
Tracking Adaptive Performance Models Using Dynamic
Clustering of User Classes

Hamoun Ghanbari,
Cornel Barna

Dept. of Computer Science
York University

Toronto, ON, Canada
{hamoun,

cornel}@cse.yorku.ca

Marin Litoiu
Dept. of Computer Science

York University
Toronto, ON, Canada
mlitoiu@yorku.ca

Murray Woodside
Dept. of Systems and
Computer Engineering

Carleton University
Ottawa, ON, Canada

cmw@sce.carleton.ca

Tao Zheng, Johnny Wong
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{t3zheng,
jwwong}@uwaterloo.ca

Gabriel Iszlai
Centre for Advanced Studies

IBM Toronto Lab
Toronto, ON, Canada

giszlai@ca.ibm.com

ABSTRACT
Estimation techniques have been largely applied to track
hidden performance parameters (e.g. service demands) of
web based software systems. In this paper we investigate
dynamic multiclass modeling of such systems, with variable
classes of service, aiming at finding a low complexity model
yet with enough accuracy. We propose a combination of
clustering algorithm and tracking filter for effective group-
ing of classes of services. The tracking estimator is based on
a layered queuing model with parameters for CPU demands
and the user load intensity of each class of service. Cluster-
ing uses the K-means algorithm. The target application is
autonomic control of web clusters, where changes occur at
different rates and amplitudes and at random time instants.
Experiments show that the tracking is effective, and reveal
good filter settings for different variations.

Categories and Subject Descriptors
D.4.8 [Software Engineering]: Performance —modeling
and prediction, queueing theory

General Terms
Performance

Keywords
Performance models, service demand estimation, tracking
filter, URL clustering
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1. INTRODUCTION
In web based systems, in order to maintain the desired

quality of service when the service workload varies dynam-
ically (e.g. [2, 7, 8, 28, 1, 11, 14, 19]) one can rapidly
explore multiple allocation decisions and find near-optimal
service provisioning [14, 28] based on a pre-constructed per-
formance model. A problem in this model-based approach
is the estimation of hidden or difficult-to-determine param-
eters of user triggered scenarios [20, 21, 4, 18, 31, 30, 16,
6, 5]. For example, measuring service times or demands for
each class of service, even if technologically possible, is not
practical because of the overhead introduced.

Some authors of this paper have previously investigated
the use of estimators to track these hidden performance
model parameters when all user triggered services are treated
as a single class [27, 32, 29]. The estimation was performed
by a Kalman filter using system measurement, such as re-
sponse times, throughput and server utilization.

In this paper, we consider multi-class models to represent
software systems. When user services have different perfor-
mance behavior, then a single class model, which averages
all services, is not an accurate description of the system. On
the other hand, in web applications, services are identified
by different URLs and, if each URL is treated as a class,
the performance model solution cost (time) becomes exces-
sive. Thus it seems natural to try to group the URLs with
similar resource usage into a smaller number of classes and
to control the modeling error. Since the resource demands
associated with each URL may change with time (i.e. due
to changes in the URL parameters) we propose an adaptive
clustering that regroups the URLs depending on the time-
varying demands associated with the requests. The estima-
tion filters track these changes, and the performance model
predicts their effect on quality of service (e.g., on response
time of different services).

A use case of the proposed estimation technique is the
feedback based adaptation architecture presented in Figure
1. In such architecture, the performance of an application
that offers user services is controlled by a feedback loop. A
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decision module makes resource allocation decisions based
on the performance model, quality of service (QoS) targets
and other system goals. A workload classifier and a state es-
timator group execution paths into runtime classes resulting
into a new model with smaller set of classes. This model ex-
ploits the trade-off between complexity (lessened by having
a smaller set of modeled classes) and accuracy (grows with
the number of modeled classes). The role of state estimator
is to update and track estimates of the model parameters
(e.g., service demands).
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model 
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decision 
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Monitoring

 
Application 

 

User services QoS targets 
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Figure 1: Architecture of an autonomic loop based control.

