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ABSTRACT
We propose a trace-driven approach to predict the perfor-
mance degradation of disk request response times due to
storage device contention in consolidated virtualized envi-
ronments. Our performance model evaluates a queueing
network with fair share scheduling using trace-driven sim-
ulation. The model parameters can be deduced from mea-
surements obtained inside Virtual Machines (VMs) from a
system where a single VM accesses a remote storage server.
The parameterized model can then be used to predict the
effect of storage contention when multiple VMs are consoli-
dated on the same virtualized server. The model parameter
estimation relies on a search technique that tries to esti-
mate the splitting and merging of blocks at the the Virtual
Machine Monitor (VMM) level in the case of multiple com-
peting VMs. Simulation experiments based on traces of the
Postmark and FFSB disk benchmarks show that our model
is able to accurately predict the impact of workload consol-
idation on VM disk IO response times.
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1. INTRODUCTION
The performance of IO-bound applications is dominated

by the time required by the operating system to schedule
read and write operations and by the response times of the
storage devices in completing such requests. Since changes
in the workload, as well as in the software and hardware
environments, can affect the latency of disk IO requests, it
is often useful to define performance models to anticipate
the effects of a change. This is especially important in vir-
tualized data centers, where the concurrent shared use of a
storage device by several Virtual Machines (VMs) managed
by a Virtual Machine Monitor (VMM) can lead to significant
performance degradation [25]. In such systems estimates of
IO contention for a given VM placement configuration can
support management and consolidation decisions. However,
modeling the performance of disk requests is very challeng-
ing due to the joint interaction of the IO flows issued by
several VMs and because of the complexity of caching mech-
anisms, scheduling algorithms, device drivers, and communi-
cation protocols employed by both the VMs and the VMM.

In this paper, we tackle this complexity by introducing a
trace-driven simulation approach for IO performance predic-
tion in consolidated environments where multiple VMs can
share access to a remote storage server. Our methodology,
summarized in Figure 1, requires first to study VMs when
they run in isolation on a virtualized server. After collecting
measurements, we use simulation and specialized parameter-
ization techniques to forecast the impact of consolidation on
IO performance. Specifically, for each VM of interest we col-
lect traces of arrival times and estimated service times for
IO requests. We then use these isolation scenario traces to
parameterize a queueing model for a specified consolidation
scenario. A feature of our queueing model is also to use
start-time fair queueing (SFQ), a popular implementation
of fair share scheduling which is adopted in VMMs.

Motivated by the fact that a trace-driven simulation that
only uses such arrival and service time traces typically fails
in predicting accurately IO request response times under
consolidation, we define an iterative algorithm for optimal
parameterization of the simulation model. Specifically, the
algorithm employs a search technique to estimate the per-
formance impact of VMM level IO optimizations such as the
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splitting and merging of IO requests. Extensive experimen-
tation on test workloads generated with the Postmark (PM)
and FFSB disk benchmarks reveals that our methodology
can forecast successfully consolidation effects on IO perfor-
mance.

Summarizing, the main contributions of this paper are
twofold.

1. Our methodology allows us to parametrize a simu-
lation model based on data obtained inside VMs in
isolation experiments. It requires very little informa-
tion from the VMM thereby effectively treating the
VMM as a blackbox. It also obviates the need to col-
lect model training data for different VM consolidation
scenarios.

2. The model is enhanced with an iterative technique that
estimates the impact of optimization operations per-
formed by the VMM kernel disk scheduler, such as
merging of requests.

The remainder of the paper is organized as follows. Sec-
tion 2 motivates the use of prediction tools to quantify per-
formance degradation of disk requests in shared environ-
ments and Section 3 introduces the reference system for our
study. The proposed modeling methodology is presented in
Section 4 and model validation results are shown in Section
5. Section 6 gives an overview of related work. Section 7
offers summary and conclusions.

2. MOTIVATIONAL EXAMPLE
In virtualized environments, the VMM adds an additional

layer to the IO architecture that needs to be considered in
IO performance models. The hypervisor supports storage
requests from varying operating system types and the disk
scheduler might do some further optimization processing of
incoming traffic. For example, disk schedulers do not oper-
ate in a true first-come-first-served (FCFS) manner, but try
to optimize disk access patterns by reordering queued re-
quests according to the targeted disk sector addresses. Fur-
thermore, large requests can be split into smaller requests
while similar requests that arrive within a specific time win-
dow can be merged and processed together in order to de-
crease latencies of the storage device.

In consolidation scenarios where more than a single VM
submits large numbers of IO requests, competition for the
disk drive can lead to significant increases in latencies, i.e.
response times. To illustrate the problem Figure 2 com-
pares the distribution of response times in two experiments
conducted on our reference system, which is introduced in
Section 3.1. In the first experiment, denoted isolation exper-
iment, a single VM runs on the system thus avoiding con-
tention from other VMs. In the second set of experiments,

Figure 1: Problem Approach.
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Figure 2: Effect of VM Consolidation on Disk Re-
quest Latencies.

denoted consolidation experiment, we run two or three iden-
tical VMs on the same virtualized server and find that their
disk requests experience storage contention. Response times
are computed as the time between request issue and request
completion as recorded by the VM operating system. In iso-
lation the CDF in Figure 2 shows that the 95th percentile of
response times is 0.0255s. Moving from the isolation case to
a consolidation scenario the probabilities of observing small
response times remarkably decrease. For the experiments
where two and three VMs submit an identical workload to
the same storage device, we recorded 95th percentiles for the
storage response times of 0.238s and 0.3198s, respectively.
This makes a strong case for the significant performance
impact that consolidation can have on end-to-end response
time of IO requests and motivates the investigation in this
paper. Specifically, the example motivates the need for ac-
curate models that can capture and quantify the possible IO
performance degradation related to consolidation effects.

3. SYSTEM CHARACTERISTICS
We begin with a specification of the hardware and soft-

ware environment used in experimentation and advance to
present the tool used to obtain IO measurements. Our mod-
eling techniques have been tested only on the architecture
described below, but we believe them to be representative
of virtualized environments adopting similar technologies.

3.1 Reference System
We conduct our study on an AMD-based enterprise server

with 4 quad-core processors containing a total of 16 CPU
cores each clocked at 2.21GHz. The system is equipped with
68GB of RAM and is connected to an OpenFiler [3] storage
server via the iSCSI protocol and 1 GBit Ethernet. The
storage server manages a SATA-II hardware RAID controller
which in turn manages a 15 disc RAID 5 array.

