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ABSTRACT

This paper describes an efficient self-adaptive procedure for
iterated Runge–Kutta (IRK) methods, a class of solution
methods for initial value problems (IVPs) of ordinary dif-
ferential equations (ODEs). IRK methods execute a poten-
tially large number of discrete time steps to compute the
solution of the IVP. The performance of an IRK solver may
strongly depend on the specific characteristics of the given
IVP and the hardware architecture on which the solver is ex-
ecuted. To address this problem, this paper applies dynamic
auto-tuning to the sequential execution of IRK methods.

Auto-tuning is a promising technique to avoid time con-
suming and extensive manual tuning. Our self-adaptive IRK
solver utilizes the time-stepping nature of the IRK method.
It selects the fastest implementation variant for the given
IVP on the target architecture from a candidate pool dur-
ing the first time steps. Then, the fastest implementation
variant is used to compute all remaining time steps. The dif-
ferent implementation variants in the candidate pool have
been developed by modifications of the loop structure of the
basic algorithm. For those implementation variants that use
loop tiling, we consider different tile sizes during the auto-
tuning phase to further improve the performance of the self-
adaptive IRK solver. Runtime experiments demonstrate the
efficiency of the self-adaptive IRK solver for different IVPs
on different hardware architectures.

Categories and Subject Descriptors

G.4 [Mathematical software]: Efficiency; G.1.7 [Num-
erical Analysis]: Ordinary Differential Equations—Initial
value problems, One-step (single step) methods
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1. INTRODUCTION
The evolution of computer systems during the last decades

has not only brought about systems with tremendous com-
putational power, but also a great diversity of architectures
with high complexity only understood by a small group of
experts. The steadily increasing gap between the operation
speed of processor chips and access times to off-chip memory
has induced vendors to incorporate ever larger and deeper
cache hierarchies. Therefore, on modern computer systems,
the execution time of programs strongly depends on the spe-
cific order of the computations and memory accesses during
the execution of the program. Program transformations like
loop unrolling, loop tiling, and software pipelining can be
used to modify the execution order of the program state-
ments in order to better exploit the cache hierarchy and the
processor architecture, thus leading to a significant reduc-
tion of program execution times [2, 1].

Due to the high complexity of modern computer architec-
tures, applying these techniques manually to optimize for
a specific architecture is challenging and time-consuming,
because there are subtle interactions between the different
transformations, the memory hierarchy of the target archi-
tecture and the dependencies in the source program. For
programs to be run efficiently on a variety of architectures,
this challenging and time-consuming optimization process
has to be executed for every target architecture. In particu-
lar, once a manually tuned software has been shipped to the
user, it cannot automatically adapt to new architectures on
the market that the user might wish to buy.

What makes the situation even worse is that the memory
access pattern of many commonly used programs depends
on input data. Thus, to obtain maximum performance, such
programs would have to be tuned for every possible set of
input data separately. But this approach is not feasible,
because usually the input data to be processed by the user is
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not known in advance and the user cannot tune the software
himself, because he is an expert in his application domain,
but often does not have the expertise required to optimize
software for modern complex hardware architectures.

Recently, these challenges have drawn the attention of
many research groups. Several different approaches have
been proposed to automatically tune software, but mainly
in the field of linear algebra and signal processing (see Sec-
tion 2). In this paper, we consider iterated Runge–Kutta
(iterated RK or IRK) methods, a class of solution meth-
ods for initial value problems (IVPs) of ordinary differential
equations (ODEs), which shares many characteristics with
other time-step oriented algorithms.

Since the performance of the many different implementa-
tion variants of IRK methods possible strongly depends on
the structure of the ODE system to be solved and on imple-
mentation parameters such as tile sizes for loop tiling, we
propose a dynamically auto-tuned IRK solver based on the
dynamic selection of implementation variants combined with
the selection of suitable tile sizes. The resulting self-adaptive
IRK solver exploits the time-stepping nature of IRK meth-
ods such that the evaluation of the implementation variants
and tile sizes already contributes to the progress of the solu-
tion process. A detailed experimental evaluation shows that
this approach is successful on different architectures and for
ODE systems with different characteristics.

The remaining part of this paper is organized as follows:
Section 2 presents an overview of existing approaches to-
wards auto-tuning of computation-intensive applications. Af-
ter this, Section 3 describes the time-stepping procedure and
the computations performed by IRK methods. Section 4
reviews the implementation variants of IRK methods pre-
sented in [13], which constitute the candidate pool for the
self-adaptive IRK solver. Then, Section 5 describes the re-
alization of the self-adaptive IRK solver, which is evaluated
by runtime experiments in Section 6. Section 7 concludes
the paper.

2. RELATED WORK
Recently, several different approaches have been proposed

to tune software automatically. Since loop tiling is con-
sidered as one of the most important program transforma-
tion techniques for locality improvement, many of these ap-
proaches target loop tiling. In addition, the automatic selec-
tion of implementation variants and algorithms also is one
of the major goals.

In [10], the automatic generation of parametrically tiled
parallel code from sequential C code is considered to enable
an empirical search by auto-tuning software. The ATLAS
library [22] optimizes basic linear algebra routines (BLAS)
and some additional functions from LAPACK by generat-
ing a set of kernel routines with different tiling and un-
rolling parameters and selecting the best variant at installa-
tion time by feedback-driven empirical search. PHiPAC [3]
takes a similar approach, but targets, in particular, matrix-
matrix multiplication. [20] combines a compiler transfor-
mation framework with a parallel search algorithm. [24]
presents an online tuning framework for runtime optimiza-
tion and parallelization of Java programs for multi-cluster
chip multiprocessors.