An online tuned multi-class performance model will pro-
vide better control of application performance since it can
estimate and predict the effect of decisions for each service
offered by the application (as opposed to an average across
all services).

The original contributions presented in this paper are:

1. Estimation of hidden per class performance states for
multi-class models

2. Dynamic workload classification

3. Evaluation of the effectiveness of approximation meth-
ods needed to make the classification and the multi-
class estimator practical

4. The interaction of the rate of system change, in deter-
mining the accuracy of classification and tracking

The remainder of this paper is organized as follows. Sec-
tion 2 describes our approach for parameter estimation and
tracking. The applicability of the proposed approach is
demonstrated by the experiments in Section 3. Related
work, conclusions, and future works are discussed in Sec-
tions 4 and 5 respectively.

2. DYNAMIC CLASSIFICATION AND ES-
TIMATION

This section will present our classification and estimation
methodology.

2.1 Classes
In our investigation, a class is distinguished by its behav-

ior, namely, its demand for CPU, Disk, and I/O operations
across layers of clustered servers.

The smallest granularity of behavior we consider is the
response to a request for a given URL. Figure 2 shows as
an example, scatter plot of the CPU demands for 100 dif-
ferent URLs on a 2-tier environment composed of a web
and a database server. The demands by the i’th URL,
Si = (Sw,i, Sd,i), is shown as a demand tuple in the plot.

In terms of resource management, it may not be possi-
ble or effective to allocate resources to individual URLs be-
cause the granularity of resource allocation may be too fine.
An obvious approach to reduce the granularity is to form
groups of URLs and allocate resource at the group level.
This can be done by aggregating together URLs with simi-
lar (Sw,i, Sd,i) demand pairs into a single cluster (or class).
In Figure 2(a) to 2(f), 100 URLs are aggregated into 1 to 6
aggregate classes, respectively, with the value of the aggre-
gate demand pair for each class shown as a heavy dot.

In our autonomic control architecture (see Figure 1), anal-
ysis of a LQM is also more manageable (or solution can be
obtained more quickly) if the number of classes is small. In
this context, the best aggregation should therefore be based
on the tradeoff between fidelity of modeling (best with 100
classes) and economy in the model (best with one class).

2.2 Model
In order to capture the behavior of multi-tier web ser-

vices deployed in a data center environment we used Lay-
ered Queuing Model (LQM) and APERA [13] which is a
LQM solver. In LQM, a web application is viewed as lay-
ers of software introduced by the different tiers (e.g. web
and database servers) and hardware layers of the underly-
ing infrastructure. Each layer is represented by a Queuing
Network Model (QNM) which can be solved by the mean
value analysis.

Model inputs for LQMs include 1) the structure of the
model including the services and their interactions for rep-
resentative scenarios, and a topology of the underlying mid-
dleware and hardware and 2) the quantitative performance
metrics such as workload component (Wi), identified with
the number of users (Nc) and mean think time (Zc) for close
models or by the external arrival rate (λi), and service times
or demands (Sc) for each class of service c. Outputs of LQM
include response times (Rc), throughput (Xc) for each class
and server utilization (Uj) for each server.

Figure 3 shows a typical Layered Queuing Model (LQM)
of a web-based application which we will also use through
this paper. We assume that there are C classes of requests;
the “User” block in Figure 3 represents Nc users in class c
at their browsers. We use Zc to denote the mean think time
of class c users. Nc and Zc are the workload parameters for
class c; they correspond to the Wi’s defined earlier.

Variation in load arriving at the system can be modeled
by variations in Zc or in Nc; a larger Nc or a smaller Zc

leads to a higher level of offered load.
The“WebServer”block represents the server software with

M threads, running on processor WSProc (this is indicated
by the “host” relationship). The box labeled “webOp” repre-
sents the operation done for the users, and requires a mean
CPU demand of Sw,c for requests in class c and on average
1 database operations. The database is running on its own
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Figure 2: CPU demand of 100 URLs on a web server (Sw,i) on vertical axis vs. database server (Sd,i) on horizontal axis.
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 Figure 3: Multiclass Layered Queuing Model of a Web ap-
plication.

device DBProc. “dbOp” represents the mean CPU demands
of Sd,c at DBProc for a class c request.