On the server we host the virtualization platform VMware
ESX Server 3i - 3.5.0 [7], which accesses the storage de-
vice through a software iSCSI host bus adapter (HBA). The
virtualized environment consists of multiple Debian 5.0.1,
kernel 2.6.26-2, guest VM systems, each with identical con-
figurations of 1 virtual CPU, 500MB RAM, and 50GB of
“virtual” hard disk formatted as ext3 file system.

The virtual disks are represented by a large file and can
be thought of as a linear array made up of units of space,
i.e. logical blocks. In the remainder of this paper the term
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(a) Storage
Subsystem

(b) Storage
Queues

Figure 3: IO Architecture and Storage Queues of
the Reference System.

“block” always refers to logical block units, rather than the
storage device’s physical block units. In our system virtual
disk files of all VMs are stored on a single physical storage
device (LUN) and access the LUN through the same HBA.

Disk IO requests issued from a VM consist of one or mul-
tiple contiguous blocks for either reads or writes. Once an
application running inside the VM submits a request, the re-
quest first goes to the disk driver of the VM operating system
as shown in Figure 3 (a). The driver processes the request
and forwards it to the VMM, where it is trapped and may
undergo further optimization operations before being issued
to the LUN via the storage driver and the iSCSI HBA [9].

On their way through the previously described layers of
the storage subsystem, requests can be queued multiple times
as illustrated in Figure 3 (b). Hence latencies of requests
may be affected by multiple queueing delays. Furthermore,
requests may undergo optimizations such as splitting, merg-
ing, and reordering by schedulers managing the various queues
shown in Figure 3 (b). Such operations are used to optimize
disk access patterns, e.g., by merging multiple requests for
small amounts of contiguous blocks to fewer requests for
large amounts of contiguous blocks. In virtualized envi-
ronments these operations can have a significant impact on
disk request performance, as scheduling policies at VM and
VMM level may impair each other [14].

In our environment the Debian guest VMs are configured
to use the completely fair queueing (CFQ) [10] scheduler,
which has per default 64 internal queues to maintain and
keep disk IO requests [5]. The in-VM scheduler optimizes
disk access for the ext3 file system, which is configured at
the default block size of 4kB. Hidden from the operating
system of the VM, the VMM conceptually comprises two
sets of queues, namely the VMM kernel queues and the de-
vice driver queue. The VMM kernel maintains a queue of
pending requests per VM for each target SCSI device [21],
controlled with a fair-share (FS) [19] scheduler. See section
4.1 for more detailed information on the scheduling. The
VMM formats virtual disk files in the virtual machine file
system [7] and performs its own splitting, merging and re-
ordering processing on disk requests that are queued at the
VMM kernel.

Furthermore, the server maintains a device driver queue
for each LUN, which controls the issue queue length defined

as the number of pending requests the server can have at the
storage device at a time [6]. Virtualized servers typically al-
low to configure the issue queue length for each LUN. When
multiple host servers issue requests to the same LUN, this
parameter can be used to control resource utilization and
fairness across hosts.

Summarizing, our reference system comprises a network
of interconnected queues with multiple classes of customers
corresponding to the multiple VMs and various scheduling
disciplines, which need to be represented in the performance
model. In this case the application of classic solutions for
product form queueing networks [11] is complicated due to
complex splitting, merging, and reordering operations on ar-
riving requests that depend on spatial locality on the storage
device. Although forking and joining operations may allevi-
ate such difficulties, they are hard to parametrize in absence
of direct measurement of the VMM internal optimization,
which is the typical situation in practice. Furthermore, the
merged submission of requests can result in an extreme be-
haviour of the arrival patterns where large amounts of re-
quests are condensed into large bursts. Bursts have been
identified as important sources of performance degradation
[28, 16] and we handle them in this work by resorting to
trace-driven simulation.

3.2 Measurement Tool
This section describes the monitoring tool we have used to

quantify the performance of disk requests, as well as to col-
lect necessary data for parameterization of our model. All
measurements are obtained inside VMs with the block layer
IO tracing mechanism blktrace [1]. The tool allows us to
record traces of disk request issue and completion events, as
they are recorded from the VM operating system kernel. Is-
sue events specify that a request that has previously resided
in the disk IO scheduler queue of the VM operating system
has been sent to the driver, while completion events mark
that a previously issued request has been completed [15].
Collecting this data at the operating system level, rather
than at the level of the in-VM application, has the advan-
tage that sorting and merging operations of the VM CFQ
scheduler are reflected in the monitoring trace.

Traces comprise a relative time stamp for each request is-
sue and completion, a flag that indicates whether a request
was a read or write, the logical block address (LBA) per-
taining to the request, and the number of blocks accessed.
This detailed information is helpful for building the system
model, since it enables us to compute per request arrival
times at the VMM. In order to capture request splitting
and merging operations at the VMM kernel level we also
record the block size of each request arrival. Specifically,
the VMM may split requests above a certain size threshold.
It may also merge several requests together to leverage spa-
tial locality. We note that we calculate per request response
times as the time difference between completion and issue
events in the trace collected using blktrace.

4. MODELING METHODOLOGY
Our model comprises trace-driven simulations to predict

the performance degradation of VM disk request response
times due to storage device contention. The fundamental
idea of our approach is to first record application traces
in isolation benchmark experiments and then utilize these
traces to parametrize simulation models of consolidation sce-

297



Figure 4: Methodology Overview.

narios. The challenge is to define realistic models of con-
tention and of the internal VMM IO optimizations which
affect the end-to-end delays of read and write operations.
Model parameterization is solely based on measurements ob-
tained within the VMs and information that we gathered
from available documentation on VMM operations such as
fairshare scheduling, splitting and merging. As a result, we
essentially treat the VMM as a blackbox in this work.

