
Power and Energy-Aware Processor Scheduling

Luigi Brochard, Francois Thomas
IBM Systems and Technology Group

Montpelier, France

{luigi.brochard, ft}@france.ibm.com

Raj Panda, Don DeSota, Robert H. Bell, Jr.
IBM Systems and Technology Group

Austin, Texas

{panda, desotad, robbell}@us.ibm.com

ABSTRACT
Power consumption is a critical consideration in high computing
systems. We propose a novel job scheduler that optimizes power
and energy consumed by clusters when running parallel
benchmarks with minimal impact on performance. We construct
accurate models for estimating power consumption. These models
are based on measurements of power consumption on benchmarks
with different characteristics and on systems with processors
using different micro-architectures. We show the power
estimation models achieve less than 2% error versus actual
measurements. We show a job scheduler can be enhanced to
make it “power-aware” and to optimize power consumption of
jobs with similar performance characteristics. The enhanced
scheduler can estimate the power consumed by a particular job
using the power estimation model, configure the nodes in the
cluster via suitably adjusting processor frequency on each of the
nodes to maximize performance, minimize power, or minimize
energy with a predictable impact on power, energy and
performance.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance Analysis and Design Aids

General Terms
Algorithms, Measurement, Performance, Design.

Keywords
Power Analysis, Performance, Power Estimation, Power
Optimization.

1. INTRODUCTION
Recently, power consumption has become a serious concern

to managers of HPC data centers due to the rising cost of power
and cooling. While data center managers are interested in optimal
management of server system power allocation to minimize total
operational cost of the data center, a typical HPC user is
interested in the best turnaround time or for overall throughput of
his job. Realizing the importance of power management,
hardware vendors are building more and more dynamic power
management capabilities into microprocessors and server systems
as well as providing software tools to obtain and view the power

consumption data from the server systems. Some of the available
tools can also be used to set limits on the power delivered to the
server systems and thus help data center managers in the
management of power and cooling costs. However, these software
tools are not targeted to parallel applications and do not predict
the impact of processor frequency scaling on total energy. For
example, cases are described in this paper in which decreasing the
processor frequency increases the energy consumed by the
application while power consumption is decreasing. Since current
schedulers cannot predict the power dissipation of their
applications, optimized power and energy management of the
cluster nodes is difficult.

Recognizing the HPC application community’s need, we
study performance and power consumption on a selection of HPC
applications. Our first objective is to experimentally obtain
generalized power-performance correlations for HPC applications
that can be used to estimate the power consumption and energy of
an application, on any platform, and at any frequency. Then, a
scheduler is implemented to obtain an executing job’s power
dissipation and make use of the derived power-performance
correlations to optimize the power dissipation and energy of the
job executing on the HPC cluster. We use IBM POWER6 and
Intel Harpertown and Nehalem server results and analysis to carry
out these tasks.

Floyd et al. [2] and McCreary et al. [3] describe the system
power management support in the POWER6 processor.
Techniques such as core throttling and power and temperature
monitoring capabilities are discussed. Allarey et al. [5] describe
idle and multicore dynamic power reduction features in Intel’s
65nm cores, and they introduce a deep power-down idle state and
power-performance tradeoffs for single threads, as well as
enhanced sleep states.

Rajamani et al. [6] propose real-time power and performance
prediction capabilities that can be used for dynamic control of
system resources such as DVFS and clock throttling to improve
power-performance. They extend prior work related to average
power prediction to predicting instantaneous processor power to
enable applications such as operating system scheduling. Lee et
al. [7] dynamically predict performance and power using
regression models and apply them to controlling DVFS for
program regions of 100M instructions.

Our work is distinguished from prior work by its focus on
power-performance in large, high-performance systems of many
clustered nodes. The possible dynamic variations of node power,
application power and energy in such a system, including a
maximal system power constraint, require accurate, dynamic
power prediction on an application basis and unique algorithms
for predicting and controlling power and energy system-wide, as
proposed here.

The rest of the paper is organized as follows. Section 2 gives
a brief description of the machines used in the power-performance
experiments performed for this paper. Section 3 gives a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’11, Month 14-16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03…$10.00.