FFTW [7] is a software library for the computation of
discrete fourier transforms (DFT) which uses a planner to
adapt its algorithm to the hardware. The planner applies a

set of rules to recursively decompose the problem into “suffi-
ciently simple” equivalent subproblems. Before the compu-
tation begins, the planner selects a fragment of optimized
code to be used for solving each of the resulting subprob-
lems. SPIRAL [17] provides a program generation system
for signal processing transforms such as DFT and discrete
cosine transform that can generate implementations tuned
for a specific target platform.

[23] shows that a model-driven approach can be as effi-
cient as the empirical search used by ATLAS. [16] combines
empirical feed-back directed exploration of loop structure
choices with model-based tiling, parallelization, and vector-
ization. In [18], statistical machine learning is used to train
an artificial neural network for building a model that can
predict effective tile sizes. The SALSA project [6] uses ma-
chine learning to select an efficient solver, a suitable precon-
ditioner, and further parameters for the solution of systems
of linear equations based on a Bayesian classification of the
input data.

3. ITERATED RK METHODS
IRK methods are a class of solution methods for ODE

IVPs of the form

y′(t) = f(t,y(t)), y(t0) = y0, (1)

where f : R×Rn → R
n is a given real-valued vector function

(right-hand-side function), y : R → R
n is the unknown

solution function, and y0 is the given initial value of the
solution function at time t0.

Numerical solution methods for ODE IVPs perform a time-
stepping procedure consisting of a potentially large num-
ber of discrete time steps κ = 0, 1, 2, . . . corresponding to
time tκ. Starting at time t0 with the initial approxima-
tion η0 = y(t0) = y0, at each time step κ a new approxi-
mation ηκ+1 is computed using the approximation ηκ and
maybe further previously computed approximations. The
procedure repeats until the end of the integration interval
[t0, te] is reached. Sophisticated methods estimate the local
error committed at each time step and adapt the stepsize
hκ = tκ+1− tκ according to the local error such that a spec-
ified accuracy is maintained and the number of time steps
is reduced. Depending on the IVP to be solved, the total
number of time steps required may lie between a few dozens
and several millions or even more.

Many numerical methods for the solution of ODE IVPs ex-
ist. In addition to the classical explicit and implicit Runge–
Kutta and multi-step methods [8], several methods with po-
tential for parallelism such as IRK methods [14, 21], extrap-
olation methods [5, 8, 12], waveform relaxation methods [4],
and peer two-step methods [19] have been proposed. IRK
methods belong to the larger class of one-step predictor-cor-
rector methods. Although they are derived from classical
implicit RK methods, IRK methods are explicit methods:
At each time step κ the new approximation ηκ+1 is com-
puted directly from the previous approximation ηκ by an
iteration process; no (nonlinear) system of equations has to
be solved.

The iteration process is started with an initial approxi-
mation for intermediate values of the solution function. We
choose the “trivial” predictor:

Y
(0)
l = ηκ, l = 1, . . . , s. (2)
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Then, we continue the iteration process with a fixed number
of m = p− 1 corrector steps

F
(k−1)
i = f(tκ + clhκ,Y

(k−1)
i ),

Y
(k)
l = ηκ + hκ

s
∑

i=1

aliF
(k−1)
i ,

l = 1, . . . , s, k = 1, . . . ,m,

(3)

where f is the right-hand-side function of the ODE system
to be solved. The coefficient matrix A = (ali) ∈ Rs,s, the
weight vector b = (bi) ∈ R

s, the node vector c = (cl) ∈ R
s,

and the order p are determined by the implicit RK method
used as base method. The number s represents the number
of stages.

After the iteration process, two approximations of differ-
ent order, ηκ+1 and η̂κ+1, are computed as follows:

ηκ+1 = ηκ + hκ

s
∑

i=1

blF
(m)
l ,

η̂κ+1 = ηκ + hκ

s
∑

i=1

blF
(m−1)
l .

(4)

The norm of the difference of the two approximations

ǫ = ‖ηκ+1 − η̂κ+1‖

yields an estimate of the local error committed in the current
time step. Based on this error estimate, the stepsize can be
adapted such that a larger step size can be chosen where a
small stepsize is not needed to obtain the required accuracy,
and, hence, the number of time steps and the computation
time is reduced [8]. If ǫ is below a user-defined tolerance, the
approximation ηκ+1 is accepted and the algorithm proceeds
with the next time step, generally using a larger stepsize.
If, however, the new approximation does not satisfy the re-
quired accuracy, the stepsize control algorithm rejects the
current time step and repeats it with a smaller stepsize.

4. CANDIDATE POOL
This section gives a short overview of several general and

specialized implementation variants of IRK methods that
constitute the candidate pool for the self-adaptive IRK solver
to be presented in Section 5.
The implementation variants in the candidate pool differ

in the loop structure of the corrector steps. The implemen-
tation of the corrector steps given by (3) leads to a nested
loop structure with four dimensions iterating over:

1. the corrector steps (k = 1, . . . ,m),

2. the argument vectors Y
(k)
l (l = 1, . . . , s),

3. the summands of
∑s

i=1 aliF
(k−1)
i (i = 1, . . . , s), and

4. the system dimension (j = 1, . . . , n).

The candidate pool consists of general and specialized im-
plementation variants. General implementation variants are
suitable for arbitrary ODE problems, where the right-hand-
side function f(t,y) may access all components of the argu-
ment vector y. In this case, the evaluation of one compo-

nent of the right-hand-side function fj
(

tκ + clhκ,Y
(k−1)
i

)

may use all components of the argument vector Y
(k−1)
i and,

thus, every argument vector component Y
(k)
l,j to be com-

puted in the current corrector step potentially depends on

all argument vectors Y
(k−1)
1 , . . . ,Y

(k−1)
s computed in the

previous corrector step. Therefore, the corrector steps have
to be computed one after the other in the general case, and
the k-loop has to be kept as outermost loop. All other loops
with indices l, i, j are independent and fully permutable.
Therefore, we can interchange, merge and split the l-, i- and
j-loops, and loop tiling is also possible.

