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ABSTRACT

ACID-compliant DBMSs are said to be difficult to scale their per-
formance by using many more processors, which means that they
are difficult to enjoy the benefits of recent many-core systems that

wide-spread use of multi-core processors has made practicable. Since

DBMSs are indispensable in most of IT systems, scalability issues
should be addressed to fulfill the demand of handling large quantity
of data. This paper proposes a viable approach for solving scalabil-
ity issue, in which lock-related bottleneck will be identified from
event trace based measurements and scalability will be improved
by replacing the bottleneck-lock with fine-grained locks. This pa-
per also describes a case study on the application of the proposed
method, in which the scalability of a many-core system in execut-
ing DBT-1 transactions with MySQL adopting the InnoDB storage
engine has been successfully improved. Since applying the pro-
posed method produced the increase in maximum throughput of
the 16-CPU system by 1.6 times, the method is promising, as long
as lock-related bottlenecks are of concern.

Categories and Subject Descriptors

C.4 [Computer Systems Organizations]: Performance of Sys-
tems—design studies, measurement techniques, performance at-
tributes; D.2.8 [Software Engineering]: Metrics

General Terms

Experimentation, Measurement, Performance

Keywords

Scalability, Database Management System, Bottleneck, Critical Sec-
tion, Benchmark Program, Performance Tuning, Event-Trace, Many-
core System, and Symmetric Multiprocessing

1. INTRODUCTION

Thanks to widespread use of multi-core processors, we can eas-
ily use many CPU-cores in IT systems (many-core systems), which
mitigates the shortage of CPU resource and enables us to bring
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performance improvement in the system. Not all types of IT sys-
tems, however, are easy to reap the benefit of multi-core proces-
sors. Some types of systems such as WEB servers and application
servers have high scalability, which is already exploited with scale-
out architecture, which means adding a new server machine that
will take a share of the workload to the system, to achieve higher
performance. Other types of systems such as ACID'-compliant
relational database systems (DBMSs) are said to be poor in scal-
ability, which means that their performance cannot be easily im-
proved by using many more processors, which is unfavorable for
many-core systems that wide-spread use of multi-core processors
has made practicable. Since DBMSs are indispensable in most of
IT systems, scalability issues should be addressed to fulfill the de-
mand of handling large quantity of data.

Deep understanding of performance characteristics is crucial for
performance improvement of many-core systems, as they differ
from traditional systems in that traditional multi-processor tech-
niques are no longer efficient for many-core systems. Since many-
core systems are rich in CPU resource, their bottlenecks tend to be
not CPU resource but some element other than CPU, called scal-
ability bottleneck. This means that system performance cannot be
improved by adding CPUs to the system. Many-core systems are
much more likely to have this tendency than traditional systems,
and thus, higher emphasis is placed on scalability attribute of IT
systems then ever before.

In order to address scalability issues a well-formed methodology
is required, particularly for traditional ACID-compliant relational
database systems, because they are crucial in most of IT systems.
Although the BASE? consistency model is used to enhance DBMS
scalability, some mission critical systems still requires ACID con-
sistency model and/or there are a lot of needs for enhancing sys-
tem performance by upgrading system platform (OS and/or mid-
dleware) without modifying existing application code that works
with a traditional DBMS.

Based on the above considerations, this paper focuses on the
scalability of a traditional ACID-compliant relational database sys-
tem. Specifically, this paper proposes an event-tracing technique
based method to identify scalability bottleneck and applies the method
to an open-source DBMS in executing a benchmark program that
models business transactions in the real-world. The proposed method
has succeeded to discover that the scalability bottleneck was, as ex-
pected, the critical section enforced with the lock.

This paper also tries to improve the scalability of the system by
replacing the bottleneck-lock with fine-grained locks, in which the
granularity of shared data protected with the bottleneck-lock will be
broken down. Since the throughput performance of the system has
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successfully improved, the author believes that the tuning method
used in the experiment is a possible countermeasure against scala-
bility bottlenecks.

Contributions of this paper are: 1) it proposes a method for iden-
tifying the scalability bottlenecks based on an event-tracing tech-
nique, 2) it illustrates the availability of the method through an ex-
periment in which one of the most popular open-sourced ACID-
compliant relational database systems was measured and analyzed,
and 3) it demonstrates the possibility of eliminating the bottleneck
by breaking down the granularity of the bottleneck-lock and by
adopting an atomic instruction of the CPU. The proposed meth-
ods should be a meaningful first step for establishing a well-formed
procedure to address scalability issues.

The rest of this paper is organized as follow. Section 2 shows the
background and related work of this study. Section 3 describes the
method used in this study to identify scalability bottlenecks and ap-
plies the method to an experimental system that executed the DBT-
1 benchmark program on MySQL DBMS. Section 4 applies the
scalability-bottleneck analysis results to tune the bottlenecks and
illustrates the performance improvement. Section 5 discusses the
results of the experiments, followed by conclusions described in
Section 6.