227

description of the performance data gathering process for both
Power6 and Core 2 micro-architectures and the derived metrics
used in the models. Section 4 presents the tools used to measure
power consumption. Section 5 presents the applications used for
this study. Section 6 presents performance and power
measurements gathered on the various platforms and the model
used for power and performance projections. Section 7 presents
the impact of frequency scaling on power and energy for the
benchmarks on the various platforms. Section 8 uses the data
from previous sections and proposes the power and energy aware
scheduling methodology and policies and quantifies the power-
performance impact of the methodology. Section 9 presents the
conclusions.

2. Experimental Systems
The systems used in our experiments are an IBM JS22 blade,

an IBM HS21-XM Harpertown blade, and a Nehalem “white box”
described below.

Table 1 shows configuration details for the systems used in

the current work. JS22 is a blade that has two POWER6 modules
running at 4.0 GHz. Each module has two cores capable of
running in either single threaded (ST) mode or multi-threaded
(SMT) mode, with two threads per core. The POWER6 chip is a
high frequency, in-order superscalar processor with 8MB of L2
cache, an L3 controller, an on-board fabric with controller, and
integrated memory controller. In the blade, each POWER6 chip
is a single-chip module without an L3, one memory controller,
with only two channels attached to the memory DIMMs through
buffer chips [1]. The POWER6 core pipeline has two binary
floating-point units each capable of two floating-point operations
per cycle, for a total of eight sustained floating-point operations
per cycle per chip.

A number of JS22 blades can be inserted into the IBM
BladeCenter-H chassis, which modularizes the blade power
supplies, switch bays, and point-to-point wiring through the
backplane [4]. Each blade contains four angled DIMM slots of
8GB DDR2-533 DIMMs or 1GB, 2GB, or 4GB DDR2-667
DIMMs, for up to 32GB of memory, supporting ECC, chip-kill
and redundant bit steering. The blade also integrates the
peripheral chips. Linux RHEL 4.6 and AIX 53L operating
systems are supported. The BladeCenter integrates a management
module with support for tools such as IBM Director, Power
Executive, and the Active Energy Manager (AEM).

The IBM HS21-XM blade (characteristics listed in Table 1)
is also deployed in the IBM BladeCenter-H chassis, and is
managed by the same tools as the JS22. It has two sockets of
Intel Harpertown Core 2 quad-core processors running at 2.8
GHz. The Harpertown processor cores also execute 4 floating
point operations per cycle giving a total 16 floping point
operations per cyle per chip. The Harpertown processor is an

MCM consisting of two dual core processor chips. The two cores
share a common 6MB L2. The MCMs connect to a central
memory contoller chip via a “front side bus” running at 1333
Mhz.

The Nehalem system is a 2U “whitebox” with 2 sockets,
each socket with one quad-core Nehalem processor running at
2.93GHz and 12 direct-attach 2GB DIMMs running at 1066MHz.
It has private L1 and L2 caches per core and a shared 8MB L3.
Nehalem also features an integrated memory controller and QPI
interconnect.

3. Applications
For an effective analysis of power-performance, a set of

floating point benchmarks was chosen that stress either the
processor or the memory in the system, or both. A subset of 8 out
of a possible 17 of the SPEC CPU2006 benchmarks was chosen in
order to speed up the data collection and analysis tasks and to
represent different benchmarks that are important to HPC as well
as for their different performance characteristics in terms of CPI
(cycles per instruction) and memory bandwidth. These are not
true parallel applications but measurements show little difference
in power between the parallel versions of these workloads and the
SPEC FP counterpart. Table 2 shows the selected applications.

Table 2: List of applications and HPC areas
Benchmark Area

416.gamess Quantum Chemistry

433.milc Physics

435.gromacs Molecular Dynamics

437.leslie3d Fluid Dynamics

444.namd Molecular Dynamics

454.calculix Structural Analysis

459.GemsFDTD Electromagnetics

481.wrf Weather Forecasting

4. Performance Metrics
To carry out our experiments, performance counter data from

all three machines was collected.
For gathering the counter data, we used hpmcount tool on

