transactions run, but they are resolved at commit time al-
lowing truly parallel commits. On the other hand, Scal-
ableTCC detects conflicts optimistically when transactions
are ready to commit. ScalableTCC implements a continu-
ous use of transactions within parallel programs providing
non-blocking execution and improved fault-isolation.

The main challenges that we faced while porting RMS-TM
applications to EazyHTM and ScalableTCC, are dynamic
memory management and I/O operations inside transac-
tions. Most of our applications dynamically allocate mem-
ory using malloc and realloc. To overcome this issue, we
use a user mode memory manager that allocates chunks
of memory for each thread when the applications start [7].
When a thread requires new memory, the user mode man-
ager takes this memory from its pre-allocated pool and as-
signs it to the thread without calling the malloc system call.

In addition, Hmmpfam and Hmmsearch perform many
I/O operations inside critical sections. The replacement of
the locks protecting these critical sections with transactions
is not straightforward because rollback can happen at any
time during the execution of a transaction, and the trans-
action can restart at any arbitrary point of its execution.
Most current TM systems cannot safely perform I/O or sys-
tem calls inside transactions. For these operations, we use
the library developed by Perfumo et al. [29], which enables
the use of I/O operations inside transactions. To provide a
fair comparison, we also modify the lock-based versions of
the applications to make them use the same library.

4. RMS-TM OVERVIEW
We used our pre-transactification process to select appli-

cations from the RMS domain, and we transactified those
applications to construct the RMS-TM benchmark suite. In
this section, we provide the descriptions of the applications
in the benchmark suite: Hmmsearch, Hmmpfam, and Hmm-
calibrate from BioBench, Apriori, ScalParC, and Utility-
Mine from MineBench, and Fluidanimate from PARSEC.

TM-Hmmsearch reads an HMM and searches a sequence
database for significantly similar sequence matches. In the
transactional version, the threads read the next sequence
from an input list of sequences in parallel, and they use

3Intel C++ STM Compiler Prototype Edition 3.0

transactions to protect the accesses to the input list of se-
quences. Moreover, the threads share two score lists ranked
by per-sequence scores and per-domain scores and a his-
togram of the whole sequence stores. Transactions are used
to protect update operations on these data structures.

TM-Hmmpfam searches a query sequence against a pro-
file HMM database. In the transactional version, each thread
accesses the shared profile HMMs database and reads the
next profile HMM. This application scores the input se-
quence against the profile HMM and adds a significant hit to
the per-sequence and per-domain top hits lists. Transactions
protect the shared file pointer of the HMMs database. Up-
date operations on the shared per-sequence and per-domain
top hits lists are also enclosed inside transactions.

TM-Hmmcalibrate calibrates a profile HMM using an
artificial database of sequences. After reading the profile
HMM, this application generates random sequences; it com-
putes a raw score for each sequence against the profile HMM
and it adds this score to a histogram. The increment on the
shared counter and the generation of the sequence are en-
closed in transactions. Another transaction is used to pro-
tect the accesses to the histogram of scores.

TM-Apriori [36] is an Association Rule Mining (ARM)
algorithm performed on transactional records in a database.
This application uses a hash tree to store candidates. Trans-
actions are used to protect the calculation of support values
and the insertion of a candidate item set into the hash tree.

TM-ScalParC [18] is a parallel formulation of a deci-
sion tree classification. The decision tree model splits the
records in the training set into subsets based on the val-
ues of attributes. This process continues until each record
entirely consists of examples from one class. During the
partitioning phase, different threads try to simultaneously
access a shared counter. Transactions protect the accesses
to this shared counter.

TM-UtilityMine [20] is another ARM technique. A util-
ity mining model is developed to identify item sets with high
utilities. The utility of an item or an item set can be de-
fined as its usefulness. A single common hash tree stores the
candidate item sets at each level of search as well as their
transaction-weight utilization. Transactions protect the up-
dates of the utility of item sets and insertion of a candidate
into the tree.

TM-Fluidanimate [24] is based on spatial partitioning
and uses a uniform grid partitioned to cells to reside fluids.
The uniform grid is evenly partitioned in subgrids along cell
boundaries. We use transactions to enclose the update par-
ticles of the cells that lie on subgrid boundaries.