Outputs of LQM of Figure 3 include:

• Rc – mean response times to class c users (R1, . . . , RC)

• Rd
c – mean response times to class c users at database

server (Rd
1, . . . , R

d
C)

• Xc – throughput of class c (X1, . . . , XC)

• Uw – utilization of web server processor

• Ud – utilization of database processor

Usually, the directly measurable performance data are
those given by model outputs, averaged over a measurement

time interval of length T :

z = [R1, . . . , RC , Rd
1 , . . . , Rd

C , X1, . . . , XC , Uw, Ub]

Values for the think time Zc and the CPU demands Sw,c

and Sd,c are not directly accessible at run time. They also
vary over time, so we compute and track them indirectly
by using the Extended Kalman filter based on the available
measured data (See next section).

2.3 Estimation with Extended Kalman Filter
Similar to [29, 32] we use Kalman filter [26] in the “State

Estimator” (see Figure 1) to estimate model states and pa-
rameters based on the available measured data. Figure 4
depicts the architecture of this extended Kalman filter. Let
x and z be vectors representing the parameters and mea-
sured performance of the various classes, respectively. The
LQM maps x to an output vector y (i.e., y = h(x)) which
represents the predicted performance. The filter then es-
timates x (which is not directly measurable) based on the
observed performance z and modeled performance y.

The filter computations are recursive, beginning from an
initial estimate x0. In each recursive step k the filter finds
the current parameter estimate xk−1, based on the most re-
cent parameter estimate xk−1 and the current observation
vector zk, in a way that it minimizes prediction error vec-
tor ek (i.e. the difference between predicted performance
h(xk−1) and the observed one zk):

ek = zk − h(xk−1) (1)

The core filter calculation is the update of the estimates
by the linear feedback equation:

xk = xk−1 + Kk ek (2)
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Figure 4: Kalman filter architecture.

where matrix Kk or “Kalman Gain” is the optimal gain ma-
trix (in fact it is only suboptimal when h is a nonlinear
function, as it is here).

An important issue in using Kalman filters is convergence.
The necessary and sufficient condition is given by the iden-
tifiability condition [23, 25, 26] which requires that, at min-
imum, we have more measured parameters than estimated
state parameters: i.e., dim(x) ≤ dim(y).

For the case of multi-class models, dim(x) and dim(y) de-
pend on the number of classes and the size of the deployment
topology. For example, consider an application with C URLs
which are deployed over J servers. The measured parame-
ters are most likely the mean response time and throughput
of each class and the utilization of each server. If we also
measure the response time of each class at an intermedi-
ary server, then we have other C measurements. We thus
have dim(y) = 3C + J . If we wish to estimate the demand
of each class at each server and the mean think time for
each class, then dim(x) = C × (J + 1). For this exam-
ple, when the application is deployed on 2 tiers (J = 2),
dim(x) < dim(y) regardless of the value of C. However,
when J = 3, dim(x) > dim(y) for C > 3; this implies that
with more than 3 classes, it will be difficult to estimate the
hidden parameters and we need more measurement points.
To minimize the measurement overhead we should therefore
keep the number of classes small, if possible.

2.4 Dynamic Clustering Algorithm
In this section, we first discuss the modeling error due to

clustering and then present an algorithm to determine the
best choice of the number of clusters C and the grouping of
URLs into these clusters.