Figure 4 shows an overview of our methodology and in-
troduces some of the terminology used in the following sec-
tions. The model allows us to study a specified consolidation
scenario consisting of a set of VMs concurrently sharing a
storage device. Input parameters for the queueing model are
request arrival traces obtained from in-VM measurements in
isolation benchmark experiments for each of the VMs con-
sidered in the consolidation scenario. Our methodology can
account for environment specific, VMM level request split-
ting behavior by means of a pre-processing step on arrival
traces, as described in Section 4.2.1. Besides having an ar-
rival time A(cik) each request cik is also provided with a ser-
vice time D(cik) sampled from a Markovian Arrival Process
(MAP) as described in Section 4.2.2. As shown in Figure
4, we use a simulation model that schedules requests using
the SFQ(D) [23] scheduling policy across a pool of servers,
each representing a parallel connection to the LUN. This
model additionally approximates the request merging be-
havior of the VMM disk scheduler by bundling a config-
urable number of ω requests and enabling them to share a
server. The queueing network and the scheduling algorithm
are presented in 4.1. The search algorithm we developed to
iteratively estimate the parameter ω is introduced in Section
4.3.2. Finally, the model outputs requests with a response
time estimate R(cik). This involves a post-processing task
wherein, as shown in Figure 4, the requests that have been
split in the pre-processing step are rejoined.

4.1 Simulation Model
We represent the system under study as a multiclass open

queueing model. Requests submitted from individual VMs
are distinguished in separate classes as shown in Figure 5.
As described in Section 3 virtualization environments typ-
ically provide a configurable parameter which controls the
maximum VMM issue queue length to the LUN. We cap-
ture this aspect by modeling the storage device as a pool of
parallel servers. In our reference system this parameter is
maintained at its default value of 32 and consequently our
model comprises of 32 servers.

Based on available documentation on the VMM, we imple-
mented a practical SFQ disk scheduling discipline to sched-
ule requests on to the servers. Fair queueing [19] algorithms

Figure 5: Queueing Model.

are work-conserving and schedule shared resources between
competing requests by allocating resource capacity based
on proportional weights. Practical fair queueing algorithms
constitute approximations to generalized processor sharing
(GPS) scheduling by considering requests to be indivisible,
rather than fluid flows.

Conventional SFQ schedulers do not consider concurrent
service of requests at a resource. Our simulation model im-
plements SFQ(D), a special variation of SFQ [20], which has
previously been used in related work [21] to model our refer-
ence system. The depth parameter D controls the number of
concurrent requests in service and consequently corresponds
to the number of servers in our model. Upon arrival of the
ith request cik of class k, it is assigned a start tag S(cik) and a
finish tag F (cik) by the scheduler. The tag values represent
the times at which each request should start and complete
service according to a system notion of virtual time v(t).
Tags are computed as:

S(cik) = max{v(A(cik)), F (cj−1
k )}, j ≥ 1 (1)

F (cik) = S(cik) +
dik
φk

, j ≥ 1 (2)

where A(cik) is the arrival time of request cik, F (c0k) = 0,
v(0) = 0, dik is the service time of the request, and φk > 0

is the weight or share of class k,
∑K

k=1 φk = 1. Throughout
experiments, we assign equal shares to all request classes.

The scheduler issues a maximum of D requests to idle
servers in increasing order of start tags. When a request
completes the queued request with min(start tag) is selected
and issued to an available server to maintain a concurrency
level of D. Virtual time advances by assigning it the start tag
of the last request issued on or before time t, i.e., the queued
request with the lowest start tag at the time of the last issue.
As mentioned previously, in addition to SFQ(D) scheduling
we also select ω requests, merge them together, and issue
the merged request to the servers. The superposition of this
behaviour with SFQ(D) is described in Section 4.3.2.

4.2 Model Parameterization
This section describes how we obtain the interarrival and

service times of request. In this step, we account for the
request splitting operations of the VMM which are triggered
when the block sizes of arriving requests exceed a certain
threshold.

4.2.1 Interarrival Times
The simulation model is parameterized with measured ar-

rival traces, which are recorded in a series of benchmark ex-
periments. Benchmark workloads are submitted from within
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VMs running in isolation, where only a single VM is running
on the server. For each VM we build a trace repository com-
prising multiple benchmark runs. Traces are recorded with
the blktrace tool, where we include every in-VM request issue
as an arrival in the model.

When predicting request response times for consolidation
scenarios, we randomly choose an arrival trace for each con-
sidered VM from the repository and run a consolidation sim-
ulation. Parameterizing the simulation model with arrival
traces measured in isolation experiments is valid, since our
measurements in Section 5.2 show that the interarrival time
distribution of disk requests to the VMM is not significantly
impacted by workload consolidation. This indicates that in
the presence of contention delays disk requests are queued
at the VMM, rather than at the VMs. Queueing requests at
the VMM is preferable, since queue depths should be larger
than at the VMs and the VMM can use system specific in-
formation to optimize disk access of queued requests. We
expect this observation to hold unless the VMM queues are
saturated.

We account for splitting operations of the VMM by per-
forming additional processing steps on model input param-
eters and output results. Each arriving request cik has an
arrival time A(cik) and a block size B(cik). Given the max-
imum request size threshold lmax, we pre-process the trace
and split all arrivals where B(cik) > lmax into N separate
arrivals, such that:

N i
k =

⌈
B(cik)

lmax

⌉
(3)

A(ci,nk ) = A(cik) (4)

B(ci,nk ) =

{
lmax

∑n
1 B(ci,nk ) ≤ lmax

B(cik) mod lmax

∑n
1 B(ci,nk ) > lmax,

(5)

where N i
k is the total amount of splitting operations for ar-

rival cik determined by the ceiling function, mod finds the
remainder of the division, and n ∈ {1..N i

k}. Since splitting
operations are performed by the VMM and are not visible to
the VMs, previously split requests need to be rejoined once
they have completed service. Our methodology includes a
post-processing step on requests that leave the simulation
model and as a result are assigned a response time R(cik).
We compute the response times of joined requests as the
mean:

R(cik) =
1

N i
k

Ni
k∑

n=1

R(ci,nk ). (6)

As requests are likely to be served in parallel by the storage
array, computing the mean response time of split requests
can only be an approximation of the real behaviour at the
device. We investigate the effectiveness of this approxima-
tion in Section 5. In our reference system the VMM splits
arriving requests exceeding a size of 512kB, corresponding
to 128 blocks in an ext3 file system with 4kB block size. We
consider this behavior in our model and set lmax = 128.