5. EVALUATION
We evaluate RMS-TM using three different (one STM and

two HTMs) TM systems, namely Intel STM, EazyHTM,
and ScalableTCC. We compare the TM-based implementa-
tions of the applications to their equivalent lock-based ver-
sions and we analyze their transactional behavior, such as
read/write set sizes, abort/commit rates, time spent inside
atomic blocks, scalability, etc. We also evaluate the STAMP
benchmark suite on the same TM systems and we compare
and contrast the results with our benchmark suite.

5.1 Intel STM Results
We now present the evaluation of our benchmark suite

using the Intel STM system. All results are the averages of

339

Table 3: Basic TM characteristics (for eight threads) of the RMS-TM applications, with Intel STM. The
number of bytes read/written transactionally and the number of aborts or commits are generated by the
Intel STM runtime library.

Application Read Set (bytes) Write Set (bytes) Transactions
Min Mean Max Min Mean Max #Commits #Aborts Abort Rate (%)

TM-Hmmsearch 24 3K 3M 0 296 493K 613,316 7,678 1.2
TM-Hmmpfam 16 7K 2M 0 846 270K 28,333 5,832 17.1
TM-Hmmcalibrate 8 13K 74K 4 5K 30K 10,016 76,219 88.4
TM-Apriori-100 4 424 67K 0 274 45K 14,410 282 1.9
TM-Apriori-1000-20 4 408 132K 0 263 87K 14,431 290 2.0
TM-Apriori-2000-20 4 449 380K 0 289 246K 14,758 464 3.0
TM-ScalParc-A64-D125 8 31 952 1 7 238 52,404 61,072 53.8
TM-ScalParc-A64-D250 8 30 840 1 7 210 75,408 80,691 51.7
TM-ScalParc-A64-D500 8 34 944 1 8 236 117,240 153,872 56.8
TM-UtilityMine-1000-10-1 32 424 28K 4 7 202 43,724,391 292,031 0.7
TM-UtilityMine-1000-10-20 4 646 65K 4 7 1K 197,213,249 1,212,087 0.6
TM-UtilityMine-2000-20-1 4 644 47K 0 7 1K 3,954,033,044 2,181,138 1.0
TM-Fluidanimate 4 8 1K 4 7 12 1,177,944,500 252 0.0

A
pr

io
ri

T
M

−A
pr

io
ri

S
ca

lP
ar

C

T
M

−S
ca

lP
ar

C

U
til

ity
M

in
e

T
M

−U
til

ity
M

in
e

H
m

m
se

ar
ch

T
M

−H
m

m
se

ar
ch

H
m

m
pf

am

T
M

−H
m

m
pf

am

H
m

m
ca

lib
ra

te

T
M

−H
m

m
ca

lib
ra

te

F
lu

id
an

im
at

e

T
M

−F
lu

id
an

im
at

e

M
ea

n

T
M

−M
ea

n

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads

S
ca

la
b
ili

ty

Figure 2: Scalability of the lock-based and TM-based applications, with the largest data sets, normalized to
single-threaded lock and TM execution time, respectively, with Intel STM.

five different executions using three different data sets. We
perform our experiments on a Dell PE6850 workstation with
4 dual core x64 Intel Xeon processors running at 3.2GHz
equipped with 32GB RAM, a 32KB IL1 and a 32KB DL1
private caches per core, a 4MB L2 cache shared by two cores,
and a 8MB L3 cache shared by all cores.

5.1.1 Transactional Behavior
Table 3 presents the basic runtime TM characteristics of

the RMS-TM applications, such as the number of bytes read
or written transactionally, the number of times a transac-
tion retries execution due to a conflict, etc. RMS-TM ex-
plores several combinations of TM characteristics: medium
read/write sets with medium abort rates (TM-Hmmpfam),
small read/write sets with high abort rates (TM-ScalParC),
and large read/write sets with high abort rates (TM-Hmm
calibrate). In addition, the data for abort rates in Table 3
show that the RMS-TM applications cover a wide spec-
trum of contention ranging from 0.0% for TM-Fluidanimate

to 88.4% for TM-Hmmcalibrate. Although TM-ScalParC
spends most of its execution time outside atomic blocks,
it has a high abort rate due to the use of synchronization
points between consecutive atomic blocks, which confirms
our observation in the static pre-transactification phase.