The specialized implementation variants in the candidate
pool have been derived for special sparse ODE systems de-
scribed by a right-hand-side function f that uses only a small
number of components of the argument vector y to compute
one component of the function result. For many sparse ODE
systems, an ordering of the components can be chosen (e.g.,
by applying a bandwidth minimization scheme to the Jaco-
bian of f) such that the components of the argument vector
accessed by the function evaluation are located within a lim-
ited index range near the component index evaluated. To
measure this property of a function f , we define the access
distance d(f) as the smallest value b, such that all component
functions fi(t,y) access only the subset {yi−b, . . . , yi+b} of
the components of the argument vector y. We say the access
distance of f is limited if d(f) ≪ n.

The specialized implementation variants exploit a limited
access distance of the right-hand-side function f by overlap-
ping of vectors and by a loop interchange of the j- and the
k-loop leading to a pipeline-like computational structure of
the corrector steps [13]. Thus, the locality behavior is im-
proved by a significant reduction of the working space of the
outermost loop, and storage space can be saved.

Table 1 summarizes all implementation variants in the
candidate pool. A detailed description of the implementa-
tion variants is presented in [13].

5. SELF-ADAPTIVE IRK SOLVER
In this section, we describe an enhanced auto-tuning pro-

cedure for IRK methods. The procedure selects the fastest
implementation variant for the current architecture and the
IVP to be solved from the candidate pool dynamically. The
general applicability of this auto-tuning approach to the
time-stepping procedure of IRK methods was successfully
demonstrated in [11]. This work further improves the previ-
ous auto-tuning approach by runtime selection of appropri-
ate tile sizes.

5.1 Motivation
In the previous section, we have described a candidate

pool consisting of several different general and specialized
implementation variants of IRK methods. Generally, the
execution time of these implementation variants varies de-
pending on many factors such as the dimension of the ODE
system considered and the access pattern of the right-hand-
side function of the ODE system as well as the characteris-
tics of the underlying hardware architecture. In particular,
due to different cache parameters, such as size and associa-
tivity, it is not unusual that for a specific ODE system of
given size an implementation variant performs best on one
machine, but worst on another.

To substantiate our claims, we illustrate in Figure 1 the
performance variation of the implementation variants in the
candidate pool on two different computer systems. The first
system is an AMD Opteron DP 246 machine running at
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Implementation Loop
structure

Remarks

General implementation variants

A k–l–i–j vector-oriented: inner loops iter-
ate over system dimension; high
spatial locality

E k–l–j–i exploits temporal locality of the
i-loop, i.e., writes to argument
vector components

D k–i–j–l exploits temporal locality of the
l-loop, i.e., reads from results of
function evaluations

Dblock k–i–j–l–jj similar to D, but loop tiling of
the j-loop with the l-loop

PipeDe2m k–j–i–l based on D; j-loop surrounds l-
and i-loop; exploits temporal lo-
cality of the i- and the l-loop

PipeDb2m k–j–i–jj–l similar to PipeDe2m, but loop
tiling of the j-loop with the i-
loop

PipeDb2mt k–j–i–
(jj)–l–jj

similar to PipeDb2m, but loop
tiling expanded to the l-loop

Specialized implementation variants

PipeDb1m k–j–i–jj–l similar to PipeDb2m, but the

vectors Y
(k)
l

are overlapped to
reduce space requirements

PipeDb1mt k–j–i–
(jj)–l–jj

similar to PipeDb1m, but loop
tiling expanded to the l-loop

ppDb1m j–k–i–jj–l based on PipeDb1m; j- and k-
loop are interchanged using a
pipelining approach

ppDb1mt j–k–i–
(jj)–l–jj

similar to ppDb1m, but loop
tiling expanded to the l-loop

Table 1: Candidate pool of implementation variants.

2.0GHz with 64 kB L1 cache and 1MB L2 cache. The sec-
ond system is an AMD Opteron 8350 with four quad-core
processors running at 2.0GHz and equipped with 64 kB L1
cache/core, 512 kB L2 cache/core and 2MB shared L3 cache.
On both systems, GCC 4.4.3 with optimization level 2 was
used to compile the implementations. As example problem
we choose the 2D Brusselator equation (BRUSS2D) [8] (see
also Section 6.1). Since BRUSS2D can be implemented such
that the right-hand-side function f has a limited access dis-
tance, all general and specialized implementation variants in
the candidate pool are applicable. As corrector method we
use the 3-stage method Radau IA (5) [8].

The figure shows execution time per time step and compo-
nent as a function of the size of the ODE system, n. Since,
for the test problems considered in this article, the compu-
tations performed for each component are independent of
n, each implementation variant would produce a nearly flat
line on computers with constant memory access time. On
modern computers, caches lead to varying memory access
times, and, since cache utilization changes as the system
size grows, we observe variations of the normalized runtimes
when we change the system size.

Considering the runtimes shown in Figure 1, we can make
the following observations:

• The runtimes of the fastest and the slowest implemen-
tation variants differ by up to 20%.

• On the same machine, but for different sizes n of the
ODE system, the order of the implementation variants
varies. In Figure 1, we can identify three sub-ranges,

where different implementation variants offer the best
performance.

• On different machines, for the same size n of the ODE
system, different implementation variants obtain the
best performance.

Most of the implementation variants in the candidate pool
use tiling as an optimization technique to improve spatial
and temporal locality. Loop tiling partitions the iteration
space of a loop into smaller blocks (tiles) with the objective
to keep the data accessed by successive loop partitions in
cache. This leads to a better cache utilization and reduces
the number of cache misses. Thereby, choosing suitable val-
ues for the tile sizes is an essential step to achieve good
performance.