2. BACKGROUND AND RELATED WORK

This section briefly introduces the basics of scalability bottle-
necks and describes related works that deal with the bottleneck
and/or its related subjects.

2.1 Definition of scalability

It was advocated that the scalability, a desirable attribute of an IT
systems, has two different aspects; structural scalability, the ability
of a system to expand in a chosen dimension without major mod-
ifications to its architecture, and load scalability, the ability of a
system to perform gracefully as the offered traffic increases [13].

This paper focuses on the structural scalability, especially that
concerning the number of processors. The structural scalability has
been get attention recently with accompanying the wide-spread use
of many-core processors. The load scalability, on the other hand,
is fundamental property of IT systems from the very beginning of
computer systems.

The author considered that the evaluation of the structural scala-
bility can be conducted through the comparison of the load-scalability
characteristics among various systems which differ in the number
of CPUs.

2.2 Scalability bottleneck in DBMSs

An ACID-compliant DBMS has to implement some concurrency-
control to ensure the ACID properties, making a DBMS thread
unable to work independently with other threads. In other words,
DBMS threads are processing their work with interacting with each
other. One type of interactions is that a DBMS thread has to wait
a processing result of another DBMS thread. Another type of in-
teractions between DBMS threads are contentions for some shared
data. To implement those concurrency controls, mutual-exclusion
enforced by means of a lock is usually used to arbitrate the con-
tentions. When a thread tries to acquire a lock that has been ac-
quired by another thread, the former thread has to wait until the
latter thread releases the lock.

Suppose an extreme case in which every DBMS thread needs to
acquire a particular lock to process its work. Since only one thread
can acquire the lock at a time, the other threads have to wait the
lock to be released, which means that only one thread can carry
forward the useful work and the other threads cannot. In such a
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situation, only one CPU can contribute to beneficial work, and thus
there is no performance gain by adding CPUs to the system. This
is a typical appearance of scalability bottleneck.

2.3 Related Work on Scalability Bottleneck

As IT systems commonly adopt multi-core CPUs, scalability
gets emphasized and studied from various points of view includ-
ing experiments to investigate the performance characteristics of
many-core systems, principles in data-management methodology,
system architectures, and concurrency-control strategies.

2.3.1 Measurement result
There are published performance measurements of MySQL exe-

cuting DBT-1 benchmark program in the WEB site of IPA (Information-

technology Promotion Agency, Japan). Figures 1 and 2 shows the
variation of the throughput (Y-axis) as a function of the load (X-
axis) for the DBMS server with four CPUs and eight CPUs respec-
tively.
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Figure 1: Throughput of four-CPU case [6] measured with the
DBT-1 benchmark program. The load intensity was changed
by changing the EU (Emulated Users) parameter.
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Figure 2: Throughput of eight-CPU case [7].

These results shows that additional four CPUs (from four to eight
CPUs) seldom produced performance gain; throughputs were sat-
urated at about 500 [BT?/s] for both systems with four and eight
CPUs using MySQL version 5.0.32. With taking into account the
CPU utilization result for eight-CPU system (Figure 3), the bot-
tleneck of the eight-CPU system was something other than CPU
resource; it’s an appearance of a scalability bottleneck.

Newer version of MySQL (5.4 and later) is said to be designed to
deliver significant performance and scalability improvements [8].

3Business Transactions



This paper examines and analyzes the performance of MySQL 5.5.2-
m?2 using the InnoDB storage engine in executing the DBT-1 bench-
mark program and tries to tune its performance.
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Figure 3: CPU utilization of eight-CPU case [7]. Since CPU uti-
lizations are shown in its constitutions (user, system, and iowait)
in the graph, you can grasp them with ’100% — idle’ as shown
in the graph.

2.3.2 Critical section in DBMS

Critical sections in DBMS have attracted attention for a long
time and very early works include what exhibits the convoy phe-
nomenon [11], which is the forming of a queue of lock-waiter pro-
cesses in a DBMS. Recently the critical-section related bottlenecks
have been re-examined as the most significant obstacle for system
scalability [20].

Another work [21] was conducted to improve scalability of a
particular DBMS by revising its architecture and synchronization
mechanism used in it. Although the work achieved an excellent
improvement in scalability, it was a pity that the DBMS was not
widely used and benchmark transactions used in the experiments
seemed to be rather simple and small. Also the work focused on
rather load scalability than structural scalability as little attention
was paid to the variation in the system behavior due to the change
in the number of hardware contexts (i.e. CPUs). On the other hand,
this study focused on the structural scalability through the perfor-
mance measurement of the system executing MySQL and DBT-1
benchmark program.

2.3.3 Lock mechanism

Performance evaluation study on various algorithms used in spin-
lock mechanism was conducted with simple and artificial bench-
mark and concluded that software queuing and inserting a delay
between the accesses of lock word according to a variant of Eth-
ernet backoff have good performance [10]. In that research, the
number of competing threads for the bottleneck-lock was less than
the number of processors and the threads did not sleep (no block-
ing). The other cases were out of the scope of the research.

