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ABSTRACT 
Adaptive management of a software service system can take 
advantage of a performance model which can predict the effect of 
proposed changes, before they are deployed. As the system varies 
over time the model parameters can be tracked by an estimator 
such as a Kalman Filter, so that decisions can be updated. The 
filter is valuable when parameters are “hidden” and cannot be 
directly measured without excessive cost (as is usually the case 
for the CPU time of a service). Because there may be significant 
delays in some management control actions (especially in 
deploying a new replica of a service), it is also important to be 
able to predict the changes ahead somewhat in time, that is, to 
predict the trends. The trend predictor itself needs to be estimated 
from observed trends in the model parameters. This work uses an 
autoregressive model for trend prediction and integrates it with 
the parameter estimator, in a single Kalman Filter, using auxiliary 
states for the parameter evolution process. This paper describes 
how the trend model is constructed, and evaluates its 
effectiveness. It compares the overall performance predictions to a 
simpler trend predictor using linear extrapolation of the fitted 
parameter time-series, which turns out to be almost as good. The 
approach is validated on a real system running a benchmark web 
application. 

Categories and Subject Descriptors 
D.4.8 [Performance]: trend  prediction, tracking, queuing theory, 
simulation 

General Terms 
Experimentation, Measurement, Performance and Theory. 

Keywords 
Performance model, Layered Queueing, Autoregressive model,  
Tracking, Estimation, Extended Kalman filter and Simulation 

1.  INTRODUCTION 
Large-scale service systems are dynamic and must adapt to 
maintain adequate quality of service (QoS) [14][4][11] under 
changing operating conditions. Changes occur in traffic volumes 
and in the operational profile of services, due to shifting needs of 
users and to the replacement of some services by alternatives in a 
service-oriented architecture. Adaptation may require provisioning 
of services, allocation of storage or communications resources, or 
re-tuning of a server. Adaptation decisions may be based directly 
on system measures, with a change triggered by the passing of a 
threshold, or by considerations involving a performance model 
[15][16], which is assumed here. The performance model is 
initially derived from the system specification (e.g. [23]) or from 
other knowledge of the system. 

A performance model provides a powerful means to evaluate 
complex decisions, such as trading off QoS in one service against 
another, or considering additional buffer space versus additional 
processing power. However, in a dynamic system, the performance 
model can quickly become outdated if it is not adapted 
automatically to keep up with the changes in the system parameters 
or structure. This requires a run time observation of the changes in 
system parameters. However, some performance parameters may 
not be observed directly because it is too expensive or too 
disruptive (an example is the CPU demand of an operation). 
Because they are not observed, they called here hidden. In [22][24] 
such parameters were estimated indirectly through their effect on 
the performance calculation, by an Extended Kalman Filter (EKF) 
estimator, which is a kind of Bayesian estimator [3][10]. 
Combining direct observation with estimation of hidden 
parameters, as described in [15][22][24], yields an up to date 
tracked model. Management using this model, to make decisions 
by evaluating the system performance under different options was 
shown to be effective in [24].  

In many practical situations, there is a substantial delay in applying 
some of the control decisions, particularly in provisioning servers  
for a clustered application [6]. In those situations, it is desirable to 
also predict the performance forward in time and thus improve the 
quality of control.  Predictions with no parameter trend model, as 
in [22], are simply the value of the current estimate, constant into 
the future.  

For parameters which are directly measurable (not hidden) there 
are simple approaches. In [24][28] the arrival rate of requests 
(which was measured directly) was predicted by fitting a straight-
line trend to the measured values, which significantly enhanced the 
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model predictions for future times. A more sophisticated predictor 
such as an autoregressive model [2] could also be applied. In [7] 
and [18], diurnal and weekly variations of workload were 
represented by a “trend” term derived from recent observations (a 
different meaning for “trend”). A term is added from a predictive 
time-series model fitted to the residual. This approach is excellent 
but it cannot predict hidden parameters and it responds very slowly 
(over weeks) to changes in user behaviour. 