Tile size selection is a challenging task. If the tile size is
chosen too small, the loop control overhead may outweigh
the benefit of tiling. On the other hand, the tile size should
not be chosen too large to guarantee that the resulting work-
ing space, i.e., the set of data elements referenced by process-
ing the tile, still fits in the cache. The problem of selecting
appropriate tile sizes is getting even more challenging by
the fact that, depending on the dimension of the ODE sys-
tem and the characteristics of the hardware architecture the
application is executed on, the optimal tile size may vary
significantly.

The contour plots in Figure 2 highlight the variation of
the ranges of tile sizes with good performance on the AMD
Opteron DP 246 system and on the AMD Opteron 8350 sys-
tem. As example we choose again BRUSS2D. In the contour
plots, the relative runtimes for implementation PipeDb2mt
are plotted w.r.t. the best runtime over the range of tile sizes
for different system sizes n, so that the color scale indicates
the quality of the tile sizes. Blue regions in the contour plots
are associated with good choices for the tile size, whereas
red regions correspond to ranges with less appropriate tile
sizes. The deviation in the performance for the range of tile
sizes of [1, 5000] considered is . 10% on both computer sys-
tems. A similar performance deviation has been observed
for this range of tile sizes on other hardware architectures.
For very large tile sizes, i.e., tile sizes close to n, the relative
performance loss can be significantly higher. For the AMD
Opteron DP 246, we observe that the selection of small tile
sizes . 700 turns out to be the optimal strategy. In contrast,
for the AMD Opteron 8350 the choice of small tile sizes may
negatively affect the performance. For the range of tile sizes
considered in Figure 2, the best performance for implemen-
tation PipeDb2mt on the AMD Opteron 8350 is observed
for tile sizes close to 500 and in the range of [3000, 5000].

We conclude that the performance of IRK solvers and sim-
ilar time-stepping algorithms is quite sensitive to the choice
of implementation variant and tile size as well as the char-
acteristics of the hardware architecture. In order to address
these issues, it is important to develop a self-adaptive pro-
cedure for IRK methods which can dynamically determine
the fastest implementation variant and select an appropriate
tile size for the given ODE system on the target architecture
automatically.

Since the differences in the performance observed for dif-
ferent implementation variants are even higher than the dif-
ferences in the performance observed for different tile sizes,
the priority of an adaptive solver should be the selection of
an efficient implementation variant, but a suitable tile size
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Figure 2: Sensitivity of the execution time of PipeDb2mt to system size and tile size for BRUSS2D and
Radau IA (5).

is nevertheless required for highest performance. However,
since there usually does not exist a single tile size that is op-
timal, it is sufficient to select a tile size that lies in a range
of tile sizes with acceptable near-optimal performance.

The next subsection describes how such an auto-tuning
approach can be integrated into the time-stepping procedure
of IRK methods.

5.2 Time-Stepping Phases of the Self-Adaptive
IRK Solver

In our work, the self-adaptive IRK algorithm exploits the
time-stepping nature of ODE solvers to find the best suit-
able implementation variant dynamically at runtime. The
time-stepping procedure of the self-adaptive IRK algorithm,
which can easily be generalized to other time-stepping algo-
rithms, consists of four phases:

1. The pre-selection phase is executed before performing
any time steps. In the pre-selection phase, specialized
implementation variants are excluded from the candi-
date pool that are not applicable to the ODE system

to be solved in the current run of the solver. Currently,
all specialized implementations in our candidate pool
are applicable if the ODE system has a limited ac-
cess distance. The pre-selection phase checks if the
ODE system has a limited access distance. If so, the
specialized implementations are kept in the candidate
pool. Otherwise, the specialized implementations are
excluded from the candidate pool.

2. In the second phase of the procedure, which is also
executed before the first time step, the algorithm de-
termines a set of appropriate tile size samples for each
implementation variant in the candidate pool.

3. After the selection of a set of tile size samples, the al-
gorithm proceeds with the auto-tuning phase, which
takes place during the first time steps of the integra-
tion. In this phase, the algorithm successively exe-
cutes all implementation variants with the previously
determined corresponding set of tile size samples and
determines the fastest implementation variant.
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1: let P be the problem instance to be solved;
2: let C be the candidate set of implementation variants
3: // pre-selection phase
4: C1 ← pre-select (C, P ); // problem-based pre-selection
5: // select tile size samples
6: B ← select tile size samples(C1);
7: // auto-tuning phase
8: t← t0; // set t to start of integration interval
9: h← hinit; // select initial step size
10: Tbest ←∞; // runtime of best implementation so far
11: select an (arbitrary) untiled implementation c ∈ C1;
12: compute time step(P, c, n, t); // warm-up step
13: stepsize control; advance t if error small enough;
14: while (C1 6= ∅)
15: {
16: select an (arbitrary) implementation c ∈ C1;
17: C ← C \ c;
18: BS ← set of tile sizes(B, c);
19: while (BS 6= ∅ ∧ t < te)
20: {
21: select bs ∈ BS;
22: BS ← BS \ bs;
23: T ← compute time step(P, c, bs, t);
24: if (T < Tbest) // implementation c is fastest so far
25: {
26: cbest ← c;
27: Tbest ← T ;
28: bsbest ← bs;
29: }
30: stepsize control; advance t if error small enough;
31: }
32: }
33: // all implementation variants have been evaluated
34: while (t < te) // remaining part of integration interval
35: {
36: compute time step(P, cbest, bsbest, t);
37: stepsize control; advance t if error small enough;
38: }

Figure 3: Self-adaptive time-stepping procedure.