JS22, oprofile on HS21-XM and perfmon on the Nehalem
platforms. Performance metrics like CPI (cycles per instruction)
and memory bandwidth were computed for each of the SPEC
benchmarks based on the hardware counter data collected using
these tools. We ran the SPEC benchmarks in the throughput mode
to assess the capability of each system. A number of copies of
each of the benchmarks in Table 1 were on each platform for
gathering the hardware counter data. On JS22 and the Nehalem

228

platforms, we used the systems in SMT (simultaneous multi-
thread) mode which implies that we would run twice the number
of copies as the number of cores in the system. In other words, we
ran one copy of the benchmark for each logical CPU in the
system. Based on the elapse time for the throughput benchmarks
to complete on a system, one can also compute the throughput
performance called “rate” according to SPEC benchmark rules. In
Table 3, CPI and memory bandwidth metrics are shown for each
of the benchmarks on each of the three systems.

Significant differences between these applications are

apparent. Life Science applications like 416.games, 435.gromacs
444.namd are very core intensive and have very little memory
bandwidth. 454.calculix which is a structural analysis application
is also core dominant. The remaining applications 433.milc,
437.leslie3D, 459.GemsFDTD and 481.wrf have high memory
bandwidth requirements.

5. Tools for power measurement
Two system management tools were used to collect the

power data used in our experiments. Amester is a tool that is
internal to IBM that we have used to measure power at a
component level in the blade server while AEM (Active Energy
Manager) is a commercially available tool that can be used to
measure power at the server level as well as power at chassis
level.

5.1 Amester
The Autonomic Management of Energy (AME) project was

started at the IBM Research Lab in Austin in 2004 with the goal
of controlling server or blade power-performance to within a
specified power and temperature budget [2]. JS22 and HS21-XM

blades were provided with on-board power-measurement circuits
and firmware additions to monitor the circuit outputs. An AME
circuit places a very low impedance resistor in series with a power
rail. Circuits are placed on the various rails feeding the voltage
regular modules that power the system. The on-blade temperature
and power management device (TPMD) then converts the voltage
drop on each resistor to digital, which allows it to project the
current and power at the rails. The Blade Center management
module can then interface digitally to the TPMD through the
service processor to read the power and other information coming
from the rails and control the behavior of the POWER6 through
actuators positioned on the die [2].

The rails that are accessible readily are denoted in this paper
in the following way:

Core Power (or Vdd): Power to the on-chip cores, internal
fabric, memory controller, L2 cache controller, and other internal
chip logic except for the L2 cache arrays (Vcs), I/O pins (Vio), and
standby logic (Vsb).

Total Power (or 12V Power Supply): Power to the entire
blade, including the POWER6 chip, L2 cache arrays, I/O pins,
standby circuitry, blade service processor, and TPMD.

DIMM Power (or Vdram): Power to the memory DRAM and
DIMM subsystem.

In the following paragraphs, one additional category of
power dissipation, Other, consists of the blade components, other
than the chips and memory subsystem, that have relatively static
power dissipation (except for the L2 cache arrays, I/Os, and
standby logic). This is computed as:

Other Power = Total Power – 2*Core Power – DIMM Power

The power dissipation in the L2 cache arrays and I/Os can

vary with the benchmark, but the swing in power is small relative
to the overall power of the POWER6 chips and the rest of the
system, usually less than 6W, or 2% of the Total Power.

Amester is a companion API tool [2] that provides several
interface capabilities: 1) robust network connectivity, 2) timely
collection of data, 3) a command line interface to access AME
firmware commands, and 4) A GUI to provide visual feedback of
the AME firmware and demonstrate power management
algorithms.

229

Amester is executed from a remote machine and passes
control commands through the BladeCenter management module
to each blade it monitors. The service processor executes the
commands by interfacing to the TPMD and returns the requested
data. Amester is written entirely in TCL for fast prototyping of
power management algorithms and for portability. It runs on any
Windows or Linux system. The Tk graphics allow for easy
visualization of data using strip charts in the BLT library.
Amester can sample the power dissipation at intervals from 1ms
on up, but 32ms to 256ms gives a good tradeoff between
resolution and data volume collected. In the following
experiments a sampling interval of 256ms to collect power
measurements of blade total power, core power, and DIMM
power as described above.