This paper describes a comprehensive method for predicting the 
performance trends of a system with hidden parameters. It 
combines a performance model to estimate performance, with an 
autoregressive model to predict hidden parameters ahead in time, 
with estimation and prediction via an Extended Kalman Filter.  

An AR model predicts a future value of a time-series as a linear or 
non-linear function of its own past values. The estimation of an AR 
model for an observed process is well documented in [2]. It can be 
based on regression techniques, or on a tracking filter which can 
update the AR model over time. An example of estimation of an 
AR model by a Kalman Filter [27] describes tracking changes in 
gear vibrations, which were observed by sensors.  

In the present work the estimators for the AR trend model and for 
the performance model parameters are combined in a single EKF. 
The combination greatly improves the prediction of future values, 
as will be shown. The approximations that justify the combination 
depend on the adequate separation of the two time scales, one for 
measuring performance, and the second for time variation of the 
parameters.  

 Over a measurement interval (called here a step), we assume 
the system properties are approximately invariant, with 
stationary random processes governing arrivals, execution 
demands and user behaviour. This justifies using a stationary 
performance model for estimation and prediction, conditional 
on values for the parameters. 

 Over a longer time scale of several steps, the time-varying 
parameters of the system are assumed to be represented by a 
stationary autoregressive (AR) process and we will call this 
time-variation the local trend (or simply trend) of the 
attributes (this trend is in general not linear in time).  

1.1 Related work 
Trend prediction has an enormous literature; a recent survey is [8]. 
Autoregressive (AR) and related predictors [2] are the most 
successful, and are fitted to measured data by various methods, 
including an EKF [27]. Similarly the use of the EKF to estimate 
hidden states in dynamic systems has a substantial literature. The 
authors are not aware of any previous attempt to combine these, as 
in the present work: the EKF estimates the parameters of the 
performance part, and also the dynamic trend parameters of the AR 
part of the model.  

However the resulting estimator is similar to many studies in 
dynamic systems in which an EKF is used to estimate the 
parameters of the system as well as its states. Compared to such 
studies, the performance model parameters are the states, the AR 
submodel represents the dynamics, and the performance model is 
an “output function” computing outputs (performance measures) 
from the states. 

An AR trend model is an approximation. Even if the actual process 
is not AR, a tracked AR model may be adequate. For example 
long-range dependent time series have been shown to be common 
in web services requests and responses [1]. There is some evidence 
that an AR approximation which adapts to the process may be 
satisfactory. In [7] the coefficients of an AR model for arrival rates 
in long-range-dependent traffic were tracked, and gave adequate 
predictions. In [26], a useful AR model was generated for a long-
range dependent request rate, expressing the rate as a linear 
function of its immediate past values, with parameters that 
depended on the local average rate. In [13] a fixed function for 
diurnal and weekly variations was found, and an AR model fitted 
successfully to the residuals. It was capable of predicting over a 
few steps of 5 minutes each, but at longer prediction horizons the 
long-range dependency become important and the predictions had 
low accuracy.  Reference [19] considers the selection of the best 
order for an autoregressive model.  

2. MODELS OF CHANGES IN A SERVICE 

SYSTEM 
A time-varying performance model will be written as a vector 
function y(k) = h(x(k)), for the kth time interval, with changes 
occuring between time intervals. In interval k the elements of y(k) 
may be average response times, rates or throughputs, and resource 
utilizations; the elements of x(k) may be average performance 
parameter values such as CPU demands of service operations, 
mean storage operations required for a service operation, and 
arrival rates of service requests, or they may be parameters of 
probability distributions for these and similar quantities. The 
parameter vector x(k) changes with time and h is a non-linear 
function representing a performance model such as a Queuing 
Network Model (QNM) or Layered Queuing Model (LQM). 
Within the kth time interval we assume that the system is 
effectively in a steady state, with a constant parameter vector x(k). 