Table 4 presents the percentage of time spent in atomic
blocks with respect to total parallel time with 1, 2, 4, and 8
threads for each data set. We observe some overhead intro-
duced by the Intel STM compiler and run-time library be-
cause of the extra work required to handle transactions, such
as when detecting conflicts. As we can see from Table 2 and
Table 4, the Intel STM runtime introduces different over-
heads in the transactified versions of the benchmarks. For
example, the lock version and TM version of TM-Hmmpfam
spend 20.6% and 20.7% of their parallel times inside criti-
cal sections. On the other hand, TM-ScalParC-A64-D250
spends 0.8% of its parallel time inside critical sections with
the lock implementation and 7.4% with the TM implementa-
tion. Between these two extremes of the spectrum, there are

340

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

Number of threads

O
ve

rh
ea

d

(a) TM-Fluidanimate

0 100 200 300 400 500 600 700
0

5

10

15

Read−set size (bytes)

O
ve

rh
ea

d

(b) TM-UtilityMine

Figure 3: (a) Runtime overhead of TM-Fluidanimate as a function of the number of threads (from 1 to 8)
with constant read- and write-set sizes. (b) Run-time overhead of TM-UtilityMine increases as the size of
the read-set increases.

Table 4: Time spent (%) inside atomic blocks for
RMS-TM applications.

Application Number of Threads
1 2 4 8

TM-Hmmsearch 1.1 1.1 1.2 1.6
TM-Hmmpfam 11.1 12.0 14.2 20.7
TM-Hmmcalibrate 7.8 8.3 9.3 14.3
TM-Apriori-100 3.4 5.1 9.7 17.2
TM-Apriori-1000-20 0.0 0.2 0.6 1.8
TM-Apriori-2000-20 0.2 0.3 0.7 1.5
TM-ScalParC-A64-D125 0.1 0.5 2.3 11.5
TM-ScalParC-A64-D250 0.1 0.3 1.5 7.4
TM-ScalParC-A64-D500 0.1 0.2 1.0 5.9
TM-UtilityMine-1000-10-1 88.7 91.8 91.5 92.2
TM-UtilityMine-1000-10-20 95.3 96.0 95.4 95.6
TM-UtilityMine-2000-20-1 95.2 95.8 95.4 95.7
TM-Fluidanimate 0.0 18.9 39.3 61.7

intermediate cases. For example, Hmmsearch spends 0.5%
in the lock-based version and 1.6% in the transactified ver-
sion. Table 4 shows that the benchmarks cover a wide range
of cases in terms of time spent inside atomic blocks. This
variety is a desirable property for a TM benchmark suite,
because it allows researchers to evaluate TM systems using
applications that are either very sensitive to TM overheads
(TM-ScalParC-A64-D250) or those that are not sensitive to
the overhead of TM systems (TM-Hmmpfam).

5.1.2 Performance Analysis
Figure 2 shows the scalability of the RMS-TM applica-

tions with respect to their single-threaded case. The RMS-
TM applications present a scalability similar to their equiva-
lent lock-based versions except TM-Scalparc, TM-UtilityMine,
and TM-Fluidanimate. Several factors may influence the
scalability of TM applications, but a high abort rate is the
most common reason for poor scalability. Table 3 shows
that TM-ScalParC exhibits this characteristic with 56.8%
percent abort rate which causes performance degradation
especially with eight threads. Although TM-UtilityMine has
a low abort rate, this benchmark presents a large number of
transactions, each one with large read/write sets. In other

words, each rollback operation is expensive (the cost of each
rollback depends on the read/write set size) and it affects
performance. We also found that TM-UtilityMine, with 8
threads, spends 66.0% of its total time inside transactions
for rollback operations (wasted work) [28].

We performed a deeper analysis of all the applications
using oprofile [27] and we examined specific performance
counters. We found that the Intel STM run-time system
evicts data from the L2 cache while managing the read- and
write-sets. This increases the number of L2 cache misses and
degrades performance. TM-UtilityMine is sensitive to this
situation: because of its long transactions with large read
sets, more than 90% of the L2 cache misses are caused by
the Intel STM library. This extra overhead becomes larger
as the sizes of the read- and write-sets increase, therefore,
it limits the scalability of the application. Nevertheless,
TM-UtilityMine enables TM designers to have better un-
derstanding of the runtime overhead of TM systems.