5.2 AEM
The Active Energy Manager (AEM) tool version 3.1, built

on the Power Executive tool, provides management and control of
the chassis and individual blade energy use [1]. It supports
analysis and control such as power trending and capping, thermal
trending, and CPU trending at the chassis or individual blade
levels. The tool supports HS21-XM and JS22 blades.

6. Power and Performance Data and Models
 The Amester tool was used to measure overall power

consumption, core power consumption and DIMM power
consumption as explained in Section 3. Figure 1 shows a typical
total power consumption graph for JS22 and HS21-XM. Note that
idle power sits at about 210 Watts for the JS22 and 107 Watts for
HS21-XM, which is about two-thirds of the power consumed
when the benchmark 437.leslie3D is running.

Tables 4, 5, and 6 below summarize the different

components of power consumption per benchmark by platform.
The different components are the processor sockets (labeled Proc
0 and Proc 1 for JS22 and HS21-XM), the memory DIMMS
(labeled Memory for JS22 and HS21-XM) and Others for JS22
and HS21-XM which include the IO chip, off-chip memory
controller and off-chip cache if they exist.

Due to the recent availability of Nehalem systems, we did

not have sufficient time to port Amester on Nehalem. Thus we
have only the total power consumption data for the Nehalem
system gathered using a power meter (Table 6). As expected,
processor power consumption accounts for the majority of the
total power consumption. Coming in second, off-chip cache and
IO chips consume a large amount of power regardless of the
application execution characteristics.

We now derive a model to predict the power consumption of
a given benchmark at frequency fn given its characteristics
measured at frequency f0 and the platform characteristics
measured at frequency fn:

PWR(fn) = An*GIPS(f0) + Bn*GBS(f0) + Cn (1)

where, PWR, GIPS and GBS are respectively power
consumption, giga instructions per second, giga bytes per second
at a given frequency. For workloads that are completely cache-
contained, equation (1) may not be valid and may need additional
terms to address cache activity.

GIPS(f0) and GBS(f0) are application characteristics
measured at the nominal frequency (f0). An, Bn and Cn are
coefficients for a given platform at all possible clock frequencies,
n, that the processor in the platform can be set. This model
provides a better fit than using separate models for the other
power, memory power, and core power, and then adding them up.
The physical meaning is less evident in the combined model, but
it is designed specifically to serve the purpose of projecting
power at some frequency fn based on the nominal frequency f0,
thereby hiding the dependency of GIPS and GBS on clock
frequency for a given benchmark. The model uses multiple linear
regression analysis using the method of least squares for
determining the power equation (1).

In Table 7, we present the resulting values of the A, B and C
coefficients for the power equation. The average error using this
model on all benchmarks over all machines is less than 1.6%. In
Tables 8 and 9, we present CPI and total memory bandwidth
measured for all workloads on JS22 and HS21-XM at different
frequencies.

230

7. Impact of Frequency on Power and Energy
We now present the impact of frequency scaling on power

and energy for the various benchmarks and platforms. The power
and energy response of the benchmarks shown here provides an
opportunity for a new scheduling mechanism and policy that can
significantly reduce power and energy in high-performance
computing systems.

Tables 10 and 11 show the power and energy effects of down
clocking, or reducing frequency, on the JS22. Table 12 shows the
effects of over clocking, or increasing frequency, on the JS22.
Similarly, Tables 13 through 15 show the effects of down
clocking and over clocking on the HS21-XM.

In all the following tables, energy is defined as

Energy = Power*Elapse Time

From the tables, it can be seen that down clocking frequency

on some platforms like the JS22 always saves power and energy
regardless of the benchmark, while on other machines like the
HS21-XM, down clocking always saves power but increases
energy on the benchmarks with low memory bandwidth, as, for
example, on 416.gamess, 435.gromacs, 444.namd, and
454.calculix.

This behavior arises when power saving is less than the
performance degradation. This may happen for low memory
bandwidth applications as the performance of these benchmarks is
directly affected by CPU frequency. On the other hand, power
saving on HS21-XM is less than power saving on JS22 since
HS21 has a lower frequency processor. In other words down
clocking has a bigger payback on high frequency platforms since
the core power consumption is much higher (see Tables 4 and 5).
Therefore, for platforms like the HS21-XM, over clocking can be
an option for optimizing energy on low memory bandwidth
applications.