To model the random variation of x(k) over time, we assume that 
x(k) evolves according to some law which in general could be 
written x(k+1) = (x(k), x(k-1), ..., x(k-+1), x(k)) where x is an 
independent random vector and is the maximum lag.  This 
defines x as a discrete-time random process. Here we will consider 
each element xi of x to be governed by an approximate time-
varying auto-regressive model of order  

xi(k+1) =   



 1

 g+ (-1)(k) xi(k+1-)  + x,i(k),  i = 1, …, n          (1) 

where the AR weights are gathered in a vector g, in which the ith 
group of  elements gives the AR weights for past values of xi.  

The trend model may change over time, and to represent this g is 
modeled by a random walk defined by: 

g(k+1) = g(k) + g(k) (2) 

where g is an independent normal process. Together, x and g are 
combined in a state vector  of size 2L, where L=nμ:  

T(k) = (xT(k), xT(k-1), ... xT(k-+1), gT(k))                        
(3) 

and the state-transition equations (1) and (2) can be expressed as 

(k+1) = f((k)) + (k)) (4) 

where (k)T = (x(k)T, 0, 0, ..., 0, g(k)T).  
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The AR model (1) is expressed by the first n state equations as:  

i(k+1) = =1 to   n + i -1)+ (k) n(-1)+i(k); i = 1, …, n    

and the time-delayed values of x are included by equations of the 
form i+n (k+1) = i+n(-1)(k) , for i = 1, …, n and  = 1, …,  

Then the assumed time evolution of the performance model is 
described by the random process (4) together with: 

x(k+1) = Sel((k+1)) = the first n elements of (k+1)            
(5) 

y(k+1) = h(x(k+1)). 

Sel() is a selector function that returns the first n elements of any 
larger vector. h(x) is the performance model calculation. Equations 
(4), (5) describe a nonlinear model because f(.) and h(.) are 
nonlinear functions of (k).  

2.1 State-transition Jacobian Matrix 
The state-transition function in (4) is bilinear, that is it is linear in 
each component of (k). Thus it can be written in the form  

(k+1) = F((k)) (k) + (k),  

with a matrix F((k)) that has terms that are linear in . The 2L x 
2L matrix F((k)) is (remember, L = n): 

F((k))=  (6) 

 

 

 

 

 

 

in which the upper left quadrant of F has x blocks of size nxn 
and the submatrices G*i((k)) depend on the AR coefficients for 
xi(k+1)). Putting in the equivalent AR parameters g, we see that:  

G*i ((k)) = diag(g(i-1)+τ(k)) , τ = 1, …, and i = 1, …, n 

The estimator below uses the Jacobian or sensitivity matrix of  
f((k)), denoted by A((k)) but for brevity written as A(k): 

A(k) = ∂f((k))/∂, = F((k)) + ∂F((k))/∂.                   (8) 

The matrix A(k) is obtained from (8), as:  

A(k) = [   G*1(k)   G*2(k)               .....       G*(k)     X**(k) (8) 

           Inxn         0nxn         .....      0nxn        0nxn        0(L-1)xL   

            0nxn        Inxn    .....           0nxn        0nxn       

                                         ........................... 

            0nxn        0nxn   .....            Inxn        0nxn       

            0Lxn        0Lxn  .....             0Lxn        0Lxn       ILxL ] 

where X** is a nxL matrix, all zeros except for these entries: 

     X**i,j(k) = (i-1)+j(k) = xi(k-j + (i-1)) ,   i = 1, …, n; (i-1)+1 < 
j < i 

That is, the ith row contains a subvector of the -1 past values of 
xi, which are the derivatives of xi(k) with respect to the AR 
weights. 

2.2 Some Special cases 
No Trend:  Without dependence on the past, there is no g. Each xi 
is an independent random walk, xi (k+1)= xi(k) + i(k), making 
A(k) = I (as used in [28]). This assumes the least about the nature 
of the parameter change from one step to the next, and in particular 
it does not model any trends that extend over multiple steps. 