Scalability is also affected by the run-time STM library.
Every time a thread attempts to modify a memory loca-
tion inside a transaction, the STM run-time system scans
the read-set of each active transaction to check whether
the same memory location was previously read by another
thread. The larger the read-set the longer the time required
to scan each active transaction and the larger the overhead
introduced by the STM run-time system, which limits scal-
ability. On the other side, the larger the number of con-
current active transactions (which is upper bound by the
number of threads), the larger the overhead. Figure 3(a)
shows the runtime overhead of TM-Fluidanimate as func-
tion of the number of threads (from 1 to 8) with constant
read- and write-set sizes. The run-time overhead linearly
increases with respect to the number of threads.4 In addi-
tion, Figure 3(b) demonstrates that the run-time overhead
of TM-UtilityMine increases with the size of the read-set.5

Note that applications with high abort rates will interrupt

4For this application the number of transactions per thread
is constant.
5The number of threads (eight) is constant in this graph.

341

Table 5: Transactional behavior of the RMS-TM applications with eight threads, with EazyHTM. The sizes
of transactional read and write sets are presented as the 90th percentile.

Application Read Set Write Set Transactions
(cache lines) (cache lines)

90 pctile Max 90 pctile Max #Commits #Aborts Abort Rate (%)
TM-Hmmsearch 161 975 56 1,368 2,008 362 15.3
TM-Hmmpfam 3,348 10,338 1,400 3,832 308 345 52.9
TM-Hmmcalibrate 51 71 29 37 5,016 376 7.0
TM-Apriori-100 11 40 6 206 11,232 36 0.3
TM-ScalParC-A64-D125 4 4 3 3 50,393 18,979 27.4
TM-UtilityMine-1000-10-1 65 120 1 2 43,724,391 374,050 0.8
TM-Fluidanimate 2 2 1 1 9,347,885 3,131 0.0

A
pr

io
ri

T
M

−A
pr

io
ri

S
ca

lP
ar

C

T
M

−S
ca

lP
ar

C

U
til

ity
M

in
e

T
M

−U
til

ity
M

in
e

H
m

m
se

ar
ch

T
M

−H
m

m
se

ar
ch

H
m

m
pf

am

T
M

−H
m

m
pf

am

H
m

m
ca

lib
ra

te

T
M

−H
m

m
ca

lib
ra

te

F
lu

id
an

im
at

e

T
M

−F
lu

id
an

im
at

e

M
ea

n

T
M

−M
ea

n

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads

S
ca

la
b
ili

ty

Figure 4: Scalability of the lock-based and TM-Based applications normalized to single-threaded lock and
TM execution time, respectively, using EazyHTM. The datasets are indicated in Table 5.

Table 6: Configuration of the simulated system.
Feature Description

CPU 1-8 Alpha cores, 2 GHz, in-order, 1 IPC
L1 32 KB, 64-byte cache line, 4-way associativity,

private per core, writeback, MSI, 2 cycles latency
L2 512 KB, 64-byte cache line, 8-way associativity,

private per core, writeback, 8 cycles latency
Main Memory 100 cycles latency
ICN 2D Mesh topology, 10 cycles latency per hop

the list traversal sooner because of conflict detection, and
they will have a lower performance degradation. Obviously,
applications that spend a large part of their execution in-
side transactions are affected more by the STM run-time
overhead.

5.2 EazyHTM Results
We now evaluate the performance of RMS-TM applica-

tions on EazyHTM [34] using a full-system simulator based
on the Alpha 21264 architecture. EazyHTM is implemented
using the M5 simulator [5] which is modified with a direc-
tory memory hierarchy and a core-to-core interconnection
network. Table 6 presents the main characteristics of the

simulated system. We use the largest possible data set in
our simulations.

5.2.1 Transactional Behavior
Table 5 summarizes the transactional characteristics of

the RMS-TM applications on EazyHTM. TM-Hmmpfam ex-
hibits a high abort rate. This is caused by the large read/write
sets that do not fit in the cache. Since EazyHTM does not
provide support for unbounded transactions, transactions
are eventually aborted and restarted. Benchmarks with
high commit rates (TM-Hmmcalibrate, TM-Apriori, TM-
UtilityMine, and TM-Fluidanimate) and with high abort
rates (TM-Hmmsearch, TM-Hmmpfam, and TM-ScalParC)
are good candidates to evaluate both lazy and eager data
versioning. For example, Hammond et al. [14] and Moore
et al. [22] show that high commit/abort rates have large
impacts on performance in HTM systems. This happens
because eager data versioning relies on the idea that the
commit rate is higher than the abort rate, therefore, these
systems are designed with a low commit cost. On the other
hand, HTM systems with lazy data versioning do not rely
on this hypothesis and they usually show that the abort
cost is significantly lower than the commit cost. To enable
researchers to perform exhaustive studies on TM systems

342

Table 7: Transactional behavior of the RMS-TM applications with eight threads, with ScalableTCC. The
sizes of transactional read and write sets are presented as the 90th percentile.