4.2.2 Service Times
Service times are key parameters to specify queueing mod-

els and are typically estimated based on direct data mea-
surement and statistical inference. A common approach to

characterize the resource consumption of requests is to mon-
itor system utilization and use regression techniques based
on operational laws [27]. As our blackbox approach does not
involve instrumentation of the VMM or of the storage server
in order to collect utilization samples, a practice which is
anyway difficult or impossible in many real-world systems,
we approximate the service times of disk requests from re-
sponse time measurements in isolation benchmark experi-
ments. When utilization levels at the VMM are low, disk
requests do not face queueing delays as they get instantly is-
sued to the storage device. In fact, our measurements show
that the mean number of requests in the system during an
isolation run does not exceed the number of available con-
nections from the VMM to the LUN. Thus measured request
response times in isolation should be a reasonable approxi-
mation to the actual service requirement at the disk. Cases
where this approach is problematic involve load-dependent
service times, however the experiments reported in this pa-
per indicate that such effects may not be prevalent in the
consolidated environments we consider.

Request service times belonging to a specific VM collected
during isolation experiments are fitted to a MAP [17], which
is then used to randomly sample a service time for each ar-
rival. The role of MAPs in our methodology is to generate
random traces, which follow the same statistical properties
(distribution, autocorrelations) observed in the isolation ex-
periments.

4.3 Request Merging Methodology
Our simulation experiments indicate that prediction re-

sults can be significantly increased if the model is enhanced
with heuristics to account for the merging operations done
by the VMM. As we mentioned previously, we allow the
scheduler to merge queued requests. The merging algo-
rithm is described in Section 4.3.1. The iterative technique
to quantify the amount of performed scheduler merging op-
erations for a given workload configuration is described in
Section 4.3.2.

4.3.1 Request Merging Algorithm
The model merges a configurable amount of queued re-

quests in such a way that they still remain separate entities,
but share a server, i.e, connection to the LUN. As shown in
Algorithm 1, we pass a merge value parameter, denoted ω,
to the simulator, which approximates the amount of merg-
ing operations observed in the real system. Merging values
can range in [1,∞], where we consider a merge value of 1 as
a single job being issued per service station, i.e. no merging,
whereas a large ω indicates that several requests are merged
together before issue to the storage server. Since requests
are indivisible, we implement a function get int value to ob-
tain from ω the number of merged requests in each round of
VMM IO optimizations. For example, if ω is configured as
2.5 there is an equal probability that the maximum amount
of merging operations performed next by the simulator will
be either two or three.

The technique maintains the properties of the SFQ sched-
uler by merging requests in increasing number of start tags.
Furthermore, only requests of the same class are merged.
As a result, the algorithm aborts in cases where the queued
request with the minimum start tag is of a different class
as the already merged requests. Once a merged job has
received service and exits the model, each of the merged re-
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Algorithm 1 Implementation of Merging

ω ← merge value
merged jobs← struct
while service station idle AND job queued do

x← get int value(ω)
for i = 1 to x do

job← queued job with min start tag
if i == 1 then

merged jobs← merged jobs+ job
else

if class job == class merged jobs then
merged jobs← merged jobs+ job

else
break

end if
end if

end for
schedule merged jobs to idle service station

end while

quests counts as a separate completion. Since each of the
requests sharing a service station has an individual service
time, we approximate the aggregate service requirement of
merged request with the mean of the individual request ser-
vice times.

4.3.2 Merge Value Estimation
The challenge is to approximate the merging operations

inherent in the real system without detailed knowledge of
the VMM internals and further complication of the simu-
lation model, e.g. by explicitly considering spatial locality
of requests in the simulator. To estimate the merging value
in this blackbox view of the VMM we have developed an
iterative search technique. Our technique controls the mean
number of requests in simulation experiments, i.e. the mean
queue length, through the ω parameter and terminates once
the mean queue length seen in simulation closely matches
an inferred expected queue length.

Inference of Mean Expected Queue Length. The first step
of merge value estimation is to infer the expected mean
queue length in the system for the consolidation scenario
under study. We infer the expected mean queue length for a
consolidation scenario with K classes based on the assump-
tion that the mean number of requests in the system grows
linearly when moving from isolation to consolidation:

NK
exp =

K∑
i=1

N iso
meas, (7)

where K is the total number of request classes considered
in the simulation model, NK

exp is the expected mean queue

length in simulation, and N iso
meas is a measurement of the

mean queue length obtained in isolation benchmark exper-
iments. The queue length parameters we consider include
requests that have been issued by the VM operating sys-
tem and are either queued at the VMM or in service, i.e.
pending, at the LUN storage device.

To validate this linear assumption Table 1 shows mea-
surements of the mean number of requests from benchmark
experiments in our reference system. We present measure-
ments for a number of workload configurations averaged over
multiple benchmark runs. For detailed information on the

Table 1: Measurements and Expected Mean Number of

Requests N in the System in Isolation (Iso) and Consoli-

dation Scenarios with Two VMs (Con 2) and Three VMs

(Con 3)

.

Workload Iso Con 2 Con 3
N iso

meas N2
meas N2

exp N3
meas N3

exp

PM-1 11.9 27.5 23.8 43.7 35.7
PM-2 14.1 30.2 28.2 44.6 42.3
FFSB-1 S 4.6 8.5 9.2 12.8 13.8
FFSB-1 R 4.8 8.5 9.6 13.3 14.4
FFSB-2 S 3.5 6.4 7.0 9.0 10.5
FFSB-2 R 4.0 7.5 8.0 10.0 12.0

considered workloads see Section 5.1. Results indicate that
the linear assumption is a good approximation to system
behavior. We expect our assumption to hold as long as the
aggregate mean number of requests outstanding from VMs,
i.e. requests issued and not yet completed, does not exceed
the number of available connections from the VMM to the
LUN.

Iterative Search. The expected queue length approxima-
tion is an input parameter for an iterative search technique,
which we propose to estimate the merge value parameter
for the simulation model. As shown in Algorithm 2, the
search is further parameterized with a configurable initial-
ization point and a maximum relative error value, Δmax,
that serves as a search termination condition. Each search
iteration begins with a number of simulator runs that in-
corporate merging operations according to the current value
of ω. Every simulator run is parameterized with a random
combination of interarrival time traces drawn from a trace
repository, depending on the number and type of considered
request classes k. At the end of each search iteration we
compute the corrected mean queue length in simulations,
N ′

sim, with

N ′
sim =

Nsim

ω
, ω ≥ 1 (8)

where Nsim is the mean queue length over all simulation
runs and N ′

sim represents the effective queue length after
the merging transformation with ω. The effective queue
length in simulation is then used as input parameter for
the function get merge error, which computes the relative
error Δω produced by the current ω estimate according to
the error function