A study on the strategy of the choice between spinning and block-
ing was carried out through a combination of analysis and simu-
lation [12]. They pointed out that predictability of lock holding
times is significant and concluded that their results may be used
for heuristically determining how long threads should be spinning
to wait the lock-release because of the uncertainty of lock holding
times. As lock holding times are difficult to know about realistic
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programs, heuristic algorithms using lock holding times are out of
the scope of this study.

As to lock algorithms in DBMS workload, performance evalua-
tion and comparison study of several lock mechanisms were con-
duced for a particular DBMS [19]. The focus of the study was the
variation in the performance with the change in the synchronization
primitives used in the system, and was not the way of mitigating the
critical section forming the bottleneck enforced with the lock.

The aim of this study is to establish a well-formed methodology
to mitigate lock-related bottlenecks with a view to program modi-
fication by replacing the bottleneck-lock with fine-grained locks,

2.4 Previous Research of the Author

2.4.1 Performance of original DBMS

The author has studied about the performance of MySQL 5.5.2-
m?2 using the InnoDB storage engine executing the DBT-1 bench-
mark program [2] on multi-processor systems [16]. The target was
chosen for the following reasons; MySQL is one of the most pop-
ular traditional ACID-compliant DBMSs and DBT-1, a fair usage
implementation of the TPC-W [9] specification, is expected to gen-
erate realistic transactions to DBMSs.

To investigate the change in the performance characteristic due
to the change in the number of CPUs, the performance measure-
ments were conducted for the systems with 4, 8, 12, and 16 CPUs
enabled. The load intensity (Emulated Users, EU) was changed
from 400 to 4800 for each case. The measurement results are il-
lustrated in Figure 4, in which each line corresponds to one of the
system configurations and shows the variation of a couple of per-
formance indices measured, the throughput (y-axis) and CPU uti-
lization (x-axis). The plots in each line were obtained by changing
the EU, which means that each line was drawn with treating the EU
as the parameter.
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Figure 4: Throughput (y-axis) vs. CPU utilization (x-axis) of
the original system. CPU utilization of 100% means that just
one CPU is fully loaded, thus, CPU utilization of a system hav-
ing 16 CPUs, for example, will be at some point between 0%
and 1600 %.

The graph indicates that there was an scalability bottleneck; CPU
utilizations of the 16-CPU system in the region of throughput satu-
ration was sharply-increased (from about 500% to 1600%) without
appropriate improvement in the throughput. The author has named
this phenomena “CPU jump phenomena”.



2.4.2  Performance analysis

The cause of the performance degradation occurred in adding
CPUs was identified through the measurement using CPU built-in
performance counters; there were two kinds of bottlenecks which
were in software and hardware layers and their interaction was the
cause. The two kinds of bottleneck were:

e at the software layer the MySQL threads competed for the
critical section enforced with a particular bottleneck-lock and

e at the hardware layer the CPUs competed for the shared bus
through which each CPU accesses the main memory on cache
miss etc.

The shared-bus conflict was probably caused by the increase in
the bus transaction frequency and the increase was supposed to be
caused by the increase in the conflict with the bottleneck-lock. The
many processors the system has, the many thread come to access
the lock word, and thus the heavier access of the shared-bus oc-
curs. This illustration is consistent with the observation that the
performance degraded along with the increase in the number of the
processors.

By considering the interaction between these two conflicts, the
author concluded that the chain of causality was occurred. That is:

1. The contention for the shared-bus resulted in the increase in
the CPI (Clock Cycles Per Instruction).

2. The increase in the CPI resulted in slowing the execution of
the critical section that was the bottleneck at the software
layer, making increase in the time needed to finish the critical
section.

3. The increase in the critical-section execution time of caused
the decrease in the throughput of the target system.

2.4.3 Performance tuning

A key point of the analysis is that the scalability bottleneck was
caused by the shared-bus conflict that was due to the increase in
the shared-bus transaction frequency. This suggested the way to
improve the performance; reducing the shared-bus conflict is the
prime key factor. Since the frequency increased with the increase in
the number of spinning threads that repeatedly accessed the lock-
word to obtain the lock, the conflict was expected to be reduced
by maintaining the number of spinning threads within a particular
number.
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Figure 5: Throughput vs. CPU utilization of the baseline sys-
tem.
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Figure 6: Throughput vs. EU (Emulated Users) of the baseline
system.

A lock mechanism that carries out the policy has been developed
as a combination of a library and LKM (Loadable Kernel Module),
and applied to the bottleneck-lock in MySQL. The performance
improvement achieved by the newly developed lock mechanism
was measured with the DBT-1 benchmark program. The results
are shown in Figures 5 and 6. This paper treats the tuned system as
baseline system.