Application Read Set Write Set Transactions Wasted
(cache lines) (cache lines)

90 pctile Max 90 pctile Max #Commits #Aborts Abort Rate (%) (%)
TM-Hmmsearch 109 945 56 1,369 2,008 204 9.2 0.2
TM-Hmmpfam 3,260 10,342 1,312 3,833 308 219 41.6 8.4
TM-Hmmcalibrate 47 72 26 37 5,016 285 5.3 0.1
TM-Apriori-100 11 19 6 103 14,438 14 0.1 0.6
TM-ScalParC-A64-D125 4 5 3 4 50,352 10,010 16.6 12.9
TM-UtilityMine-1000-10-1 65 120 1 3 43,724,391 436,698 1.0 1.7
TM-Fluidanimate 2 2 1 1 9,347,885 2,207 0.0 0.1

A
pr

io
ri

T
M

−A
pr

io
ri

S
ca

lP
ar

C

T
M

−S
ca

lP
ar

C

U
til

ity
M

in
e

T
M

−U
til

ity
M

in
e

H
m

m
se

ar
ch

T
M

−H
m

m
se

ar
ch

H
m

m
pf

am

T
M

−H
m

m
pf

am

H
m

m
ca

lib
ra

te

T
M

−H
m

m
ca

lib
ra

te

F
lu

id
an

im
at

e

T
M

−F
lu

id
an

im
at

e

M
ea

n

T
M

−M
ea

n

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads

S
ca

la
b
ili

ty

Figure 5: Scalability of the lock-based and TM-based applications normalized to single-threaded lock and
TM execution time, respectively, with ScalableTCC. The datasets are indicated in Table 7.

with different versioning strategies, RMS-TM provides dif-
ferent combinations of TM behaviors.

5.2.2 Performance Analysis
Figures 4 shows the scalability of lock- and TM-based

RMS-TM applications on EazyHTM. The majority of the
TM-based applications exhibit good scalability, compara-
ble to their equivalent lock-based versions. More in details,
TM-Hmmcalibrate scales linearly, TM-Hmmsearch and TM-
Apriori scale slightly better than their lock-based version,
while TM-UtilityMine scales slightly worse than its lock-
based version. TM-ScalParC shows a good scalability for
up to four threads. However, this application scales poorly
with eight threads as opposed to its lock-based version. We
noticed that the number of directory messages to detect con-
flicts is constant with two and four threads (where the appli-
cation shows a good scalability) but it doubles with 8 threads
(the case of poor scalability). TM-ScalParC is the only ap-
plication with such behavior. TM-Fluidanimate presents a
very high number of directory messages that increases with
the number of threads. For all the other applications the
number of directory messages is roughly constant regardless
of the number of threads. We conclude that EazyHTM’s
conflict detection mechanism introduces overhead that lim-

its the scalability of TM-ScalParC with eight threads and
TM-Fluidanimate with two, four and eight threads.

5.3 ScalableTCC Results
In this section, we present our experimental results for

the ScalableTCC HTM system using a full-system simulator
based on the Alpha 21264 architecture. Table 6 presents the
main parameters of the simulated multi-core system that we
use for ScalableTCC.

5.3.1 Transactional Behavior
Table 7 presents the basic TM characteristics of the RMS-

TM applications, and it includes data such as the number
of commits/aborts and read/write set size in 64-byte cache
lines. All transactional characteristics in Table 7 show that
RMS-TM covers different combinations of TM execution sce-
narios, such as the sizes of transactional read (2 - 3,260
cache lines) and write (1 - 1,312 cache lines), and abort
rates (0.0% to 41.6%). More specifically, TM-Hmmpfam has
the largest read- and write-sets, 3,260 (203 KB) and 1,312
(82 KB) cache lines, respectively. Moreover, this application
presents the highest abort rate (41.6%). Effective contention
manager policies can reduce the number of aborted trans-
actions, which implies that TM-Hmmpfam can enable TM

343

designers to improve their contention manager proposals.
On the other hand, TM-UtilityMine and TM-Fluidanimate
show high commit rates with a large number of committed
transactions, which makes them desirable TM benchmarks
for evaluating TM systems with lazy data versioning, where
the commit cost is high.