8. Power and Energy-aware scheduling
Based on these observations, we propose a power and

energy-aware job scheduling method. With traditional job
schedulers, all jobs on a cluster are run at the same frequency as
in Figure 2. The power and energy-aware scheduler, on the other
hand, schedules parallel jobs such that all the nodes executing the
various tasks or threads of one job are running at the same
frequency, but different jobs may run at different frequencies, as
shown in Figure 3.

231

The total power consumption for the cluster, P, is used by the

new scheduler to manage the maximum system power. P is
provided by the administrator or by any external tool like AEM
[4], and it can be static or dynamic. If P is not provided, it can be
determined by the algorithm.

All nodes in the cluster have a power limit, p(i), i={1,..,n},
which can be different for each node and can be also static or
dynamic. An admissible frequency is a frequency below this
power limit for each node. Although each set of nodes will be
running at a given frequency, power is managed globally at the
cluster level.

The proposed algorithm has two phases. The first phase
captures all the characteristics of the cluster in order to build the
power and the performance models. This is done once at
scheduler installation, when new components are introduced in
the cluster, or when a new job is first executed on the system.
Given the specific node and job characteristics, the first phase will
also generate a report, used by the system administrator or a user
that suggests the optimal approach to manage energy for a
particular job on particular nodes.

 The second phase determines the target frequency for a set
of nodes when a user re-submits a job with the same
characteristics and the job scheduling policy selected by the
user/administrator.

In a first approach, we propose three scheduling policies:
Maximum performance, Minimum power within a maximum
performance degradation and a maximum energy reduction, and
Minimum energy within a maximum performance
degradation.All job policies set a frequency which is within the
maximum power limits for each node. We now give example
scheduling policies and the power and energy implications of
these policies using the machines and data shown previously.

8.1 Maximum Performance Policy
On a JS22 running at 3.8 GHz, a low memory bandwidth

application would see up to 5.6% performance gain with a
power degradation of up to 9.8 % and energy degradation of up to
3.4 % if the clock frequency was raised to 4 GHz. A high memory
bandwidth application would see no gain.

On an HS21-XM running at 2.67 GHz, a low bandwidth
application would see up to 6% performance gain with a power
degradation of up to 5 % and no energy reduction, or even a 1%
energy saving, if the clock frequency was raised to 2.8 GHz. A
high bandwidth application would see no gain.

8.2 Minimum Power Policy
On a JS22 running at 4GHz, a low bandwidth application

would benefit with about 19% power saving, but with 15%
performance degradation, if frequency was down clocked from 4
GHz to 3.5 GHz. A high bandwidth application would benefit
with about 15% power saving but with a 3% performance
degradation if frequency was down clocked from 4 GHz to 3.5
GHz.

On an HS21-XM running at 2.8 GHz, a low bandwidth
application would benefit with about 25% power saving, but with
40% performance degradation, if frequency was down clocked
from 2.8 GHz to 2.0 GHz. A high bandwidth application would
benefit with about 15% power saving, but with 3% performance
degradation, if frequency was down clocked from 2.8 GHz to 2.0
GHz.

8.3 Minimum Energy Policy
On a JS22 running at 4GHz, a low bandwidth application

would benefit with about 7% energy saving, but with 15%
performance degradation, if frequency was down clocked from
4.0 GHz to 3.5 GHz, or with about 4% energy saving, but with
6% performance degradation if frequency was down clocked
from 4.0 GHz to 3.8 GHz A high bandwidth application would
benefit with about 14% energy saving, but with up to 2%
performance degradation, if frequency was down clocked from
4.0 GHz to 3.5GHz, or with 6% energy saving, but with up to 1%
performance degradation, if frequency was down clocked from
4.0 GHz to 3.8 GHz.

On a HS21-XM running at 2.8 GHz, a low bandwidth
application would lose up to about 7% energy, but with up to 40%
performance degradation, if frequency was down clocked from
2.8 GHz to 2.0 GHz. A high bandwidth application would benefit
with about 15% energy saving, but with 1% performance
degradation, if frequency was down clocked from 2.8 GHz to 2.0
GHz.

As can be seen, some of those policies do not make sense
from an energy standpoint, since, for example on the HS21-XM
with low bandwidth applications, down clocking frequency would
degrade performance much more than the associated power
saving, leading to an increase of energy. But the policy may still
be useful if a maximum power limit P must be maintained.