As can be seen in Figure 5, both throughput and CPU utilization
characteristics, especially for the 16-CPU cases, were improved;
there was neither CPU jump nor throughput inversion. While it is
true that the reform of the lock mechanism and its resulting perfor-
mance improvements are meaningful, the degree of the improve-
ments is by no means satisfactory as the throughput achieved with
the 16-CPU system was almost the same as that of the eight-CPU
system. Since the CPU utilizations of 12- and 16-CPU cases were
not saturated, the obstacle for system performance improvement
seemed to be a critical section-related bottleneck that the modifica-
tion of the lock mechanism highlighted.

This result suggested that the effect of the lock algorithm inno-
vation had a limit in performance improvement and solution of the
critical section-related bottleneck was required to achieve further
performance improvement. It seemed to contradict the suggestion
by Johnson et. al. [20] that proper use of synchronization prim-
itives can be effective to maximize performance and keep critical
sections off the critical path in database engines.

2.4.4 Hardware activities of the tuned system

Figure 7 exhibits the typical performance indices of the tuned
system at the hardware layer. They were calculated from the fol-
lowing elemental indices obtained from multiple measurements with
the oprofile tool [S5] on the linux. They were: the number of in-
structions retired (1), Clock cycles when not halted (C'), outstand-
ing cacheable data read bus requests duration (D), and the number
of any completed bus transactions (B). The performance indices
shown in the graphs are: (a) the number of bus transactions per in-
struction is B/I, (b) the clock cycles per bus transaction is D /B,
and (c) the clock cycles per instruction is C'/I.

It should be noted here that the indices in the graphs (b) and (c)
were virtually constant with the change in the load intensity (EU).
These results will be used in Section 4.3.3 to identify the bottleneck
at the hardware layer with taking activities at the hardware level
into consideration.
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Figure 7: Performance indices at the hardware layer (baseline system).

3. BOTTLENECK IDENTIFICATION

Generally speaking, the first step of performance tuning is identi-
fying the bottleneck in the target system, thus, this study also began
with identifying the scalability bottleneck. This section illustrates
the target system, measurement method and tool, and results of the
measurements.

3.1 System Configuration

The measured system and the benchmark program used in the
scalability evaluation was the same as those used in the previous
study (Section 2.4) of the author. The baseline employed in this
paper was MySQL 5.5.2-m?2 with the modification for performance
tuning described in Section 2.4.3.

The software components of the target system were as follows.
1) Benchmark program was DBT-1 [2], 2) DBMS was MySQL [4]
version 5.5.2-m2 (development release) using InnoDB storage en-
gine, and 3) operating system was Linux [3], more specifically Cen-
tOS 5.4 [1] with the kernel of version 2.6.18-164.6.1.el5. The hard-
ware consisted of four Intel E7310 CPUs driven by a 1.6 Giga-Hz
clock, Intel 7300 chipset, DDR2-667 memory of 14 Giga-Byte, and
three 72Giga-Byte hard-drives forming one RAID 0O drive. Each
CPU-chip has four processor-cores and 2 Mega-Byte of internal
cache memory, which makes target system having total of 16 pro-
cessors (CPUs).

An execution of DBT-1 benchmark program produces a through-
put value in BT per second under the given amount of load in EU
for a particular configuration of the target system. Several execu-
tions were required to figure out the load scalability characteristics.
The sets of benchmark executions were repeated with varying the
number of processors in the target system to evaluate the structural
scalability.

The CPU affinity mechanism provided with the taskset com-
mand was used to enable the specified CPU(s) and disable the other
CPU(s), rather than by specifying kernel boot parameter maxcpus.
Although the use of taskset command cannot completely disable
the CPUs assumed to be nonexistent in the benchmark execution,
the author thinks it gives a good approximation of a system hav-
ing the specified number of CPUs because almost all portion of the
program execution was on the DBMS and load generator programs.
On the other hand, the use of maxcpus parameter tends to enable
processor-cores equally among CPU-chips, resulting in a situation
in which each enabled processor-core has more CPU-cache than
that in the assumed situation. This difference can affect benchmark
results.
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3.2 Measurement Method and Tool

Critical sections enforced by locks are seemed to be the most
probable cause of the scalability bottleneck in the target system and
thus measurements to quantify the lock-waiting times have been
conducted. The fundamental concept of lock-waiting time is sim-
ilar as that of thread waiting time [18], but details are different in
some ways; 1) waiting times are accumulated on a resource to re-
source basis and 2) the periods of busy wait (spin wait) are included
in the lock-waiting time.

Thread 1

request

(No wait)
Lock
request | (Wait)
Thread 2 —— = - -- -
L‘ —t
Beginning of
lock wait || lock wait| g Critical section
| —

] Non-critical section
Ezzd Lock occupancy
— = Waiting for the lock

Software probes

Figure 8: Software probes to mark the boundaries of lock-
waiting periods were implemented in the application program,
in addition to the mandatory kernel probes.