Δω =

∣∣∣∣N ′
sim −Nexp

Nexp

∣∣∣∣ , (9)

where Nexp is the inferred expected queue length computed
according to (7) from isolation experiments. The search ter-
minates if the corrected queue length is accurate within 5%
of Nexp. In cases where the estimation error is outside of
this range, we control search direction and ω values on basis
of a binary search. Let ω = g(N ′

sim) be the merge value used
in simulation to obtain N ′

sim. If N ′
sim is smaller than Nexp,

we decrease ω in order to increase the mean number of re-
quest in simulation. In cases where previous iterations have
produced a N ′

sim,old, such that {N ′
sim,old > Nexp > N ′

sim}
the merge value for the next iteration is determined by

ω = g(N ′
sim)− g(Nsim)′ − g(N ′

sim,old)

2
, (10)

which is half the distance between ω values used to obtain
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Algorithm 2 Iterative Estimation of Merge Value

ω ← merge value initialisation point
Nexp ← infered expected queue length
Δmax ← 0.05
flag ← 0
while flag < 1 do

#run configurable amount of simulator iterations
for i = 1 to max simulator iterations do

for k = 1 to K do
draw random arrival trace from repository

end for
simulate(ω)

end for
#search merge value ω
Nsim ← mean queue length over simulator iterations

N ′
sim ← (Nsim/ω)

Δω ← get merge error(N ′
sim)

if Δω ≤ Δmax then
flag ← 1

else if N ′
sim < Nexp then

ω ← decrease
else if N ′

sim > Nexp then
ω ← increase

end if
end while

N ′
sim and N ′

sim,old. In cases where no such N ′
sim,old exists,

we decrease ω by a configurable step size parameter. The
inverse of the above applies for the opposite search direction.

5. VALIDATION EXPERIMENTS
In this section we validate the proposed methodology with

data obtained in a number of benchmark experiments from
our reference system. We first present the benchmark appli-
cations considered and their measured workload characteris-
tics. We later compare our prediction results with measured
results from consolidation scenarios and predictions from an
analytical product form queueing model.

5.1 Workload Generation
We consider a number of different workload types, which

are submitted from within VMs running in isolation, as
well as in consolidated scenarios. The workloads consist of
varying configurations of two benchmarks with quite dis-
tinct characteristics. The Flexible File System Benchmark
(FFSB) [2] is a multi-threaded benchmark comprising large
file operations. Conversely, Postmark (PM) [4] is a syn-
thetic single-threaded workload comprising small file and
metadata-intensive operations designed to emulate IO pat-
terns of Internet applications such as e-mail and e-commerce.

We specifically choose these two workload types to vali-
date our model, since the extent of optimization operations
of the VMM should significantly differ in both cases. The
file operations of FFSB include disk requests which consist of
large numbers of contiguous blocks. Here, the VMM sched-
uler might not have much opportunity to perform further
merging operations and may even have to split requests that
are too large. PM requests, on the other hand, consist of
small amounts of blocks and may allow the disk scheduler
to merge to a larger extent.

In order to obtain a system steady state, benchmarks for

Table 2: Workload Configurations.

Parameter Conf-1 Conf-2

PM

Size low bound 500 byte 9.77 kB
Size high bound 9.77 kB 19.53 kB
Size read 512 byte 2 kB
Size write 512 byte 2 kB

FFSB
Size Read 4 kB 32 kB
Size Write 4 kB 32 kB

each configuration are submitted over a period of 75 minutes
in five minute intervals. While the FFSB application can be
parameterized to run for a specified time frame, PM does
not provide such an option. In cases where a PM run needs
less than five minutes to complete we restart it, but only
collect monitoring data within the five minute time window
that captures a run.

PM. File servers running Internet applications typically
work with a large number of short-lived, relatively small
files (1kB-100kB). PM was designed to emulate scenarios of
this domain, where at any given time files are being rapidly
created, deleted, read, or written, at random locations on
the storage device. At the beginning of each benchmark
run an initial pool of random text files is created, with sizes
ranging in configurable bounds. Then a specified number
of create/delete and read/append operations occur. Finally,
upon completion of all operations the set of files is deleted.

We have considered two configurations of a PM workload
in our investigation, denoted PM-1 and PM-2. The work-
loads differ in the file sizes of the initial file set, as well as
the sizes of read and write requests (see Table 2). The “size”
parameters specify how much data is read or written to files
at a time. When using PM-2 the benchmark creates a file
set spanning a large size range and performs reads/writes of
increased sizes. In both PM configurations read/append, as
well as create/delete operations are equally likely to occur.

FFSB. Similar to PM we have defined two FFSB configu-
rations, but this benchmark additionally supports the execu-
tion of sequential, as well as randomized reads/writes. The
response times of sequential and random requests can sig-
nificantly differ, since sequential requests are most directly
affected by the transfer speed of the disk drive, while ran-
dom requests are most directly affected by disk seek time
[5]. Sequential read requests can also take advantage of read-
aheads, which assume that an application reading from disk
block n will next ask to read from the subsequent disk blocks.
The read-ahead mechanism decreases seek times by caching
the following disk blocks n+1, n+2, etc., into memory, but
is turned off once the system detects a non-sequential file
access. Considering the sequential and randomized options
essentially leaves us with four distinct FFSB workloads for
our study, denoted as FFSB-1 S, FFSB-1 R, FFSB-2 S, and
FFSB-2 R.

At the beginning of each benchmark run FFSB dedicates
a single thread to create an initial file set for the subse-
quent operations. In our specific configuration the applica-
tion creates a structure of 400 files and 10 directories. Even
though both configurations are initialized with the same to-
tal number of files, the distribution of file sizes is differ-
ent. FFSB allows us to specify the quantity of certain file
sizes, as well as the probability of IO operations via relative
weights. The file sizes in FFSB-1 S/R and FFSB-2 S/R
range in [4kB;32MB] and [32kB;32MB], respectively, with
the highest request frequencies for the smaller sizes. We de-
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fine a single threadgroup consisting of 100 threads and set
the think time parameter to zero. Read and write IO op-
erations are configured with the same weight, but different
sizes, as shown in Table 2.