4. In the last phase, the algorithm uses the fastest im-
plementation variant to compute all remaining time
steps.

The pseudo-code notation of the self-adaptive time-stepping
procedure is given in Figure 3.

5.3 Selection of Tile Size Samples
Finding the optimal size for a tile is a non-trivial problem.

The search space of possible tile sizes is tremendous, which
makes an exhaustive search impracticable. In our work, we
attempt to reduce the search space of potential tile sizes by
a model-based determination of a set of appropriate tile size
samples.

The goal of tiling is to maximize the reuse of data elements
and to minimize the number of accesses to the relatively slow
main memory. The tile size should be selected such that the
working space of a tile fits in the cache. Due to the complex-
ity of modern cache hierarchies, it is, however, not obvious
for which cache level the tile size should be optimized. But
often, at least near-optimal performance can be achieved by
optimizing for the fastest level of the memory hierarchy.

The set of appropriate tile size samples is generated for
each implementation variant that uses tiling. Let us define
the working space of a program segment as the amount of
data referenced in this program segment. As a first step to-
wards the selection of appropriate tile sizes, we identify sig-
nificant working spaces for each of the implementation vari-
ants. The largest and most important working space, which
contains all data accessed during the execution of the IRK
solver, is the working space of one time step (TS). Another

PipeDb2mt

TS (2s+ 3)n+ ts

CS (2s+ 1)n+ ts

WS1 (2s+ 3)ts+ s · 2d(f)

WS2 (s+ 4)ts+ 2d(f)

WS3 2 · ts

ppDb1mt

TS (s(2m− 2) + 1)ts+ (s+ 3)n

PS ((3s+ 1)m+ 4)ts

WS1 (2s+ 3)ts+ s · 2d(f)

WS2 (2s+ 2)ts+ s · 2d(f)

WS3 (s+ 3)ts+ 2d(f)

WS4 2 · ts

Table 2: Selected working spaces for the implemen-
tation variants PipeDb2mt and ppDb1mt. ts is the
tile size, n is the size of the ODE system, s is the
number of stages, m is the number of corrector steps,
and d(f) is the access distance of the ODE system.

important working space for the implementation variants
PipeDb2mt, PipeDb2m, Dblock, PipeDb1mt PipeDb1mt,
PipeDb1m is the working space of one corrector step (CS),
and for the implementation variants ppDb1mt and ppDb1m
the working space of one pipelining step (PS). In addition to
the working spaces mentioned above, we select at most four
other significant working spaces (WS1,WS2,WS3,WS4) for
each of the implementation variants. As examples, Table 2
shows the selected working spaces for the general implemen-
tation variant PipeDb2mt and the specialized implementa-
tion variant ppDb1mt.

For tile size selection, we take into account the size of the
ODE system (n), the (reduced) sizes of the j cache levels of
the given architecture denoted as C(L1), C(L2), . . . , C(Lj),
and the cache line size of the L1 cache (LS). The unit
for the cache sizes and the cache line size is the number
of double precision values that can be stored. Since the
working spaces described in Table 2 include only vector el-
ements, we consider scalar variables, the coefficients of the
RK method used as base method, and operating system data
that may be located in cache by reducing the physical cache
sizes Cphys(Li), i = 1, . . . , j, by a safety factor fs = 0.9 such
that C(Li) = fs ·Cphys(Li). Thus, by using only up to 90%
of the physical cache sizes for the computed working spaces,
we try to make sure that the amount of data actually needed
by a loop during program execution will not exceed the size
of the cache level for which the loop is optimized.

In order to limit the search space, i.e., the number of pos-
sible tile sizes to be sampled at runtime, we consider only a
small set of tile sizes that make important working spaces
likely to fit in the cache hierarchy. Our strategy for the se-
lection of tile size samples is to keep the data of each of the
important working spaces in the fastest cache level it fits in.
The strategy we pursue by constructing the set of tile size
samples can be summarized as follows:

1. Identify the set W consisting of significant working
spaces for the implementation variant considered.

2. For each working space I ∈ W and each cache level i
compute LT (I, C(Li)), which is the largest tile size for

194



1: let W = {TS,CS,WS1,WS2, . . .WSi} be the set of sig-
nificant working spaces and C = {L1,L2, . . .Lj} the set of
cache levels

2: let BS be the set of tile size samples to be computed
3: ts← min {LT (I, C(L)) | I ∈ W, L ∈ C} ;
4: BS ← {ts};
5: if (ts ≥ 16 · LS + 100) BS ← BS ∪ {16 · LS};

Figure 4: Computation of tile size samples for gen-
eral implementation variants with loop tiling.

which working space I fits in cache level i. If working
space I does not fit in cache level i, LT (I, C(Li)) is set
to the size of the ODE system, n.

LT (I, C(Li)) =



















max{ts ∈ {1, . . . ,min(n,C(Li))} |

ws size(I, ts) ≤ C(Li)},

if ∃ ts : ws size(I, ts) ≤ C(Li),

n, otherwise.

(5)

The utility function ws size(I, ts) computes the size of
working space I for tile size ts and is defined as follows:

ws size(I, ts) =











size of I for tile size ts,

if ts ∈ {1, . . . , n},

n, otherwise.

(6)

3. Select the tile size ts as the minimum of all tile sizes
computed in the previous step. Even though it may
not be possible to fit all working spaces in the L1
cache, this tile size selection strategy guarantees that
the working spaces considered stay in the fastest cache
level they individually fit in.

4. In addition, include the tile size 16 · LS in the set of
tile size samples.

Figure 4 describes the procedure used to select tile size
samples for general implementation variants that use loop
tiling. In line 5, we perform an additonal check if ts satisfies
the heuristic property ts ≥ 16 · LS + 100. If so, a small
tile size of length 16 · LS is included in the set of tile size
samples, because we have observed that on some processors,
in particular, on the AMD Opteron DP 246, such a small tile
size is sometimes more effective than a tile size for which the
optimized working spaces occupy a large part of the cache.