Based on this idea, measurements were conducted with an event-
trace based measurement tool [14, 15] capable of obtaining spe-
cific events that relate Linux kernel activities. To detect the lock-
waiting period, application-probes (Figure 8) were implemented in
MySQL and used in the measurements in addition to the tool’s de-
fault events. More specifically, the application-probes were placed
at the beginning and end of the lock-waiting procedure in following
functions in the innoDB storage engine:

e mutex_enter_func()
e rw_lock_s_lock_func()
e rw_lock_x_lock_func()

Two types of measurement were conducted to identify the bottle-
neck of the system; one was to identify which lock was the bottle-
neck and the other was to identify which critical section enforced



by the bottleneck-lock was the bottleneck. In the former measure-
ment, the application probes output the line-number information
that indicates where the lock-initialization was invoked (c/ine mem-
ber variable in the lock structure) as an ID of the lock. The applica-
tion probes used in the latter measurement output the line-number
information that indicates where the lock-request was invoked (a
parameter for the lock function) as an ID of the critical section.

Analysis of the obtained event trace gives us the detail of the
lock-waiting times of the MySOL threads during the execution of
the benchmark transactions. The bottleneck-lock can be identified
from the lock-waiting times accumulated on a lock to lock basis;
the lock on which threads were mostly spent their execution time
to wait the lock acquisition should be the bottleneck. In a similar
way, the critical section (CS) that formed the bottleneck can be
identified from the result of lock-waiting times accumulated on a
CS to CS basis.

3.3 Results of the Baseline System
3.3.1 Lock to lock basis

Figure 9 shows the lock-waiting times normalized as a per-trans-
action basis obtained from the baseline system in 16-CPU configu-
ration. The top five members are separately displayed and the other
members, which accounted for just a fraction of a percent of the
total lock-waiting time, are displayed as the sum of them.
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Figure 9: Variation of lock-waiting times detail for a 16-CPU
case of the baseline system in a lock to lock basis.

As can be seen from the figure, total waiting time became notice-
able in the region where the load intensities (EU) were more than
2000, and waiting times for buf_pool_mutex were the major
portion of the lock-waiting times in that region. The results of total
lock-waiting times are consistent with Figure 6 in that throughputs
were saturated in the region where total lock-waiting times were
prominent. The results indicate that the buf_pool_mutex was
the bottleneck of the system, meaning that performance tuning to
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improve scalability should be focused on the critical sections en-
forced by the buf_pool_mutex.

3.3.2 CSto CS basis

In order to pinpoint the bottleneck critical section, detail of the
waiting times on the critical sections enforced by the buf_pool_
mutex was investigated in a CS to CS basis through the measure-
ment based on event-tracing. The results for the baseline system in
16-CPU configuration in a CS to CS basis are shown in Figure 10.
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Figure 10: Variation of waiting times detail for a 16-CPU
case of the baseline system in a critical-section to critical-
section basis. This graph shows that the critical section in the
buf_pool_get_gen() function was the bottleneck.

It is noteworthy of special mention that the waiting time on a par-
ticular critical section stood out, which means that only one critical
section had a major effect on the system performance. Performance
tuning should be focused on the bottleneck critical-section, and the
others had to be paid little attention at the moment.

4. BOTTLENECK ELIMINATION

The measurement results presented in the previous section have
been applied to the performance tuning, which is a repetition of
bottleneck identification and solution. This section describes the
performance tuning conducted to the baseline system in chrono-
logical order.

The approaches for the performance tuning were: 1) the bottle-
neck lock will be replaced with a set of fine-grained locks and 2)
the operations executed in the bottleneck critical-section will be
implemented by a particular atomic instruction of the CPUs.

4.1 Fine-Grained Lock

4.1.1 Usage of the bottleneck-lock

The usage of the bottleneck-lock (buf_pool_mutex) was re-
vealed through the inspection of the MySQL source code; the



bottleneck-lock (buf_pool_mutex) was used to protect the struc-
ture of data named buf_pool_struct (Figure 11). The main
task of the bottleneck critical-section, which was in the buf_page_
get_gen () function, was also inspected; the specified buffer-
block will be searched in and acquired from the hash-table named
page_hash which is in the buf_pool structure.

buf_pool_mutex

=

struct buf_pool_struct {

hash_table_t* page_hash;

-

‘buf_page_t

e

Figure 11: Coarse-grained lock used to protect the structure
variable of buf_pool as a whole.

4.1.2 Introducing a fine-grained lock

Based on the investigation of the bottleneck-lock and bottleneck
critical-section described in the previous section, the course of the
performance tuning was to be determined; replacing the bottleneck-
lock with fine-grained locks.
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Figure 12: The modified lock structure; a set of fine-grained
locks each of which protect the corresponding hash-entry in the
page_hash structure.

Figure 12 illustrates the outline of the fine-grained lock; the set
of the rw_locks for each hash-entry were added. In accordance
with the change in the lock structure, the critical sections had to be
modified as follows.