2.4.1 Modeling Error
Suppose there are C clusters (i.e. c = 1, . . . , C), and L

URLs (i.e. i = 1, . . . , L) and c(i) denotes the cluster (or
class) which contains URL i. Let Rc(i) be the predicted
mean response time of class c(i) requests. For the case of no
clustering (i.e., each URL is treated as a separate class), let
R(L)i be the mean measured response time of requests for
URL i. Then a modeling error measure E(C) for C clusters
is given by:

E(C) =

√√√√ 1

L

L∑
i=1

(
R(L)i − Rc(i)

R(L)i

)2

(3)

The hypothesis is that the error E(C) tends to decrease
when the number of clusters is increased. However, finding

the clusters and the multi-class performance model associ-
ated with the clusters is complex as E is a measure of how
well the results from the filter and the model fit the mea-
sured data.

2.4.2 Dynamic Clustering Algorithm
Our classification algorithm is shown in Algorithm 1. In-

put to this algorithm are the Layered Queuing Model (LQM),
a measurement vector z and an error threshold A. The vector
z can include workload elements λi, the measured response
time Rm

i for URL i (i = 1, 2, . . . , L) and the total utilization
of the servers Uj (j = 1, 2, . . . , J). The algorithm outputs
the best values of the number of clusters C and the grouping
of URL’s into these clusters (or classes) in terms of mod-
eling error and modeling complexity, and the service time
estimates at the various servers for each of the C classes.

Algorithm 1: Estimation and Classification Algorithm.

input : LQM, z, A
output : The best choice of the number of clusters C,

aggregated demand (Sj,c) and URL members of
clusters

1 Estimate Sj,i, the service demand of URL i at server j, from
measurement data (∀j ∈ {1, . . . , J}, ∀i ∈ {1, . . . , L}) using
the model with no clustering; and set C = 1.

2 Cluster the URLs based on the Sj,i’s into C clusters.

3 Estimate the parameters Sj,c, the service demand of class c
at server j; solve the LQM with C classes and obtain results
for Rc, the mean response time of class c (∀j ∈ {1, . . . , J},
∀c ∈ {1, . . . , C}).

4 Calculate the modeling error E(C)

5 If E(C) > A, then increase C by 1 and go to Step 2.

6 Return C, the URLs in cluster c, and Sj,c (∀j ∈ {1, , J},
∀c ∈ {1, ...,C})

In our investigation, the workload Wi is time-varying. The
autonomic control loop shown in Figure 1 is executed at reg-
ular intervals. If the modeling error of the existing clustering
configuration is less than A, only the regular estimation is
performed using the Kalman filter. On the other hand, if
modeling error is greater than A, our classification algorithm
is invoked to obtain a new clustering of URLs such that the
modeling error becomes less than A.

The classification algorithm starts by estimating the ser-
vice demands of all the URLs at the various servers from the
measured response times using a model with no clustering
(Step 1). The service demand of URL i at server j is denoted
by Sj,i (∀j ∈ {1, . . . , J}, ∀i ∈ {1, . . . , L}). The estimation
is done by using the Extended Kalman filter described in
subsection 2.3 to derive the hidden state parameters (the
service demands in this case) from the measures that are
available. We also use LQM, explained in subsection 2.2, as
the model component in the Extended Kalman filter struc-
ture (see Figure 2). This model maps the state parameter
vector x, composed of service demands Sj,i, and the work-
load parameters Wi to output parameters y such as mean
response time of each URL and utilization of each server,
as given by the relationship z = h(x). It is worth noting
that h is a non-linear function for open models and an itera-
tive algorithm for closed models. For complex models, espe-
cially for closed models, deriving a symbolic representation
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of derivative matrix (H) is very difficult and our approach
is to approximate the partial derivatives.

In Step 2, the K-means clustering algorithm [9, 12] is used
to perform unsupervised grouping of service demands. K-
means has a low complexity and is adaptable to a contin-
uous nature of workload classification problem. Moreover,
it is able to detect clusters in an efficient way which does
not require computing the distance of all points in space to
each other. K-means takes as input the number of distinct
clusters to generate (C) and will determine the size of the
clusters based on the structure of the data.

The modeling error E(C) is calculated at Step 4 using
analytic results for Rc obtained in Step 3. If E(C) ≤ A, the
algorithm terminates and returns C, the URL assigned to
each of the C clusters, and the estimated service parameters
for the different classes (see Step 6).