One Parameter, First Order AR Forecast: For one estimated 
parameter x(k), a first-order AR model x(k+1) = g(k) x(k) + 1(k), 
and a random walk for g(k), the state model is: 

1(k+1) = x(k+1) = g(k) x(k) + 1(k) = 2(k) 1(k) + 1(k) 

2(k+1) = g(k+1) = g(k) + 2(k) = 2(k) + 2(k) 

The sensitivity matrix A is: 

A = [2       

          0      1] 

One Parameter, Second Order AR Forecast: For a single estimated 
parameter and trend model x(k+1) = g1(k) x(k) + g2(x(k-1)) + 1(k), 
the state model is: 

1(k+1) = x(k+1) = g1(k) x(k) + g2(k) x(k-1) + 1(k)  

                             = 3(k) 1(k) + 4(k) 2(k) + 1(k) 

2(k+1) = x(k) = 1(k) 

3(k+1) = g1(k+1) = g1(k) + 3(k) = 3(k) + 3(k) 

4(k+1) = g2(k+1) = g2(k) + 4(k) = 4(k) + 4(k) 

The sensitivity matrix A(k) is: 

A(k) = [3(k)  4(k)  1(k) 2(k))  =    [g 1(k)  g 2(k)  x (k)  x(k-1) 

         1        0         0        0                1        0         0        0 

         0        0         1        0                0        0         1        0    

         0        0         0        1    ]           0        0         0        1  ]  

3. TRACKING FILTER WITH AR 

PARAMETER FORECASTING 
The tracking filter assumes a known covariance matrix Q(k) for 
(k) (see [24] for how to determine Q). The measured performance 
values z(k) can reasonably be assumed to include unbiased 
independent normal errors of measurement v(k) with a known 
covariance matrix R(k) (found from sample measurements): 

z(k) = y(k) + v(k),    Cov(v(k)) = R(k) (9) 

R may not in fact be constant in time, this is discussed in [24]. 

Estimation of x and y requires an Extended Kalman filter (EKF) 
because the state change f in equations (4)(5) and the output 
function h are both nonlinear. The EKF is described in [3][10]. 
The EKF estimator for y(k) is given by the following steps, in 

which ̂ (k) and ŷ(k) are the current estimates of the state  and 

G*1((k))     .....              G*((k))   

 Inxn      0nxn     .....   0nxn      0nxn        
 
 

 0nxn      Inxn      .....  0nxn      0nxn     

             ........................... 

 0nxn       0nxn   .....     Inxn     0nxn         

0LxL 

 

                         0LxL                 ILxL  
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the performance value y, found after processing the measurements 
z(k).  

Step 1. project the state one step ahead and select out the projected 
performance model parameters: 

 ̂¯(k+1) = f(̂ (k)) = F(k) ̂ (k) 

x̂¯(k+1) = Sel(̂¯(k+1))      (select the first n elements) 

 Step 2. project P(k+1), the estimated covariance matrix for the 
estimates of : 

P¯(k+1) = A(k+1)P(k+1)AT(k+1) + Q(k+1) 

 Step 3. compute the Kalman gain K(k+1) as: 

K(k+1) = P¯(k+1)H(k+1)T(H(k+1)P¯(k)H(k+1)T + R(k+1) )-1 

 Step 4. using the measurement z (k+1), correct the state vector, 
select the parameters, and find the performance prediction: 

̂(k+1) = ̂¯(k+1) + K (k+1)( z(k+1) – h( x̂¯(k+1)) ) 

x̂(k+1) = Sel(̂(k+1))    (parameter estimates) 

ŷ(k+1) = h(x̂(k+1))      (performance calculations) 

  Step 5. correct the error covariance P k+1: 

P (k+1)=(I - K(k+1)H(k+1)) P¯(k+1)  

In these steps,  

 the matrix A(k) is the Jacobian of f(k,) as derived above, 

evaluated at ̂(k). 

 the matrix H(k) is the Jacobian of h(x) evaluated at x̂(k).  