1. The acquisition and release of the exclusive-lock were added
before and after the procedure that carries out the insert to
and the delete from the corresponding hash entry of page_
hash (Figure 13 (a)),

2. the acquisition and release of the shared-lock were added be-
fore and after the procedure that carries out the search in the
corresponding hash entry of page_hash (Figure 13 (b)),
and

3. acquisition and release of the bottleneck-lock at the bottle-
neck critical-section were omitted.

4.1.3 Emergence of next bottlenecks

The performance tuning with the fine-grained lock has succeeded
to eliminate the buf_pool_mutex originated bottleneck and has
resulted, however, in the emergence of new bottleneck-locks; they
are block->mutex and btr_search_latch (Figure 14).
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i
| rwlock_x_lock( &(buf_pool->rwlock_for_each hash entry[fold]) ); !
|

HASH_DELETE(buf_page_t, hash, buf_pool->page_hash, fold, bpage); .
HASH_INSERT(buf_page_t, hash, buf_pool->page_hash, fold, dpage); Original code

i
| rwlock_x_unlock( &(buf_pool->rwlock_for_each hash entry[fold]) ); i
|

(a) Example of a exclusive-lock addition

rwlock_s_lock( &(buf_pool->rwlock_for_each hash entry[fold]) ); !

some_assertion,

HASH_SEARCH(hash, buf_pool->page_hash, fold, buf_page_t*, bpage,
Original code
bpage->space == space && bpage->offset == offset);

i
| rwlock_s_unlock( &(buf_pool->rwlock_for_each hash entry[fold]) ); |
|

(b) Example of a shared-lock addition

Figure 13: The mutual exclusion enforced with the exclusive or
shared-lock was added to the access of the corresponding hash
entry of page_hash.

The critical sections enforced by the bt r_search_latch were
possible to tune in the similar way to that for the buf_pool_mutex,
because they were mainly used for ensuring the mutual exclusion of
search/insert/delete of the hash table named btr_search_sys
->hash_index, which exists to help B-Tree search operations
in MySQL.
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Figure 14: Variation of lock-waiting times detail for the Im-
proved System (16-CPU case) in a lock to lock basis.

4.2 Atomic Instruction

4.2.1 Usage of the bottleneck-lock

The block->1ock related bottleneck critical sections in the
improved system were identified in a similar way to that described
in Section 3.3.2; Figure 15 shows the detail of the lock-waiting



times in the CS to CS basis. The bottleneck critical-sections in-
dicated by the graph were investigated by inspecting the MySQL
source code and clarified that their task were increment or decre-

ment of the buf_ fix_count member variable in the buf_page_

struct.
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Figure 15: Variation of waiting times detail for a 16-CPU
case of the improved system in a critical-section to critical-
section basis. This graph shows that the critical sections in the
buf_page_get_gen() and the buf_page_release() functions were
the comparable bottlenecks.

4.2.2 Using atomic instructions of the CPU

Since the task of the bottleneck critical-sections are just the in-
crement or decrement of a particular counter, there was a possibility
to avoid using critical section; the increment/decrement operations
were to be carried out by a particular atomic instruction of the CPU.
The reality is, however, somewhat complicated; the value of the
buf_fix_ count member variable is often changed with other
member variables such as io_fix, flush_type, state, and
access_time, and thus, the values of these member variables
should be changed atomically.

In order to change those member variables atomically and simul-
taneously, several points of the program had to be modified. The
first step was that those member variables were packed into a 64-
bit data, which can be handled by an atomic instruction of the CPU
such as CMPXCHG [17]. Then, the source code were modified
to use a particular CPU’s atomic instruction to access the related
member variables; an example of the modifications are shown in
Figure 16.

4.3 Evaluation of Performance Improvement

4.3.1 Lock-waiting time

Thanks to the performance tuning described in the previous sub-
sections, bottleneck locks has been successfully eliminated. Figure
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block_mutex = &((buf_block_t*) bpage)->mutex;
mutex_enter(block_mutex);

bpage->buf_fix_count++;

must_read = buf_page_get_io_fix(bpage) == BUF_IO_READ;

access_time = buf_page_is_accessed(bpage);
mutex_enter(block_mutex);

(a) Example of an original code (rewrote for conciseness)

old_value = bpage.sbits;
do {
new_value = old_value;
new_value.sbits.buf_fix_cont++
must_read = new_value.sbits.io_fix == BUF_IO_READ;
access_time = new_value.sbits.access_time;
while ( CompareAndSwap( &bpage.sbits, &old_value, new_value) = SUCCESS );

(b) The modified code by using CompareAndSwap operation

Figure 16: An example of the program modifications to use
the CAS (compare-and-swap) instruction (CMPXCHG in x86
CPUs) for the change of the related member variables.

17 exhibits the lock-waiting time of the tuned system in the lock to
lock basis. By comparing the graph with that of Figures 9 and/or
14, it is obvious that lock-waiting times has become negligible.
These results clearly demonstrate that the tunings have contributed
to the elimination of the bottleneck lock.