5.2 Workload Characterization
In this section we present how workloads submitted by the

benchmark application are translated into logical block re-
quests by the VM operating system. The disk IO scheduler
of the VM operating system merges and reorders queued
requests. As a result the total number and sizes of disk
requests issued by the VM operating system to the VMM
can significantly differ from the total number and sizes of
requests submitted by the application to the VM operating
system. We first illustrate the request size distribution and
the interarrival time distribution for requests submitted by a
VM to the VMM. In particular, we show the effect of work-
load consolidation on interarrival times of requests issued by
a VM. Finally, we also present service time statistics for all
workload configurations considered.

5.2.1 Request Size
To illustrate the different size characteristics of the work-

load configurations considered, Figure 6 shows measurements
of VM disk request size distributions of sample benchmark
experiments. For ease of presentation we have grouped the
data into bins. The sizes of the bins are chosen on the basis
of a related workload characterization study [8]. As shown
in Figure 6 (a) the VM kernel merges the majority of re-
quests submitted by PM-1 into sizes larger than four and
less or equal to eight blocks. Since the standard file system
block size on our reference system is 4kB, a request for eight
blocks has a size of 32kB. Figure 6 (b) reflects the main dif-
ference between the two PM workload configurations. PM-2
submits requests of larger sizes. This results in a lower fre-
quency of 32kB (eight blocks) request sizes and additional
requests for block sizes greater than eight. A common at-
tribute of the two PM workloads is that neither workload
causes the VM scheduler to issue a significant number of
requests with blocks sizes greater than 128.

Figures 6 (c) and (d) show request size distributions of
FFSB workloads and reveal that workload characteristics are
quite different compared to PM workloads. Similar to PM
the VM scheduler merges a large number of the FFSB work-
load to requests of size 32kB (8 blocks). However, the total
number of requests is significantly lower and the proportion
of requests with large sizes is significantly higher than in the
case of PM. Evaluating the main differences between FFSB-
1 S and FFSB-2 S, the increased file sizes and frequency
of large file operations of FFSB-2 S allow the scheduler to
translate FFSB-2 S workloads into fewer requests of larger
sizes as seen in Figure 6 (d). The total number of requests
compared to FFSB-1 S decreases, while the frequency of re-
quests of block size 64 and above increases. For both FFSB
workloads large proportions of requests are merged to block
sizes > 128, which corresponds to request sizes > 512kB.
Summarizing, we have shown that sizes of requests sub-

mitted from VMs to the VMM significantly differ from the
configured request sizes of the benchmark applications. Fur-
thermore, PM workloads comprise large amounts of small
requests that may be further merged when queued in the
VMM kernel. In contrast, requests of FFSB workloads are
already merged to large sizes by the VM disk scheduler and

Table 3: Mean in ms, Standard Deviation (std), and

Coefficient of Variation (cv) Statistics for Request Inter-

arrival and Service Times.
Workload Interarrival Times Service Times

mean std cv mean std cv

PM-1 0.72 0.02 21.0 8.61 0.04 5.0
PM-2 0.81 0.01 16.4 11.5 0.09 5.1
FFSB-1 S 3.07 0.03 9.2 13.9 0.05 3.4
FFSB-1 R 3.24 0.03 9.1 15.6 0.05 3.1
FFSB-2 S 4.36 0.04 9.9 15.2 0.05 3.4
FFSB-2 R 3.54 0.04 10.8 14.1 0.05 3.6

this might not allow the VMM kernel the same leverage with
respect to the extent of merging operations as in the case of
PM.

5.2.2 Interarrival Times
The significantly different characteristics of the considered

workload configurations are also reflected in the distribu-
tions of request interarrival times. Figure 7 (a) shows the
interarrival time distributions of requests to the VMM, as
recorded when submitting the PM workloads. While both
distributions have a similar shape, there is a higher proba-
bility for a longer interarrival times in PM-2. We computed
the mean interarrival times for PM-1 and PM-2 as 0.72ms
and 0.81ms, respectively, as shown in Table 3.

Figure 7 (b) illustrates the arrival distributions for both
FFSB configurations when performing sequential read/write
operations. Compared to the PM workloads, the interarrival
times are considerably longer. We observe a significantly
higher probability for longer interarrival times for FFSB-2 S
with a 95th percentile of 13.6ms. FFSB-1 S has a shorter
mean interarrival time across the whole range of the distri-
bution with the 95th percentile of interarrival times being
8.5ms or less. The distribution of arrivals does not seem
to be affected by randomizing disk access, as Figure 7 (c)
indicates.

Since our model uses information recorded during isola-
tion benchmarks experiments only, we are especially inter-
ested in quantifying the impact of workload consolidation
on request interarrival times. Figure 8 shows the inter-
arrival time distributions of disk requests submitted from
VMs when running in isolation (Iso) compared to consoli-
dation scenarios with additional VMs submitting an identi-
cal workload in the background. Interestingly none of the
arrival distributions from the VM to the VMM displays a
large deviation from their corresponding isolation distribu-
tions when the workload on the server is doubled (Con 2)
or tripled (Con 3). We take this as a clear indication that
queueing of disk IO requests due to resource contention takes
place at the VMM layer, rather than at the VMs themselves.

5.2.3 Service Times
Our methodology approximates the service requirement

of disk requests with measured response times in isolation
scenarios as described in Section 4.2.2. In isolation the uti-
lization levels at the VMM are likely to be low and thus
requests may not incur queuing. Table 3 shows mean ser-
vice time statistics for all workload configurations averaged
over all VMs and benchmark runs. The service requirements
for FFSB workloads are higher than for PM. This is prob-
ably due to the larger request sizes of FFSB which entail
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(d) FFSB-2 S

Figure 6: Measured Distribution of Request Sizes for PM and FFSB Workload Configurations.
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(b) FFSB-1 S and FFSB-2 S
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(c) FFSB-1 S and FFSB-1 R

Figure 7: Distribution of Arrival Processes of PM and FFSB Workloads in Isolation.

increased lengths of read/write operations at the disk drive.
Interestingly, randomizing workload patterns does not au-
tomatically lead to higher service times. FFSB-1 R has a
larger service time than FFSB-1 S, while it is the opposite
for FFSB-2 R and FFSB-2 S.

5.3 Model Validation
In this section we study the accuracy of our proposed

methodology to predict the mean response time of disk re-
quests when consolidating storage workloads. For valida-
tion we conduct a series of benchmark experiments on our
reference system using the previously introduced workload
configurations. Workloads are submitted from within VMs.
We consider scenarios with up to three VMs, denoted VM 1,
VM 2, and VM 3, where we consolidate homogeneous work-
loads, i.e., workloads of the same type. Each benchmark
experiment consists of 15 individual 5min runs and results
are reported as means over all runs. We first show measure-
ment results before comparing the prediction accuracy of
our simulation model to a product form analytical solution.