The optimal predictor x̂(k+j|k) for values j steps ahead from 
step k applies the projection step 1,  j times [10]: 

̂¯(k+j|k) = F(k) ̂¯(k+j-1|k), j = 1, 2, 3... 

̂¯(k|k) = F(k) ̂¯(k),  

x̂¯(k+j|k) = Sel(̂¯(k+j|k))       (10) 

Without the trend modeling, x̂¯(k+j|k) = x̂(k). 

4. A TRACKING EXPERIMENT 
Our research uses a layered queueing network (LQN) performance 
model, a kind of extended queueing network which explicitly 
includes attributes of service systems. Figure 1 shows a diagram of 
an example of an LQN. There are hardware servers or processors 
(shown as ovals) and software servers called tasks (shown as bold 
rectangles, with attached rectangles called entries describing their 
classes of service). Tasks and processors are labeled to show their 
multiplicity, e.g. (100), entries are labeled to show their processor 
demand, e.g. [50 ms], and arrows indicating requests made by one 
entry for service by another are labeled by the mean number of 
requests, e.g. (0.4). LQNs are described in [17][21] and references 
to applications may be found in [5]. 

The tracking parameters are those three parameters, i.e. xT = (Sd, 
Sw, Z) and n = 3. The measurements include the response times and 

cpu utilizations of the three related components, and the 
throughput of the system. 

The performance measures taken from the simulation were: 

z1 = response time of retrievePage, as seen by the Users 

z2 = response time of dbOp 

z3, z4 = processor utilizations of WebServer and Database, 
respectively 

z5,6 =  throughput of WebServer and Database, respectively 

 

WebServer retrievePage 

[Sw ms] 

Database dbOp 

[Sd ms]
Net 

(delay)

netdelay 

[50 ms] 

diskOp 

[15 ms] 

DDisk 

NetP 

(physical) 

WSProc 

DiskProDBProc 

User  

(100) 

requestPage 

[thinkTime=Z s.]

(host) 

Workstations 

(0.4) (0.2) 

(host) 

(host) (host) 

(1) 

(1) 

(host) 

  

Figure 1.  The LQN model of a web server system 

and these were measured as averages over a step. The step length 
was chosen so the estimation errors in the mean values gave a 95% 
confidence of no more than 5% of the mean value, across all the 
estimates in a trial experiment. 

4.1 Case 1: Periodic Trend Variation 
The web server system shown in Fig. 1 was simulated with a 
periodic variation imposed on the three parameters which are 
shown by symbols: the user think time (Z) and the execution 
demands of the web server (Sw) and the database server (Sd). 

        x =  (Sd, Sw, Z) (10’) 

 Sd = 20 + 10 cos(kπ /50)  ms 

 Sw = 25 + 15 sin(kπ /50 - π / 2)  ms 

 Z = 5000 + 1000sin(kπ /250)   ms 

This made Sd vary from 10 to 30 and Sw vary from 10 to 40 in a 
cycle of 100 steps, and Z to vary from 4000 to 6000 with a cycle of 
500 steps. The CPU utilization of the WebServer is up to 0.7.  

The average values of measurements have a sampling error due to 
the finite step length, which gives the measurement errors v(k) in 
(9). The variance matrix R was made a diagonal matrix (assuming 
independent sampling errors) and step size was chosen so its 
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entries correspond to a 95% confidence interval which is about  
5% of the mean: 

Rii = ((95% confidence interval half-width)/1.96)2   (11) 

A first-order autoregressive model was assumed for the time-
variation of x(k) = (x1(k), x2(k), x3(k))T, of the form 

xi(k+1) = gi(k) xi(k) + i(k),  i = 1, 2, 3 

Then the state-transition matrix F is 

F= [G*3x3  03x3 

       03x3     I3x3 ] 

where  

G*3x3 = diag (g1(k), g2(k), g3(k) ) 

During an increasing trend of xi(k), gi(k) will be estimated as 
greater than 1, and in a decreasing trend, less than 1.  