4.3.2  Throughput and CPU utilization

Performance characteristics of the tuned system are illustrated
in Figure 18, which shows the relationship between throughputs
and CPU utilizations of the tuned system with varying the load in-
tensity, which is the same manner as that in Figure 4. The series
of bottleneck eliminations has made an improvement in maximum
throughput as follows. Maximum throughput of original and base-
line system with 16 CPUs measured by the DBT-1 benchmark pro-
gram were about 580 BT/s and 800 BT/s respectively, and that of
the tuned system was about 930 BT/s; the bottleneck elimination
produced the performance improvement of 1.6 times from the orig-
inal system, which is remarkable especially because the change was
made only in the software and not in the hardware.

From the scalability viewpoint, however, those improvements
are by no means satisfactory as the throughput achieved with the
16-CPU system was less than that that of the 12-CPU system. In
addition, there is a little CPU jump phenomena in the graph in the
16-CPU results; CPU utilization increased from about 1100% to
1600%, which was not deserved the increase in the throughput from
870 to 930 [BT/s]. This shows that there was a next scalability-
bottleneck.

Since the lock-waiting times in the tuned system (Figure 17)
were negligible magnitude, the scalability bottleneck of the tuned
system was not supposed to be lock-related factors. Next subsec-
tion tries to identify the scalability bottleneck of the tuned system.

4.3.3 Investigation on the next bottleneck

By going back to the basics of typical bottlenecks in SMP (Sym-
metric Multiprocessing) systems as illustrated in Figure 19, a rea-
sonable inference on the scalability bottleneck of the tuned system
was made; access conflicts on the shared bus were the cause. In
order to verify this inference, activities at the hardware layer were
measured with the CPU-built-in performance counters.

Similar way to that used to obtain the result shown in Figure 7
was applied in the measurement of the tuned system and produced
the results shown in Figure 20. They clearly indicated that access
conflicts at the shared-bus occurred in the 16-CPU and 12-CPU
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Figure 17: Variation of lock-waiting times detail for a 16-CPU
case of the tuned system in a lock to lock basis.
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Figure 18: Throughput vs. CPU utilization of the tuned system.
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Figure 19: Possible bottlenecks in a SMP system.
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systems because the graphs (b) and (c) show that each performance
index increased with the increase in the load intensity. Figure 7,
on the other hand, shows that those indices were virtually constant
even if the load intensities were changed.

It is very possible that the increase in the degree of shared-bus
conflict was due to the increase in the number of bus transactions
per instruction. Although the difference between graphs (a) in Fig-
ures 7 and 20 seems small, the difference can be very influential in
the shard-bus activity if the shared-bus utilization were close to its
saturation point. After all, feasible assumption here is that the con-
flicts at the shared-bus leaded to the slower instruction execution of
the CPUs, which adversely affect the system performance. The as-
sumption was possible to be verified from the benchmark execution
on a system that uses the CPUs with larger internal cache, because
larger CPU-internal cache promises the effect of the reduction in
the bus-transaction frequency.

The measurement results * are shown in Figure 21, which illus-
trates the performance characteristics of the system using proces-
sors with larger internal cache; many the system had CPUs, more
the throughput were achieved. This means that maximum through-
put (saturation point) can be increased by adding CPUs to the sys-
tem, which means that structural scalability is not impaired, as long
as the number of CPUs is less than 24.
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Figure 21: Throughput vs. CPU utilization of a system using
processors with larger internal cache.

5. DISCUSSION
5.1 Nature of Bottlenecks

5.1.1 Universal principles

Although bottlenecks in many-core systems seems much more
complicated than those in traditional systems, fundamental natures
of both bottlenecks, however, are the same; only a few primal bot-
tlenecks are visible to us, meaning that a few factors affect the sys-
tem in its performance. When the primal bottlenecks are success-
fully eliminated, the next bottlenecks will emerge (become primal)
and come to affect the system performance. This requires us to tune
the system performance step by step.

As to the performance tuning presented in Section 4, the biggest
bottleneck of the first (baseline) system was the buf_pool_mutex

*The measured system had four Intel X7460 CPUs, each of which
had six processor-cores and 16 Mega-Byte of internal cache mem-
ory, were driven by a 2.66 GHz clock and had a FSB driven by a
1066MHz clock. The main memory capacity was 48 Giga-Byte.
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Figure 20: Performance indices at the hardware layer (tuned system).

related critical section, and then the block->1ock and btr_

search_latchrelated critical section became the bottleneck when

the first bottleneck had been eliminated. This makes us re-realize
a fundamental fact that performance tuning is a repetition of the
basic operations of bottleneck identification and elimination. An
example of this point was the Section 4 in which a bottleneck at
the hardware layer emerged after the three lock-related bottlenecks
had been eliminated.