Based on these measurements and analysis, we therefore
propose a single job scheduling policy to optimize power and
energy. Based on the characteristics of both the application and
the platform, the algorithm will either over clock or down clock
the frequency in order to minimally degrade performance while
still being within the total power limit P.

It will also provide the impact of this power and energy
aware policy to the user/administrator in a report such that the
percent of performance degradation and energy saving can be
assessed and traded off as desired.

A couple of examples illustrate the reporting capabilities:
On JS22 running at 4GHz, a low bandwidth application

would benefit by about 7% energy saving with about 15%
performance degradation if the frequency was down clocked
from 4.0 GHz to 3.5 GHz or about 4% energy saving with 6%
performance degradation if the frequency was down clocked
from 4.0 GHz to 3.8 GHz. A high bandwidth application would
benefit by about 14% energy saving with up to 2% performance
degradation if the frequency was down clocked from 4.0 GHz to
3.5GHz or by about 6% energy saving with up to 1%

232

performance degradation if the frequency was down clocked
from 4.0 GHz to 3.8 GHz.

On an HS21-XM running at 2.67 GHz, a low bandwidth
application would see no energy reduction or even a 1% energy
saving with up to 6% performance gain and a power reduction
of up to 5 % if the clock frequency was raised to 2.8 GHz. A high
bandwidth application would benefit by about 12% energy saving
with no performance degradation and a power saving of up to
13% if the frequency was down clocked from 2.67 GHz to 2.0
GHz.

9. Conclusions
This paper proposes a new job scheduler implementation that

can optimize power and energy consumed by clusters when
running parallel applications. The scheduler uses a simple
multiple regression model to project the power consumed by a
particular job, configure the characteristics of the nodes in the
systems, and thereby maximize performance, minimize power, or
minimize energy with a predictable impact on power, energy or
performance.

The scheduler implements a model that predicts the power
consumption and performance of a parallel HPC benchmark at
any frequency based on performance metrics gathered when
running the application the first time at a nominal frequency. We
show that the model achieves an error less than 2% versus actual
power-performance results.

Experimental data measured on different systems, including
IBM Power6 and Intel Harpertown and Nehalem microprocessor
based systems, are presented to validate the model, and assess the
impact of the various scheduling policies. An example set of
scheduling policies is presented based on the experiment results
and an example administrator report is shown.

10. References
[1] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q.

Nguyen, B. J. Rochetti, W. M. Sauer, E. M. Schwarz, M. T.
Vaden, “ IBM POWER6 microarchitecture, “ J. Res. & Dev.,
Vol. 51, No. 6, November 2007, pp. 639-662.

[2] M. S. Floyd, S. Ghiasi, T. W. Keller, K. Rajamani, F. L.
Rawson, J. C. Rubio, and M. S. Ware, “System power
management support in the IBM POWER6 microprocessor,”
J. Res. & Dev., Vol. 51, No. 6, November 2007, pp. 733-746.

[3] H.-Y. McCreary, M. A. Broyles, M. S. Floyd, A. J. Geissler,
S. P. Hartman, F. L. Rawson, T. J. Rosedahl, J. C. Rubio,
and M. S. Ware, “EnergyScale for IBM POWER6
microprocessor-based systems,” J. Res. & Dev., Vol. 51, No.
6, November 2007, pp. 775-786.

[4] IBM Corporation, IBM BladeCenter,
http://www.ibm.com/servers/eserver/bladecenter

[5] J. Allarey, V. George, S. Jihagirdar, “Power Management
Enhancements in the 45nm Intel Core Microarchitecture,”
Intel Technology Journal, Vol. 12 Issue 3, 2008, pp. 169-
178.

[6] K. Rajamani, H. Hanson, J. C. Rubio, S. Ghiasi, F. L.
Rawson, ”Online Power and Performance Estimation for
Dynamic Power Management,” IBM Research Technical
Report, RC 24007, July 14, 2006.

[7] S. J. Lee, H. K. Lee, and P. C. Yew, “Runtime Performance
Projection Model for Dynamic Power Management,” ACSAC
2007, 2007, pp. 186-197.

233