To select the tile size samples for the specialized imple-
mentation variants, we pursue a strategy similar to the one
described in Figure 4. When selecting the tile size samples
for the specialized implementation variants, additional con-
straints have to be satisfied. The first constraint is ts ≥ d(f),
i.e., we have to guarantee that the selected tile size is larger
than the ODE access distance. The second constraint, which
is required only for the pipelining variants (ppDb1mt and
ppDb1m), is ts ≤ ⌊n/m⌋. For the specialized implementa-
tion variants, the heuristic property in line 5 is replaced by
the check if d(f) ≥ 16 · LS. If this property is true, d(f),
otherwise 16 · LS is included in the set of tile size samples.
For both specialized and general implementation variants,
the set of tile size samples consists of at most two tile sizes
for each of the implementation variants.

5.4 Implementation of the Auto-tuning Phase
The implementation variants in the candidate pool dif-

fer in the order of the computations performed, but since
all implementation variants in the candidate pool produce
the same numerical results, they can be exchanged for the
computations of the time-steps.

In the auto-tuning phase, the algorithm successively exe-
cutes all available implementation variants in the candidate
pool. For each implementation variant, a runtime test is per-
formed with different tile sizes to select empirically the best
tile size from the set of tile size samples. The time needed
by each implementation variant for each tile size to compute
one time step is measured, and the fastest implementation
variant and the best tile size are recorded. Because the
time needed to compute one time step and, in particular,
the differences in the execution times of one time step of
the different implementation variants may be smaller than
the resolution of portable Unix timer functions, we evaluate
hardware performance counters to count CPU cycles. The
PAPI (Performance Application Programming Interface) li-
brary [15] provides a portable way to access these counters.

Generally, the performance of programs depends on the
initial state of the hardware system, in particular, the con-
tents of the cache hierarchy. It is, therefore, usually nec-
essary to start the evaluation of a program from a repro-
ducible initial state of the cache hierarchy, which is called
cache warm-up. In order to warm up the cache reproducibly
and thus to assess the implementation variants as reliably as
possible, the self-adaptive IRK algorithm presented in [11]
distinguishes between accepted and rejected steps, because
an additional vector copy is required to discard the approxi-
mation vector yκ+1 computed in the current time step when
the time step is rejected. Since usually only a small part of
the time steps is rejected, accepted time steps are used to
measure the runtime of the implementation variants. But, to
warm-up the cache reproducibly, only those accepted steps
are considered, which directly follow another accepted step.

However, warm-up steps can imply additional overhead,
because they extend the auto-tuning phase and shorten the
fourth phase in which the best implementation variant is
used. We therefore investigated the impact of warm-up steps
on the reliable assessment of the implementation variants.
An experimental evaluation has shown that it is sufficient to
use the first time step as a single warm-up step to load data
used by all implementation variants into the cache. Skipping
this first single warm-up step may result in a runtime dif-
ference of & 2%, which may be larger than the performance
difference of some implementation variants. For the rest of
the time steps in the auto-tuning phase, we observed only a
very small difference between warmed-up and not warmed-
up time steps of the same implementation variant. Because
of this observation, the new algorithm described in this pa-
per reduces the number of steps in the auto-tuning phase by
using all time steps regardless of whether they are accepted
or have to be rejected to assess the implementation variants.
Only the first time step is still used as a warm-up step.

The number of time steps executed in the auto-tuning
phase depends on the number of implementation variants
kept in the candidate pool and on the number of selected tile
size samples. For ODE systems with limited access distance,
the auto-tuning phase takes at most 18 time steps. The
maximum number of time steps constituting the auto-tuning
phase for ODE systems with arbitrary access distance is 8.
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6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
In this section, we present an experimental evaluation of

the self-adaptive IRK solver with tile size sampling on two
different hardware platforms. The first system is an AMD
Opteron DP 246 machine running at 2.0GHz with 64 kB L1
cache and 1MB L2 cache. The second system is an AMD
Opteron 8350 with four quad-core processors running at 2.0
GHz and equipped with 64 kB L1 cache/core, 512 kB L2
cache/core and 2MB shared L3 cache. The compiler used
on both systems was GCC 4.4.3 with optimization level 2.

As example problems we selected the 2D Brusselator equa-
tion (BRUSS2D) [8] and a model for a nerve impulse mech-
anism (CUSP) [9]. Both problems were derived from PDE
systems by a spatial discretization using the method of lines.
BRUSS2D is discretized on an N × N grid. The resulting
ODE system has size n = 2N2 and a limited access distance
of d(f) = 2N . It can be solved using specialized or gen-
eral implementation variants. CUSP is discretized using a
one-dimensional grid consisting of N points resulting in an
ODE system of size n = 3N . Due to periodic boundary con-
ditions, CUSP has an unlimited access distance. Therefore,
the specialized implementation variants currently in the can-
didate pool cannot be applied to this problem. As corrector
method, we used the 5-stage method Lobatto IIIC (8) [8].

The metric used in the experiments to compare the im-
plementation variants is execution time normalized by the
number of time steps and the system dimension n. In order
to reduce the time required for the experiments with the
self-adaptive IRK solvers, we limit the number of time steps
such that at least about three times as many time steps are
executed as required by the auto-tuning phase and such that
the execution time of a program run is still large enough, i.e.,
about 30 s, so that it can be measured reliably. As a result,
the number of time steps executed with the self-adaptive
solver varies between about 60 and about 850.