Figures 5 shows the scalability of lock- and TM-based
RMS-TM applications on ScalableTCC. Most of the TM-
based applications present similar scalability to their equiv-
alent lock-based versions except TM-ScalParC, TM-Apriori,
TM-UtilityMine and TM-Hmmpfam. As we can see from Ta-
ble 7, TM-ScalParC and TM-Hmmpfam with eight threads
waste 12.9%, and 8.4% of their total execution time, respec-
tively, which limits their scalability. Further analysis showed
that rolling back aborted transactions is a large component
of the total wasted time for these applications. TM-Apriori
and TM-UtilityMine do not scale as well as their lock-based
equivalent with eight threads. For these applications, we
observe that they spend relatively large amount of time at
synchronization points especially with eight threads, as op-
posed to the other applications.

5.4 Comparison of RMS-TM and STAMP
In this section we compare RMS-TM to STAMP using

three different TM systems. Both RMS-TM and STAMP
have substantial number of applications with varying abort
/commit rates and small/large transactions. RMS-TM also
has I/O operations, library calls, memory management op-
erations, pre-compiled library calls inside transactions, and
nested transactions, whereas STAMP only provides memory
management operations inside transactions. Hence, we be-
lieve that the RMS-TM applications present more realistic
use cases of TM. On the other hand, the STAMP bench-
marks provide larger read/write sets than RMS-TM. This
characteristic can help TM researchers evaluate their TM
proposals that support virtualized transactions [10].

We analyze the scalability of RMS-TM and STAMP ap-
plications on three different TM systems. Figures 6(a), 6(b)
and 6(c), show that RMS-TM applications scale well as the
number of cores increases on both STM and HTMs (Intel
STM 4.7×, EazyHTM 6.0×, and ScalableTCC 6.3×, on av-
erage, with eight threads). However, some STAMP appli-
cations on the STM implementation, Figure 6(a), show no
scalability regardless of the number of threads, whereas they
have a reasonable scalability on HTMs (EazyHTM 4.1× and
ScalableTCC 3.7×, on average, with eight threads).

Unlike STAMP, RMS-TM provides both lock-based and
transactified implementations to better understand draw-
backs of TM proposals through direct performance compar-
ison. For example, as presented in Section 5.1.2, perfor-
mance and scalability analysis between TM-UtilityMine and
its equivalent lock-based implementation provide important
insights into the STM system. With this information we un-
derstand that TM-UtilityMine’s poor scalability is caused by
STM run-time overhead rather than the algorithm. Finally,
RMS-TM consists of applications written in C/C++ pro-
gramming languages using different parallel programming
models such as OpenMP and Pthread. On the other hand,
STAMP applications are implemented in C with pthread.

6. CONCLUSIONS
We introduced a new TM benchmark suite, RMS-TM,

that consists of multi-core workloads from the Recognition,

Mining, and Synthesis domain. We developed a general
methodology to determine applications that are suitable for
analyzing TM implementations, and we transactified the
selected applications. Therefore, RMS-TM includes both
locked-based and transactified versions of the same applica-
tions. We evaluated RMS-TM using one STM and two HTM
implementations, and we presented the detailed analysis of
our experimental results. We found that the applications
in our benchmark suite have good scalability, and they fea-
ture a wide range of transactional characteristics. RMS-TM
is publicly available in the hopes of helping researchers to
design and evaluate their TM systems [31].

7. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

useful comments. This work is supported by the cooperation
agreement between the Barcelona Supercomputing Center
National Supercomputer Facility and Microsoft Research,
by the Ministry of Science and Technology of Spain and the
European Union (FEDER funds) under contract TIN2007-
60625, by the European Network of Excellence on High-
Performance Embedded Architecture and Compilation and
by the European Commission FP7 project VELOX (216852).
Gokcen Kestor is also supported by a scholarship from the
Government of Catalonia. Vasileios Karakostas is also par-
tially supported by an Erasmus Grant.

8. REFERENCES
[1] K. Albayraktaroglu, A. Jaleel, Xue Wu, M. Franklin,

B. Jacob, Chau-Wen Tseng, and D. Yeung. Biobench:
A benchmark suite of bioinformatics applications. In
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, 2005,
Washington, DC, USA, 2005.