Step 5 corresponds to the situation where the modeling
error E(C) is larger than the acceptable error A. This is
usually a result of gradual changes in service demands over
time. Here the algorithm re-calculates the clusters; this may
lead to a larger number of clusters (more estimation preci-
sion) or reshaping with the same number of clusters. Both
approaches can improve the accuracy of estimation and de-
crease the error. Steps 3 and 4 are then repeated to compute
E(C) for the clusters obtained from re-calculation. Note
that a larger number of clusters would increase the compu-
tational cost of estimation, but it will decrease E(C).

3. EXPERIMENTS
In this section we validate the method with a set of ex-

periments. The first set of experiments were done on real
systems using TPC-W benchmark [17]. The second set of ex-
periments used a simulated system in order to further show
the strengths and limitations of the method.

3.1 TPC-W benchmark and FIFA98 workload
TPC-W is a web application composed of 14 URLs, each

having different service demands on web and database servers,
and a workload defined in terms of percentage of total num-
ber of users. The benchmark has three workload mixes, buy-
ing, ordering, and browsing. Based on the workload mix the
distribution of workload amongst URLs varies. This work-
load is generated using emulated browsers (EBs) whose be-
havior and navigation is controlled by a Markov chain with
certain probabilities to match the desired distribution of load
between URLs. As a result, there is a Markov chain per user
mix.

We deployed the Java implementation of TPC-W [24] with
some modification, on a cluster of four Tomcat web servers
and one single MySQL database server, with Linux as the
operating system. In order to be realistic, we used FIFA98’s
[3] workload instead of TPC-W’s original workload. The
TPC-W’s original workload is just to test scalability but
FIFA98 reflects variations that servers might experience at
runtime. We picked a portion of the day 21st’s workload
(see Figure 5), extracted the web pages, lowered the num-
ber of requests with the factor of 2 (to factor in our smaller
scale deployment topology), and finally used the Little’s law
[15] (i.e. N = X(R + Z)) to convert the obtained through-
put (X) to the number of users (N) and think time (Z)
used by emulated browsers of TPC-W. In this conversion
we assumed that FIFA98 website had maintained the same
response time over the sampling period. We then used the
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Figure 5: FIFA98 workload, day 21, over an hour.

 
Figure 6: Modeling error decreases with the number of clus-
ters.

obtained number of users to the TPC-W benchmark using
equal mix of buying, browsing, and ordering scenarios.

For obtaining data, we monitored one of the web servers
and the database and logged response times, throughputs,
utilizations plus the workload parameters. Each sample rep-
resented a minute of work and the total length of experiment
was 1 hour resulting into 60 samples.

We noticed that under this workload, the demands do not
change frequently, and suspected that this is mainly because
1) the workload is unable to fully saturate the system or 2)
the fact that combination of workload mixes are the same.

We performed three main analyses on this experiment.
First we ran the algorithm statically with different number of
clusters and measured the modeling error. In our evaluation,
we used an expanded definition of the error metric given by
its average value over the duration of the experiment (from
t1 to t2):

E =

∑M
step=1 E(C)step

M
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where step is a variable which ranges over the estimation
steps. E(C) is the modeling error defined in subsection 2.4.1
and M is the number of estimation steps.

As we expected, the error decreased while we increased
the number of clusters (see Figure 6). The experiment also
shows that modeling the system with one or even two classes
introduces a large modeling error and that modeling with an
intermediate number of classes (8, for example) might give
us an acceptable modeling error.

In the second analysis, we applied our estimation and clus-
tering algorithm to find the minimal number of needed clus-
ters to reach certain modeling error. The algorithm is ap-
plied at each sampling period and, as a result, the clusters
change dynamically. As Figure 7 shows, we can reach 17%
error using between 7 and 12 clusters for the duration of the
experiment. For a modeling error less than 40% we need 9
clusters on average. In order to reach 5%, there are sampling
periods in which we need maximum number of classes.