6.2 Applicability of Self-Adaptive Solvers
At first we demonstrate, using BRUSS2D as example,

that the general approach followed by the self-adaptive IRK
solver is applicable to the two test problems on the two hard-
ware architectures and that this approach enables a good
performance with only small overhead.

Figure 5 shows a detailed comparison of the normalized
execution times of the previous variant of the self-adaptive
IRK solver, as presented in [11], with the non-adaptive im-
plementation variants from the candidate pool. In Figure 5,
the normalized execution time is plotted against the system
size, n.

When we compare the different implementation variants
in Figure 5 for the AMD Opteron 8350 machine, we notice
that for different sizes n of the ODE system the order of
the implementation variants varies. We can identify sub-
ranges where different implementation variants offer the best
execution time. For system sizes n . 1.6 · 104, the fastest
implementation variant is A, then, for 1.6 · 104 . n . 1.0 ·
106, ppDb1mt is the fastest implementation variant. For
system sizes 1.0 · 106 . n . 2.2 · 106, PipeDb1m delivers the
best performance. In the range 2.2 · 106 . n . 3.7 · 106,
PipeDb2mt is the fastest implementation variant. For even
larger system sizes, the fastest implementation variant is
ppDb1mt again.

On the AMD Opteron DP 246, similary to the AMD
Opteron 8350 machine, we can identify sub-ranges, where
the order of the implementation variants delivering the best
performance changes. In comparison to the non-adaptive
implementation variants, the self-adaptive IRK solver achieves
nearly the same performance as the best non-adaptive vari-
ant in each of the sub-ranges on both machines.

The time overhead caused by the auto-tuning phase is ac-
ceptably small, even though the number of time steps ex-
ecuted in our experiments was limited to a few hundred
steps to reduce the time required to conduct the experi-
ments. In real simulation runs, which may require millions
of time steps, the overhead of the auto-tuning phase would
be negligible.

6.3 Impact of Tile Size and Warm-Up
To investigate the impact of the runtime tile size selection

and warm-up steps we compare three different variants of
the self-adaptive IRK solver:

1. The previous variant of the self-adaptive IRK algo-
rithm, (Aprev), presented in [11]. This variant does
not carry out any procedure for the selection of tile
sizes. Instead, it uses the same predefined tile size for
all implementation variants in the candidate pool.

For BRUSS2D, the access distance d(f) is used as tile
size, because for BRUSS2D the specialized implemen-
tation variants are applicable and the access distance
is the smallest tile size that can be selected for the
specialized variants. The access distance also is usu-
ally large enough to exploit spatial and temporal lo-
cality efficiently. For ODE problems with unlimited
access distance, e.g., CUSP, the specialized implemen-
tation variants are not applicable and the tile size is
set to 120, which corresponds to 15 cache lines on the
machines considered in our experiments, which use a
typical cache line size of 64 byte. The tile size 120
is chosen, because previous experience has shown that
this value leads to good results on different machines.

To warm-up the cache, only those accepted steps are
considered for assessing the implementation variants,
which directly follow another accepted step.

2. The second variant, (Ats), is the self-adaptive variant
of the IRK method, as shown in Figure 3, which per-
forms dynamic selection of tile sizes. It uses only the
first time step of the integration to warm-up the cache.

3. The third self-adaptive variant, (Ants), is similar to
(Ats), but does not perform tile size sampling. The
tile sizes are predefined as in (Aprev).

The normalized execution times of these three variants of
the self-adaptive IRK solver and the tile sizes selected are
shown in Figure 6.

6.3.1 Execution Times on AMD Opteron 8350

For BRUSS2D, the two self-adaptive solvers (Aprev) and
(Ants), which both do not perform tile size selection, always
obtain a similar performance and usually select the same im-
plementation variant. Hence, it is not necessary to perform
warm-up steps for each implementation variant, but also no
significant gain from omitting the warm-up steps could be
observed on this machine.
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Figure 5: Normalized execution times for varying system sizes of BRUSS2D for Lobatto IIIC (8).

For system sizes n . 1.0 · 106, all self-adaptive imple-
mentation variants obtain a very similar performance. In
this range of n, either untiled general implementation vari-
ants or ppDb1mt obtain the best performance. Even though
ppDb1mt uses loop tiling, the performance of this implemen-
tation cannot be improved by tile size selection for BRUSS2D
in this range. The reason is that the specialized implemen-
tation variants such as ppDb1mt subdivide the ODE system
into blocks that have to be larger than the access distance
d(f), where the size of the blocks is equal to the tile size ts.
This constraint limits the choice of possible tile sizes, since
tile sizes smaller than the access distance cannot be selected.
However, larger tile sizes than the access distance d(f) do
not improve the performance on this machine.

For BRUSS2D with system sizes n & 1.0 · 106, the sit-
uation changes and the self-adaptive variant (Ats), which
performs tile size selection, offers the best performance. In
this range of n, ppDb1mt no longer obtains the best perfor-
mance, because the working space of one pipelining step,
which grows with n, because d(f) = 2N = 2

√

n/2 also
grows, becomes too large. Therefore, the performance of

ppDb1mt for ts = d(f) becomes very similar to the perfor-
mance of PipeDb1m and PipeDb2mt, and the self-adaptive
solvers that do not perform tile size selection, choose one or
another of these three implementations. The self-adaptive
solver (Ats), however, chooses PipeDb2mt in most runs with
either a smaller or higher tile size than d(f), which leads to
a higher performance.

6.3.2 Execution Times on AMD Opteron DP 246

For this machine, we can make similar observations as
for the AMD Opteron 8350 machine. Again, there is no
large difference in the performance of (Aprev) and (Ants)
for BRUSS2D. Thus, the impact of warm-up steps is only
small. However, the range in which (Ants), which does not
perform warm-up steps, is noticeably faster then (Aprev),
which warms-up each implementation, is larger.