In the tracking filter, the covariance matrix Q(k) was a diagonal 
matrix set according to:  

Qii = (Qfac * xi(0))2   (12) 

with default value of Qfac = 0.02. xi(0) is the initial value of the i-
th parameter, where xT(0)= [30, 10, 5000]. This models a standard 
deviation of i which is about 0.02 times the initial value of 
parameter xi. It prepares the filter for substantial parameter 
changes, but significantly less than the current parameter value. 
Various values of Qfac were used to evaluate their impact. 

The output function h(x) was the LQN solution for the model with 
parameter values x. It was found by applying the LQNS solver [5] 
to the LQN with the estimated parameters. 

The tracking and prediction errors found by simulation 
experiments will be summarized using the measures  

 MARE (mean absolute relative error), for tracking and  

 fMARE (forwarding looking MARE), for prediction,  

We first define the j-steps-ahead prediction of the parameters x and 
the performance y as follows: 

̂ (k+j|k) = prediction of (k+j) based on data up to step k. 

                = F(k) ̂ (k+j-1|k) 

̂ (k+0|k) = ̂ (k) 

x̂ (k+j|k) = Sel(̂ (k+j|k)) 

y (k+j|k) = prediction of y(k+j) based on data up to step k.  

                = h(x̂ (k+j|k) ) 

For errors in performance prediction over a trace of K steps, 
MARE(zi) for the i-th measurement component  zi  is defined as 

)(/|)()(|)/1()(
1

kzkzkyKzMARE i

K

k iii  
  

For  j-steps-ahead predictions, fMARE(zi, j) is defined as  

)(/|)()|(|)/1(),(
1

jkzjkzkjkyKjzfMARE i

K

k iii   

 
Similarly, for the model parameters xi: 

  )(/|)()(ˆ|/1)(
1

kxkxkxKxMARE i

K

k iii  


 

  )(/|)()|(ˆ|/1),(
1

jkxjkxkjkxKjxfMARE i
K

k iii   
 

4.2 Results for Slow Sinusoidal Variation 
The system was simulated with the slow sinusoidal variation of 
parameters as in Eq (10’) above, and the three parameters and three 
AR coefficients were tracked. Figure 2 shows a trace of the Sd, and 

Sw parameters and their tracked values. Tracking is excellent. 
Remember that, although the parameter variation is deterministic, 
the measurements have errors due to statistical sampling, so the 
estimator must filter these errors.  

Real and Tracked Service Demands (Qfac = 0.02)

0
5

10
15
20
25
30
35
40
45

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Step Sequence (Step 1 - 100)

S
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 D
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d

s

Real Database Demand
Tracked Database Demand
Real WebServer Demand
Tracking WebServer Demand

 
Figure 2.  Real and tracked service demands (Qfac = 0.02) 

Figure 3 and 4 show 3-step predictions of service demands and the 
user response time against the future simulated values. Clearly the 
errors are small and the predictions are good, with slightly larger 
errors as the trend reverses, at the peak and trough of the curve. 

 
Figure 3.  Real and predicted service demands (Qfac = 0.02) 
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Figure 4.  Measured and predicted response time (Qfac = 0.02) 

Figure 5 shows the estimates found for the autoregressive 
coefficients g as well, showing how they oscillate around 1.0 as the 
trend goes from increasing to decreasing and back.  