5.3.1 Measurement Results
We present measurements that illustrate the impact of

workload consolidation on disk request response times. Disk
response times are an important metric since they may di-
rectly affect the performance of end users of applications,
e.g. in cases where processes block until completion of a
read request. All results are based on in-VM measurements
obtained with the blktrace tool as described in Section 3.2.
Table 4 shows that workload consolidation leads to an

increase of disk IO response times across all workload con-
figurations. The PM workloads suffer a higher performance
degradation than FFSB, with an increase ranging in approx-
imately [258%; 299%] and [399%; 568%] in the two and
three VM consolidation scenarios, respectively. In case of
the FFSB workloads this increase is less severe, but still

ranges approximately in [126%; 141%] and [147%; 181%]
over all VMs and configurations. Furthermore, there is no
clear trend showing that response times of random FFSB
workloads increase to a larger degree than sequential FFSB
workloads when consolidating. Interestingly, VMs seem to
have slightly different IO characteristics even for identical
workload configurations. For example, in a three VM consol-
idation scenario PM-2 requests submitted from VM 2 have a
mean response time of 56ms, while the mean response time
of PM-2 requests submitted from VM 3 is 43.9ms.

5.3.2 Prediction Accuracy
In this section we present predictions of mean disk re-

quest response times obtained using the proposed method-
ology. We validate model predictions against system mea-
surements. We then compare the quality of our predictions
to an open product form solution, which has previously been
successfully applied in environments with shared resources
[13]. Response time estimates for the product form model
are determined analytically as

Rest,k =
Dk

1−∑K
t=1

λt
n
×Dt

, (11)

where Rest,k is a response time estimate for class k requests,
D is the mean service time, λ the mean arrival rate, K the
number of request classes, and {n = 32} the number of
servers in the model. In case the sum in the denominator
equals a result ≥ 1, we set the value of the summation to
0.99. This term stands for the server utilization and may
be affected by error due to our approximations on service
demand estimates.

Predictions of our simulation model are averaged over
multiple simulation runs, with number of runs ≥ 50 and
≥ 100 for PM and FFSB simulations, respectively. We in-
dicate the reliability of the estimate using a 95% confidence
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Figure 8: Impact of Workload Consolidation on Arrival Processes of PM and FFSB Workloads.

Table 4: Mean Response Time Measurements of Disk IO Requests in ms for VMs in Isolation (Iso) and Consolidation

Scenarios with Two VMs (Con 2) and Three VMs (Con 3).

Workload VM 1 VM 2 VM 3
Iso Con 2 Con 3 Iso Con 2 Con 3 Iso Con 3

PM-1 9.45 28.3 47.7 8.49 25.4 48.2 7.9 37.8
PM-2 11.5 31.1 53.3 11.9 30.8 56.0 11.0 43.9
FFSB-1 S 14.8 18.4 24.9 13.5 16.8 24.5 13.3 25.2
FFSB-1 R 16.4 21.5 29.8 15.2 20.1 25.6 15.3 28.2
FFSB-2 S 15.4 19.9 24.9 15.2 20.4 22.3 15.1 23.6
FFSB-2 R 14.6 19.6 23.5 13.7 19.4 22.9 13.8 23.3

Table 5: Confidence Interval Width of Simulation Re-

sults (CIβ) and Mean Relative Errors of Response Time

Predictions for Simulation (Δω) and Product Form (Δp)

Model.
Workload Con 2 Con 3

CIβ Δω Δp CIβ Δω Δp

PM-1 11.6 0.13 0.46 17.9 0.09 18.4
PM-2 8.9 0.08 2.26 10.3 0.06 64.9
FFSB-1 S 2.3 0.03 0.12 12.3 0.02 0.06
FFSB-1 R 4.2 0.03 0.09 27.7 0.30 0.03
FFSB-2 S 6.6 0.09 0.03 19.4 0.04 0.05
FFSB-2 R 1.8 0.16 0.03 5.05 0.15 0.04

interval and report the confidence interval width CIβ as the
percentage of the mean, averaged over all classes. Further-
more, the model incorporates some specific characteristics
of our reference system. The VMM splits incoming traf-
fic above a size threshold of 512kB (128 blocks), which we
consider in the parameterization of the model as described
in Section 4.2.1. The quantity of splitting operations is re-
ported as

Ψ =
CI

split

CI
, (12)

where CI is the total number of request arrivals before our
splitting step, CI

split the total number of split arrivals, and
Ψ the splitting ratio. Prediction accuracy is evaluated by
the error function

Δ =

K∑
k=1

1

K

∣∣∣∣Rest,k −Rmeas,k

Rest,k

∣∣∣∣ , (13)

which is the mean relative error over all k classes of the
estimated response time Rest,k with respect to the measured
value Rmeas,k.

PM. The simulation model delivers accurate prediction
results for PM-1 and PM-2 in both consolidation scenarios,

Table 6: Comparison of Merging and Splitting Opera-

tions Performed by the Simulation Model.

Workload Con 2 Con 3
Ψ ω ω

PM-1 1.01 2.55 4.7
PM-2 1.02 2.43 4.35
FFSB-1 S 1.56 2.0 2.9
FFSB-1 R 1.54 2.0 3.9
FFSB-2 S 1.83 2.2 3.075
FFSB-2 R 1.64 1.9 2.575

as shown in Table 5. In light of the extent to which re-
sponse times of these workloads increase in consolidation,
the quality of results is impressive. Conversely, the prod-
uct form model delivers larger errors and is not competitive
except for the case of PM-1 in Con 2. The reason for the
poor prediction of the product form model may be that re-
quests of this workload type get merged in the VMM, which
is not accounted for in the analytical equation. As Table
6 conveys our methodology estimates merging values ω of
approximately 2.5 and 4.5 for Con 2 and Con 3 respectively.
Larger ω’s for Con 3 are reasonable, since more requests
get queued at higher utilization levels resulting in more op-
timization operations by the VMM. As we have shown in
Figures 6 (a) and (b) the amounts of requests larger than
512kB are very small for PM workloads, thus splitting oper-
ations are negligible. Figures 9 (a) and (b) show that predic-
tions of the simulation model underestimate the measured
response times for Con 2. We reason this might be due to
the necessary approximation of service times for merged re-
quests, where we estimate the aggregate service requirement
with the mean. Even though the storage device likely serves
merged requests asynchronously, this might be an optimistic
approximation. Figures 10 (a) and (b) also show optimistic
predictions for Con 3, with only a single exception for PM-2
submitted by VM 3. Conversely, the reference product form