As for the AMDOpteron 8350 machine, (Ats) outperforms
the variants without tile size selection when the working
space of one pipelining step of ppDb1mt grows too large. We
observe that for n & 2.3 · 105 PipeDb2mt with a small tile
size is faster than ppDb1mt. The performance improvement
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Figure 6: Normalized execution times and tile sizes selected for the different variants of the self-adaptive
IRK solver for varying system sizes.

resulting from selecting PipeDb2mt with a small tile size is
significantly larger than on the AMD Opteron 8350, because
this machine is more sensitive to the choice of the tile size
(cf. Figure 7).

For CUSP, only the general implementation variants could
be included in the candidate pool. The performance of all
three self-adaptive variants is very similar over the entire
range of n considered. The reason is that on this machine
small tile sizes are preferable. Hence, for small system sizes
n . 2 · 104, where the working space of one time step fits
in the cache, all self-adaptive solvers select the untiled im-
plementation variant E, while, for larger system sizes, all
self-adaptive solvers select the tiled implementation variant
PipeDb2mt. The tile size chosen for PipeDb2mt by (Ats) in
most runs is 128 = 16 · LS. This value nearly matches the
predefined tile size of 120 used by the self-adaptive solvers
without tile size selection.

6.3.3 Quality of the Tile Size Samples

For BRUSS2D as example problem and Lobatto IIIC (8)
as base method, Figures 7 compares the quality of the tile
size samples ts1 and ts2 generated by the self-adaptive algo-
rithm for implementation variant PipeDb2mt with the qual-
ity of the fixed tile size d(f) used for the non-adaptive exe-
cution of implementation variant PipeDb2mt on the AMD
Opteron DP 246 machine and on the AMD Opteron 8350
machine. In the contour plots, the relative runtimes for im-
plementation variant PipeDb2mt are plotted w.r.t. the best
runtime over the range of tile sizes for different system sizes
n. The color scale indicates the quality of the selected tile
sizes. The deviation in the performance for the range of tile
sizes of [1, 5000] considered is . 13% on the AMD Opteron
DP 246, . 11% on the AMD Opteron 8350.

On both machines we observe that the self-adaptive algo-
rithm generates tile size samples that mainly lie in blue re-
gions of the contour plots, which are associated with a good
choice for the tile size. The tile sizes used for different n for
the non-adaptive execution of PipeDb2mt mostly fall into
red regions corresponding to ranges with less suitable tile
sizes. On the AMD Opteron DP 246 machine, we observe
that the tile size selected should not be larger than ≈ 700
over the entire range of n. In contrast, on the AMD Opteron
8350, not only small tile sizes in the range of [200, 500] show
a good performance, but also larger tile sizes in the range of
[3500, 5000]. On both machines, the self-adaptive algorithm
generates the same tile sizes, because both machines are
equipped with 64 kB L1 cache. For machines with the same
L1 cache size, the self-adaptive algorithm proposes the same
tile size samples as long as there exists a workings space that
fits in the L1 cache with a computed tile size that is smaller
than all tile sizes computed for other working spaces fitting
only in the L2 or the L3 cache.

6.3.4 Correlation with Cache Miss Counts

Figure 8 shows the normalized L1 and L2 cache miss
counts for varying system sizes and tile sizes on the AMD
Opteron DP 246 for implementation variant PipeDb2mt with
BRUSS2D as example problem and Lobatto IIIC (8) as base
method. In the contour plots, the normalized cache miss
counts are plotted w.r.t. the minimum number of normal-
ized cache misses over the range of tile sizes for different
system sizes n. We see a sharp increase in the number of
L1 misses when the tile size grows, whereas the number of
L2 cache misses does not increase for larger tile sizes and
only a small variation of the number of L2 cache misses for
different tile sizes and system sizes is observable. The vari-
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Figure 7: Quality of the tile size samples for implementation variant PipeDb2mt with BRUSS2D as example
problem and Lobatto IIIC (8) as base method.

ation of the L1 cache misses for different tile sizes is higher
than the variation of the L2 cache misses by several orders
of magnitude.

With growing tile size and system size, the sizes of several
working spaces exceed the capacity of the L1 cache and,
consequently, the number of L1 cache misses increases. Since
most of the working spaces still fit in the L2 cache with a tile
size . 5000, the number of L2 cache misses remains almost
constant. From the runtimes measured and the numbers of
cache misses shown in Figure 8, we can conclude that cache
capacities and working space sizes are the major factors that
need to be considered for tile size selection. In order to
obtain a good performance for an implementation variant,
the tile size should be selected such that the data of each of
the important working spaces are kept in the fastest cache
level the corresponding working space fits in.

7. CONCLUSIONS
In this paper, we have investigated dynamic auto-tuning

techniques for sequential IRK methods. We have compared
several variants of a self-adaptive IRK solver, which exploits
the time-stepping nature of the solution procedure to select
the best implementation variant from a candidate pool at
runtime. In particular, we have investigated the empirical
selection of tile sizes for loop tiling from a set of tile size
samples, where the set of tile size samples is determined by
a model-based approach.

A detailed experimental evaluation has shown that the
self-adaptive IRK solver can be applied successfully to solve
different IVPs on different hardware architectures efficiently
because the overhead required for the dynamic selection of
the best implementation variant and a suitable tile size is
sufficiently small. These results are very encouraging, and
we still see potential for improvements of the self-adaptive
algorithm. In particular, our experiments have shown that
it is important to further reduce the candidate set of imple-
mentation variants and tile sizes.

IRK methods were selected for this study because of their
high potential for parallelism. As a next step of our work, we

will consider shared-memory implementations of IRK meth-
ods, whose locality behavior and performance additionally
depends on the number of processors used.
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