5.1.2  Scalability Bottlenecks

Many-core systems have more potential bottlenecks than tradi-
tional systems, as Figure 20 shows an example of this tendency;
the more cores, the larger performance indices, which reflect the
degree of interference for CPU’s instruction execution by other
CPUs. Since many-core systems are becoming common for IT sys-
tems, this tendency suggests that we should progress the method-
ology for performance evaluation and tuning to address scalability
issues appeared in many-core systems. Establishing a well-formed
method to identify the bottleneck is the first step in the progress
toward promptly solving scalability related performance problems.

As to the lock-related bottlenecks, measurement of the lock-
waiting times was useful to identify the bottleneck lock and the
critical section(s) enforced by the lock. On the other hand, mea-
surements of hardware related activities were necessary to identify
the shared-bus contention derived bottleneck. The series of the per-
formance tuning is an example case of using right tool for the right
purpose and is expected as the first step to establish the well-formed
method for solving scalability bottlenecks.

5.2 Performance Tuning

5.2.1 Dimension of the bottleneck

Measurement of the lock-waiting times presented in Section 4
showed that 1) a particular lock formed the bottleneck at a time
and 2) a few (one or two) critical sections enforced by the bottle-
neck lock were the bottleneck. This implied the possibility that the
modification of a small portion of the program can be effective.

In fact, the InnoDB storage engine had over 40 locks, each of
which had ten to twenty critical sections, out of which several crit-
ical sections had to be inspected for the performance tuning pre-
sented in Section 4. Especially, it was somewhat surprising that
just increment/decrement of a counter for buffer management come
to form the primary bottleneck. This could be due to using a tradi-
tional buffer replacement algorithm that does not aims higher struc-
tural scalability but effective utilization of small memory. Since re-
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cent server machines have large-capacity memory, buffer replace-
ment algorithm should be built with focusing on the structural scal-
ability.

Of course, the similar portion in other DBMSs does not always
form the bottleneck and thus tuning of them does not always pro-
duce performance improvement. In particular, commercial DBMSs
are believed to be tested thoroughly, which already eliminated that
kind of bottlenecks.

The contribution of this paper is not pointing out a scalability
bottleneck specific to a particular DBMS but proposing a method
for identifying and tuning of scalability bottlenecks based on an
event-tracing technique. The author believes that proposed method
is applicable to any multi-threaded server systems because it does
not rely on prior knowledge on target software and hardware sys-
tems.

5.2.2  Another challenge

An important issue in using critical section is ensuring there is
no race conditions among the shared variables accessed in the crit-
ical sections, which was also important in the program modifica-
tions described in Section 4. Since the variable accessed in the
bottleneck critical section is also accessed in other related critical
sections, the performance tuning was accomplished by modifying
several critical sections, which made the correctness issue a little
bit complicated.

Fortunately, the source code of the InnoDB storage engine in-
cluded some assertion statements. When some sort of error oc-
curred in the benchmark executions, the structure of mutual exe-
cutions was reviewed and reformed to fix the error. Examples of
countermeasures include enlarging the critical section of a newly
introduced fine-grained lock and/or adding a new lock to ensure
the mutual exclusion access to another resource, other than that
protected by the newly introduced lock. That is to say, they were
used to confirm the correctness of the atomic operations in modify-
ing the program.

Although no assertion error has been occurred on the tuned sys-
tem during the benchmark executions so far, it does not mean that
there are no race conditions in the modified source code. This
means that there should be another crucial challenge other than
that of identifying the bottleneck; the verification of the correct-
ness condition relating to critical sections. After all, the author
thinks that it will be a promising approach that combining a tool
for identifying the bottleneck and a tool for verifying the correct-
ness of modified critical section such as FUSION [23] and/or CoBe
[22].



6. CONCLUSIONS

Owing to the emergence of the many-core era in recent years,
structural scalability is coming to be the most important property
in performance issues of IT systems. Since many-core systems can
behave in unfamiliar ways for us and can pose us a performance
problem that we have never come across, we need a well-formed
methodology to address the performance issues.

In order to address the scalability issues, this paper proposes
a method for identifying the scalability bottlenecks based on an
event-tracing technique. One of the main features of the method
is that the lock-waiting times of the DBMS threads are measured
and used to identify the bottleneck lock and critical section. The
method has been applied in the evaluation of MySQL with the
InnoDB storage engine, one of the most widely used open source
DBMSs, and has succeeded to identify its lock-related scalability
bottlenecks. This case should imply the availability of the method.

This paper also demonstrates the possibility of eliminating the
bottleneck by breaking down the granularity of the bottleneck-lock
and by adopting an atomic instruction of the CPU. By using the
fine-grained locks in hash-table manipulation and the atomic in-
struction in buffer-management functions, maximum throughput of
the 16-CPU system has increased by 1.6 times, which shows the
possibility of the method, as long as lock-related bottlenecks are of
concern.

It is noteworthy that these bottleneck identifications and elimi-
nations have been accomplished by the author who was unfamiliar
with the source code of MySQL and InnoDB. This means that the
proposed methods can be applied to other systems with relative
ease, and thus, they should be a meaningful first step for establish-
ing a well-formed procedure to address scalability issues.
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