304



VM 1 VM 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Virtual Machine

R
es

po
ns

e 
T

im
e 

(s
)

 

 

Meas
Sim
Prod

(a) PM-1

VM 1 VM 2
0

0.01

0.02

0.03

0.04
>0.09 >0.09

Virtual Machine

R
es

po
ns

e 
T

im
e 

(s
)

(b) PM-2

VM 1 VM 2
0

0.005

0.01

0.015

0.02

Virtual Machine

R
es

po
ns

e 
T

im
e 

(s
)

(c) FFSB-2 Seq

VM 1 VM 2
0

0.005

0.01

0.015

0.02

Virtual Machine

R
es

po
ns

e 
T

im
e 

(s
)

(d) FFSB-2 Rand

Figure 9: Comparison of Response Times from Measurement (Meas), Simulation (Sim), and Product-Form
(Prod) Model for Two VMs Consolidation Scenarios With Largest Prediction Errors. Legend Shown in
Figure (a) is Identical for Figures (b), (c), and (d).
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Figure 10: Comparison of Response Times from Measurement (Meas), Simulation (Sim), and Product-Form
(Prod) Model for Three VMs Consolidation Scenarios With Largest Prediction Errors. Legend Shown in
Figure (d) is Identical for Figures (a), (b) and (c).

model grossly overestimates response times across all VMs
and consolidation scenarios.

FFSB. Both approaches deliver good response time pre-
dictions for Con 2, where the simulation model performs
especially well for the cases of FFSB-1 S/R. Interestingly,
the product form model works significantly better than for
the PM workloads. We explain these good results due to the
fact that FFSB requests are significantly larger in size, as
shown in Figures 6 (c) and (d), and probably undergo less
optimization operations in the VMM. Our technique per-
forms VMM level splitting operations on the arrival trace,
as well as merging, as shown Table 6. We have especially
found the splitting behavior difficult to model, as it needs
to maintain temporal dependence in the measured arrival
trace. Furthermore, one needs to rejoin split requests and
make additional approximations on the aggregate response
time. For the case of Con 2 splitting and merging operations
in our model almost compensate each other, supporting our
assumption that net merging operations in the VMM are
small in this scenario. Figures 9 (c) and (d) show response
time values for the largest prediction errors and further il-
lustrate that our model is optimistic. In Con 3 the sim-
ulation model performs extremely well for FFSB-1 S and
FFSB-2 S. The product form solution delivers better results
when workloads have random access patterns. Predictions
are especially difficult for the simulation model in the case
of FFSB-1 R. Here, Figure 9 (c) indicates predictions atyp-
ically are overestimating system measurements. While still
being competitive, errors are also larger for FFSB-2 R. Fig-
ure 9 (d) confirms the earlier observation that our modeling
assumptions lead to optimistic predictions.

Summary. Our findings indicate that prediction quality of
disk request response times can be increased with enhanced
models, which can account for splitting and merging op-

erations of the disk scheduler. In cases where workloads do
not allow large amounts of optimization operations product-
form solutions can also be a valuable prediction tool.

6. RELATED WORK
A large amount of research literature is concerned with

scheduling algorithms for disk IO in virtualized environ-
ments. The main challenges regarding scheduling are to
provide fair access to the shared storage resource for all in-
VM applications, while maintaining performance isolation,
i.e. disk accesses by one application should not affect the
IO performance of another. This work can be structured
into approaches concerned with scheduling disk access on a
single VMM [23] and methods that coordinate IO schedul-
ing across multiple independent virtualized servers sharing
a storage device [21].

Performance isolation in presence of resource contention
is studied in [25]. The authors consolidate different types
of workloads, i.e. CPU bound and disk bound, and derive
mathematical models to predict relative performance com-
pared to a normalized performance score. Degradation of
end-to-end application performance due to server consolida-
tion is investigated in [29]. Closer to our work, [9] derive a
mathematical model to predict disk IO throughputs when
moving from a native system to an isolated VMware ESX
server environment. [22] measure disk workload character-
istics and performance metrics in a consolidated virtualized
environment. Contrary to us they do not consolidate by
placing multiple workloads on the same LUN, but consoli-
date multiple LUNs into a single RAID group.

Queueing models are a popular tool to model the perfor-
mance of shared resource environments [13]. One approach
is to use queueing theory in order to predict performance
attributes of applications when migrated from a native to
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a virtualized environment [12]. A shared server environ-
ment is modeled as a time-domain queueing model with GPS
scheduling in [18] in order to compute and assign resource
shares. In [24], layered queueing networks are used to model
multi-tier applications hosted in consolidated server envi-
ronments. Recently, [26] propose an iterative model training
technique based on artificial neural networks for dynamic re-
source allocation in consolidated virtualized environments.
While some of the work above captures coarse grained disk
requirements in the model in order to predict effects of re-
source allocation changes on performance of consolidated
applications, none specifically tries to predict fine grained
disk IO request performance degradation due to workload
consolidation.

Prediction of disk request response time granularity based
on a machine learning technique is presented in [30]. The ap-
proach employs Classification And Regression Tree (CART)
models and treats the storage device as a blackbox. How-
ever, the model requires a training period and does not con-
sider shared resource access.

7. CONCLUSIONS AND FUTURE WORK
We presented a trace-driven simulation model that can

predict response times of disk IO requests when consolidat-
ing workloads on to a shared storage device. Our contribu-
tions are twofold. Firstly, we parametrize the model with
in-VM measurement data only instead of instrumenting the
VMM. Secondly, we introduce techniques that quantify and
incorporate splitting and merging operations inherent to a
VMM level disk scheduler. The proposed methodology is
validated against system measurements and produces bet-
ter results than an established product form solution for
certain homogeneous workload types. For future work we
plan to validate the proposed methodology on other virtu-
alization platforms with similar system characteristics. We
also intend to extend the methodology for mixed workloads,
which will require improvement of our search technique to
determine individual model merge parameters depending on
workload type. In order to predict end-to-end performance
degradation due to storage contention effects, we need to in-
vestigate how disk request performance at the VM operating
system level correlates to application performance.
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