The third analysis observed the correlation between the
within cluster sum-of-squares (WCSS) for demands and the
modeling error achieved using the Estimation and Classifica-
tion Algorithm. We chose 140 different groupings (for each
number of clusters we generated 10 random combinations).
This let us navigate all possible WCSS’s that could result
from different groupings. Figure 8 shows that, on average
we experienced a larger modeling error for the clusters with
higher WCSS error. In other words, the modeling error is
minimized, whenever the WCSS is minimized. As a result,
our assumption is validated since K-means is exactly the
algorithm to minimize the WCSS.

3.2 Estimation and Clustering for highly vari-
able demands

In TPC-W experiment, the service demands did not vary
in short run. As a result, it was unlikely that a URL moved
from one cluster to another very often. However, in a long
run (e.g. a month in real system measures) URLs might
change place due to variation in the database records they
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Figure 8: Correlation between WCSS for demands and the
error achieved on response times estimation.

access or in change of URL parameters. In short run, URL
parameters variations may change the demands as well.

We performed a simulated experiment for such a case
to investigate the effectiveness of the algorithm under non-
uniform variations in demands. The simulator software used
was CSim discrete event-based simulator.

To keep the presentation simple but also to highlight the
merits of the proposed method, in the simulation we varied
Zc and the CPU demands, and kept Nc and the request
frequencies constant.

0

100

200

300

400

0.511.522.533.5
0.8

1

1.2

1.4

1.6

1.8

 

step sequence

web server demand 
 

db
 s

er
ve

r 
de

m
an

d 

c1
c2
c5
c6
c7
c8

Figure 9: Combined Web-DB service demands for a specific
set of classes [c1,c2,c5,c6,c7,c8].

This experiment shows the efficiency of clustering and es-
timation for a web based application when the estimated pa-
rameters change at different rates and phases (small change
in service demands). This web based application is an e-
commerce site with 8 URLs (browse, buy, checkout, admin,
login, logout, add, and remove). The URLs have the same
number of users (Nc), mean user think time (Zc), and time
variant service demands Sw,c and Sd,c. Service demands fol-
low the sine curve with the same period but different phases
(see Figure 9). Because of demand variations, URLs migrate
from one cluster to another and clusters evolve over time.
In real applications, the service demands are not going to
change that dramatically, we consider those variations as a
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Figure 10: Variation of service demands in (a), real and
and tracked service demands for 2 clusters [c2,c7] and
[c2,c7,c1,c8] in (b), and modeling error with dynamic clus-
tering applied in (c).

stress load on the algorithm. Because of the variation of the
service demands, we expect that the different classes will be
re-clustered periodically.

Table 1 shows the clusters suggested by K-means algo-
rithm. The acceptable modeling error A is set to 8% over
421 simulation steps. The column ‘Action Nature’ indicates
the kind of change that has occurred when the past and
current clustering are compared; Ag, Br, Re, and Mv stand
for aggregation, breaking, re-structuring, and movement re-
spectively. Notice that in each re-clustering, the clusters are
re-computed from scratch; meaning that the algorithm is
oblivious to ‘Action Nature’.

Figure 10(a) shows the variation of service demands in a
changing cluster ([c2,c7]+[c1,c8]). Real and tracked service
demands for the cluster are shown in Figure 10(b) while the
modeling error is depicted in Figure 10(c).