[2] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham,
M. Luján, and K. Jarvis. Lee-TM: A non-trivial
benchmark suite for transactional memory. In
Proceedings of the 8th International Conference on
Algorithms and Architectures for Parallel Processing,
pages 196–207, Agia Napa, Cyprus, 2008.

[3] L. Baugh and C. Zilles. An analysis of I/O and
syscalls in critical sections and their implications for
transactional memory. In Proceedings of International
Symposium on Performance Analysis of Systems and
Software, pages 54–62, Washington, DC, USA, 2008.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, Toronto, ON, Canada, 2008.

[5] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The M5 simulator:
Modeling networked systems. IEEE Micro,
26(4):52–60, 2006.

[6] D. R. Butenhof. Programming with POSIX threads.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[7] C. Cao Minh, J. Chung, C. Kozyrakis, and
K. Olukotun. STAMP: Stanford transactional
applications for multi-processing. In Proceedings of the
IEEE International Symposium on Workload
Characterization, Seattle, WA, USA, 2008.

344

B
ay

es

In
tr

ud
er

K
m

ea
ns

−h
i

La
by

rin
th

S
S

C
A

2

V
ac

at
io

n−
hi

Y
ad

a

M
ea

n

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads

S
ca

la
b
ili

ty

(a) Intel STM

B
ay

es

In
tr

ud
er

K
m

ea
ns

−h
i

La
by

rin
th

S
S

C
A

2

V
ac

at
io

n−
hi

Y
ad

a

M
ea

n

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads

S
ca

la
b
ili

ty

(b) EazyHTM

B
ay

es

In
tr

ud
er

K
m

ea
ns

−h
i

La
by

rin
th

S
S

C
A

2

V
ac

at
io

n−
hi

Y
ad

a

M
ea

n

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads

S
ca

la
b
ili

ty

(c) ScalableTCC

Figure 6: Scalability of the STAMP applications normalized to single-threaded TM execution time.

[8] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald,
C. Cao Minh, W. Baek, C. Kozyrakis, and
K. Olukotun. A scalable, non-blocking approach to
transactional memory. In Proceedings of the 2007
IEEE 13th International Symposium on High
Performance Computer Architecture, pages 97–108,
Washington, DC, USA, 2007.

[9] B. Chapman, G. Jost, and R. Van der Pas. Using
OpenMP: Portable Shared Memory Parallel
Programming (Scientific and Engineering
Computation). The MIT Press, 2007.

[10] W. Chuang, S. Narayanasamy, G. Venkatesh,
J. Sampson, M. Van Biesbrouck, G. Pokam, B. Calder,
and O. Colavin. Unbounded page-based transactional
memory. SIGPLAN Notices, 41(11):347–358, 2006.

[11] J. Ennals, R. Adaptive Evaluation of Non-Strict
Programs. PhD thesis. University of Cambridge, 2004.

[12] V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal,
E. Ayguade, T. Harris, and M. Valero. QuakeTM:
parallelizing a complex sequential application using
transactional memory. In Proceedings of the 23rd Int.
conference on Supercomputing, ICS, 2009.

[13] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7:
A benchmark for software transactional memory.
SIGOPS Operating Systems Review, 41(3), 2007.

[14] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In Proceedings of
the 31st Annual International Symposium on
Computer Architecture, pages 102–113, New York,
NY, USA, 2004.

[15] M. Herlihy, V. Luchangco, and M. Moir. A flexible
framework for implementing software transactional

345

memory. In Proceedings of the Object-Oriented
Programming, Systems, Languages, and Applications,
pages 253–262, Portland, OR, USA, 2006.

[16] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 289–300,
New York, NY, USA, 1993.

[17] C. Hughes, J. Poe, A. Qouneh, and T. Li. On the
(dis)similarity of transactional memory workloads. In
2009 IEEE International Symposium on Workload
Characterization, IISWC 2009, 2009.

[18] M. V. Joshi, G. Karypis, and V. Kumar. Scalparc: A
new scalable and efficient parallel classification
algorithm for mining large datasets. In Proceedings of
the 12th International Parallel Processing Symposium
on International Parallel Processing Symposium, pages
573–579, Washington, DC, USA, 1998.

[19] B. Liang and P. Dubey. Recognition, mining and
synthesis moves computers to the era of tera. In
Technology@Intel Magazine, pages 1–10, 2005.