According to Figure 10(a) and demand formulas, at step
50, (Sw,1, Sd,1) and (Sw,2, Sd,2) get close. This suggests that
c1 and c2 should be in the same cluster near that step. At
step 150, the service demands of c1 and c2 are quite different,

Step Action
Nature

Grouping
(Pre-event)

Grouping
(Post-event)

12 Ag,
Mv

[c1,c5,c6,c8]
[c2,c7] [c3] [c4]

[c1,c2,c7,c8]
[c3,c4] [c5,c6]

35 Br [c1,c2,c7,c8]
[c3,c4] [c5,c6]

[c1,c2,c7,c8]
[c3] [c4] [c5,c6]

147 Mv [c1,c2,c7,c8] [c3]
[c4] [c5,c6]

[c1,c5,c6,c8]
[c2,c7][c3][c4]

208 Ag,
Mv

[c1,c5,c6,c8]
[c2,c7] [c3] [c4]

[c1,c2,c7,c8]
[c3,c4] [c5,c6]

239 Br [c1,c2,c7,c8]
[c3,c4] [c5,c6]

[c1,c2,c7,c8]
[c3] [c4] [c5,c6]

340 Mv [c1,c2,c7,c8] [c3]
[c4] [c5,c6]

[c1,c5,c6,c8]
[c2,c7][c3][c4]

400 Br, Mv [c1,c5,c6,c8]
[c2,c7] [c3] [c4]

[c1,c2,c7]
[c5,c6,c8]
[c3,c4]

Table 1: Changes in clustering structure during simulation.

indicating that these two classes are more likely in different
clusters. These observations are consistent with our results
where the clustering at step 50 is [c1,c2,c7,c8][c3][c4][c5,c6]
and [c1,c5,c6,c8][c2,c7] [c3][c4] at step 150. Notice that c1
and c8 are shown in Figure 10(a) only when they are part
of the cluster [c2,c7,...]. This explains the step-function-like
behavior of the estimated demand for the changing cluster
in Figure 10(b).
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Figure 11: Number of clusters versus simulation steps.

Based on Figure 10(c) during the simulation, the modeling
error exceeds the threshold A, 7 times. This means the clas-
sification algorithm described in subsection 2.4 is activated
7 times among the 421 steps. One could see that not every
re-clustering necessarily results into a different number of
clusters. For example, at step 147, the clustering changes
from [c1,c2,c7,c8][c3][c4][c5,c6] to [c1,c5,c6,c8][c3][c4][c2,c7].
The number of clusters remains the same, but c1 and c8 have
been moved to a different cluster. Figure 11 shows that the
total number of clusters changes only 4 times over the 400
steps.

We can conclude that our estimation and classification
algorithm works quite well, since it is able to keep the error
below A = 0.08 with the smallest number of clusters and
acceptable frequency of re-clustering.

The algorithm also satisfies our claim in Section 1: being
able to exploit the complexity-accuracy trade-off and keep-
ing both the error and the estimation cost low. In terms
of cost, our algorithm yielded half the required clusters (see
Figure 11) compared to full URLs estimation, which from
the theory reduces the estimation cost by a factor 23 ( 1

23

of the original cost). This is due to the fact that, the cost
of Kalman estimation in each step is dominated by Kalman
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gain calculation, which is O(l3) while l is the number of
measured variables. The reason is that the dominating term
during gain calculation is a inversion of a matrix of size l× l:

Kk = P−
k HT

k (HkP−
k HT

k + Rk)
−1

(4)

In this equation, Rk is measurement noise covariance ma-
trix with size l × l.

In terms of accuracy, it was able to keep the error near
zero compared to fully aggregated URLs case. See Figure 12
for the error comparison between our algorithm, one cluster
case, and full URLs estimation.
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Figure 12: Comparison of the modeling error for one cluster
case (dotted line), dynamic clustering case (solid line), and
full URLs estimation (solid horizontal line at y = 0).

4. RELATED WORK
Some of the early works in CPU demand estimation are

done in [20] and [21]. They used regression analysis to pre-
dict demands of certain program in a distributed system.
The reference [4] uses regression splines instead of linear and
polynomial regression functions to better capture the irreg-
ularities of demand functions. References [18, 31] employ
the multivariate linear regression technique for a one-tier
network. However, [31] focuses more on modeling the inter-
request dependencies of session-based systems and [18] fo-
cuses on mechanisms to deal with issues such as insignificant
flows, collinear flows, space and temporal variations, and
background noise. In [30] and [16], multi-class queuing mod-
els were used to infer the per-class service times at different
servers of a two-tier web cluster using throughput, utiliza-
tion, and per-class response time measurements. They try
to minimize the sum of predicted response time mean square
errors using a non-linear optimization solvers and quadratic
minimization programs. References [6, 5] claim to perform
demand prediction of enterprise workloads by discovering
patterns, but the referred demand is per-application not per-
request; thus they do not tackle the same problem as ours.
Finally reference [10] contributed by using Maximum Like-
lihood Estimation together with queuing model to estimate
resource consumption in an ERP system.

Our tracking filter based approach is closer to what we
previously presented in [27, 29, 32]: it uses LQM which is
adaptable to open and closed workload types, and is de-
signed to be used in online estimation and control. How-
ever, theoretically our approach is applicable to regression
based techniques as well. One can apply regression to track
changes in service demands by continually reapplying the
technique on new measurement samples and feed the result
into our clustering algorithm. In this case regression can be
tuned by adjusting the number of past samples used.

The major contribution of this paper is the dynamic es-
timation of multi-class model parameters and the dynamic
clustering of user requests. To the best of our knowledge, the
combination of dynamic clustering and cluster parameter es-
timation has never been investigated before. Only reference
[22] is close to our work in terms of final goal. They try
to categorize requests based on their resource usage charac-
teristics without performing server instrumentation. Thus
they ignore the prior knowledge of which URL a request
is accessing and only uses aggregate metrics such as total
CPU usage over time. Moreover, their utilized approach
is also different, as they use a machine learning technique
called independent component analysis (ICA). Of course,
their technique will erase the need for server instrumenta-
tion but might affect the accuracy due to not using the extra
available information.

5. CONCLUSIONS AND FUTURE WORK
We took another step towards correct estimation of per-

formance parameters by incorporating multi-class Layered
Queuing Models into autonomic computing loops. Since
the targeted applications are web applications, we consid-
ered the application URLs as first class entities: we started
by considering each URL request as a class. However, from
practical point of view, this creates models that are too com-
plex to manage at runtime and requires detailed instrumen-
tation to get per class service times, per class visit ratios,
etc. To mitigate these two factors, we investigated a tracking
approach which identifies performance parameters of groups
of URLs (we call them clusters) instead of individual URLs.
We proposed an algorithm that finds the appropriate the
number of clusters with a pre-defined clustering accuracy.

We applied the clustering and tracking algorithm to two
scenarios:

1) In the first experiment, we deployed our technique on
TPC-W benchmark deployed on a cluster of web servers.
The workload was obtained from well-known FIFA98 archives.
In this experiment, first, we observed that modeling error is
reduced as the number of clusters increases. Second, we
tested 140 different random ways to cluster the classes and
computed their average error values (E) and observed that
the clusterings with the smaller average distance of URLs to
centroids (i.e. with less cluster sum-of-squares) have less er-
ror; thus showing the usefulness of the K-means algorithm.
Moreover, we dynamically computed the number of needed
clusters that keep the modeling error under a threshold. For
example, if one can accept 17% error, the number of needed
clusters for estimation would be dropped from 14 to 9 on
average.

2) In the second experiment we deployed our algorithm
on a system with 8 URLs. It was shown that our Extended
Kalman filter could track hidden states successfully and the
correctness of the filter rose as it tried more classes and re-
estimated service demands.

5.1 Future Work
In this paper, we used the maximum acceptable error

value (8%) obtained from experience to control the balance
between the introduced error and complexity of the model
(noting that our goal was to minimize both). As future
work, one can model the relationship between computation
complexity and error explicitly and try to find an optimal
number of clusters which minimizes both.
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Another future challenge is the integration of multiclass
model with the decision component of the adaptive loop.
It is foreseeable that the decisions on provisioning to be
made per class rather than per overall system, although the
structure of the loop is still centralized. Another possible
approach is to consider each class being controlled by one
feedback loop and model separately the class interferences.
This latter approach will lead to a decentralized adaptive
system.
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