[20] Y. Liu, W. Liao, and A. Choudhary. A fast high
utility itemsets mining algorithm. In Proceedings of
the 1st International Workshop on Utility-based Data
Mining, pages 90–99, Chicago, IL, USA, 2005.

[21] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer III, and M. L. Scott.
Lowering the overhead of software transactional
memory. In 1st ACM SIGPLAN Workshop on
Transactional Computing, TRANSACT 2006. Ottawa,
ON, Canada, 2006.

[22] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill,
and D. A. Wood. LogTM: Log-based transactional
memory. In Proceedings of the 12th International
Symposium on High-Performance Computer
Architecture, pages 254–265, Austin, TX, USA, 2006.

[23] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D.
Hill, B. Liblit, M. M. Swift, and D. A. Wood.
Supporting nested transactional memory in LogTM.
In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 359–370, San Jose, CA,
USA, 2006.

[24] M. Müller, D. Charypar, and M. Gross. Particle-based
fluid simulation for interactive applications. In
Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 154–159, San Diego, CA, USA, 2003.

[25] R. Narayanan, B. Özisikyilmaz, J. Zambreno,
G. Memik, and A. Choudhary. Minebench: A
benchmark suite for data mining workloads. In
Proceedings of the International Symposium on
Workload Characterization, pages 182–188, San Jose,
CA, USA, 2006.

[26] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L.
Hosking, R. L. Hudson, J. E. B. Moss, B. Saha, and
T. Shpeisman. Open nesting in software transactional
memory. In Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 68–78, San Jose, CA, USA, 2007.

[27] OProfile - a system profiler for linux. Available at
http://oprofile. sourceforge.net/.

[28] C. Perfumo, N. Sönmez, S. Stipic, O. Unsal,
A. Cristal, T. Harris, and M. Valero. The limits of
software transactional memory (STM): Dissecting
Haskell STM applications on a many-core
environment. In Proceedings of the 5th Conference on
Computing Frontiers, pages 67–78, Ischia, Italy, 2008.

[29] C. Perfumo, O. Unsal, A. Cristal, and M. Valero.
TxFS: Transactional file system. Technical Report
UPC-DAC-RR-CAP-2010-12, Department of
Computer Architecture, Universitat Politecnica de
Catalunya, 2010.

[30] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot
algorithm with eager validation. In Proceedings of the
20th International Symposiumon Distributed
Computing, pages 284–298, Stockholm, Sweden, 2006.

[31] RMS-TM - BSC Microsoft Benchmark Suite for TM
systems. Available at
http://www.bscmsrc.eu/software/rms-tm.

[32] B. Saha, A.-R. Adl-tabatabai, R. L. Hudson,
C. Cao Minh, and B. Hertzberg. McRT-STM: a high
performance software transactional memory system
for a multi-core runtime. In Proceedings of the 11th
ACM Symposium on Principles and Practice of
Parallel Programming, pages 187–197, New York City,
NY, 2006.

[33] M. F. Spear, M. Silverman, L. Dalessandro, M. M.
Michael, and M. L. Scott. Implementing and
exploiting inevitability in software transactional
memory. In Proceedings of the 37th International
Conference on Parallel Processing, pages 59–66,
Washington, DC, USA, 2008.

[34] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach,
A. Cristal, O. Unsal, T. Harris, and M. Valero.
EazyHTM: Eager-lazy hardware transactional
memory. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 145–155, New York, NY,
USA, 2009.

[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of
the 22nd Annual International Symposium on
Computer Architecture, pages 24–36, S. Margherita
Ligure, Italy, 1995.

[36] M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li.
Parallel data mining for association rules on
shared-memory multi-processors. In Proceedings of the
ACM/IEEE Conference on Supercomputing, 1996.

[37] F. Zyulkyarov, A. Cristal, S. Cvijic, E. Ayguade,
M. Valero, O. Unsal, and T. Harris. Wormbench: A
configurable workload for evaluating transactional
memory systems. In Proceedings of the 9th Workshop
on Memory Performance, pages 61–68, Toronto, ON,
Canada, 2008.

[38] F. Zyulkyarov, V. Gajinov, O. Unsal, A. Cristal,
E. Ayguadé, T. Harris, and M. Valero. Atomic quake:
Using transactional memory in an interactive
multiplayer game server. In Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 25–34,
Raleigh, NC, USA, 2009.

346