 

Figure 5.  Tracked trend parameters gi (Qfac = 0.02) 

Table 1 shows quantitative results (MARE and fMARE) for the 
tracking and prediction errors. The response time error (MARE) is 
less than 1% for tracking, and for 3-step prediction (fMARE) the 
trend estimation improves the quality nearly 20% (from nearly 
6.7% error without trend tracking, down to 5.5%). Thus, trend 
tracking is effective. The parameter tracking accuracies show 
similar relationships, with smaller relative errors. The table also 
shows that the improvement for 3-step prediction is more 
significant than that for 1-step prediction. 

An alternative way to predict the performance for some steps 
ahead is to extrapolate from the recent filter estimates with no 
prediction of the hidden parameters. This was used effectively to 
predict, in lab-scale experiments reported in [24]. We used linear 
regression over the 10 preceding arrival rate estimates to obtain the 
prediction for the arrival rates with an external predictor. These 
predicted arrival rates were then used as input for the LQM, that is, 
the function h(x), to calculate the response time for 3 steps ahead. 
The errors of the external predictor and of integrated one (proposed 
by this paper) are shown in Table 2. By using our proposed 
integrated predictor, the prediction errors are reduced by about 
50%, slightly smaller for one step, larger for three steps (Table 2, 
line 1). Thus on relatively clean data and slow parameter variation, 
the separate regression is worse. It is considered again in Section 
4.5 and 4.6 below, for other cases. 

TABLE 1.  The Mean Absolute Relative Errors of 
estimation and prediction, for Qfac=0.02 

 
fMARE  

1 step ahead  
fMARE   

3 steps ahead What is 
Est./Pred 

 MARE
no trend 
tracking

trend 
tracking 

benefit 
% 

no trend 
tracking

trend 
tracking

benifit 
% 

User Resp. 0.0077 0.03039 0.02900 4.5872 0.06753 0.05419 19.7459

Sd 0.0053 0.02734 0.02268 17.0690 0.06808 0.03709 45.5273

Sw 0.0140 0.03489 0.02316 33.6362 0.08776 0.03984 54.6021

TABLE 2.  fMARE for errors in user response time 
predicted by linear regression over the 10 previous estimates 

 
Compare: Integrated estimator vs 
separate regression (Qfac = 0.02) 

Case and Section 
fMARE,  

1 step 
fMARE,  
2 steps 

fMARE,  
3 steps 

1. Sinusoidal Demand, 
Section 4.2 0.029 vs 0.061 0.041 vs 0.079 0.054 vs 0.098

2. Simplified Model, 
Section 4.5 0.032 vs 0.068 0.044 vs 0.091 0.056 vs 0.114

3.Auto Regressive 
Workload, Section 4.6 0.013 vs 0.029 0.016 vs 0.038 0.022 vs 0.047

TABLE 3.  Errors in response time prediction, when Qfac 
is varied 

 Errors in tracked and predicted User response time 

  No trend tracking (A = I) With trend tracking (A varying)

QFac MARE
fMARE
(1 step)

fMARE
(2 steps)

fMARE 
(3 steps) 

fMARE 
(1step) 

fMARE 
(2 steps) 

fMARE
(3 steps)

0.001 0.0185 0.0323 0.0505 0.0707 0.0254 0.0317 0.0401 

0.005 0.0118 0.0301 0.0475 0.0673 0.0252 0.0330 0.0402 

0.02 0.0077 0.0304 0.0478 0.0675 0.0290 0.0414 0.0542 

0.1 0.0064 0.0307 0.0479 0.0678 0.0313 0.0465 0.0626 

0.5 0.0063 0.0311 0.0491 0.0696 0.0314 0.0470 0.0629 

TABLE 4.  Errors in response time prediction, with 2nd 
order AR trend applied to various cases, and Qfac = 0.02 

Errors in tracked and predicted User response time 

 
fMARE  

1 step ahead  
fMARE  

3 steps ahead 

Case and Section MARE
no trend 
tracking 

trend 
tracking 

benefit 
% 

no trend 
tracking

trend 
tracking

benefit 
% 

1. Full model of Sec. 
4.2 0.0069 0.0302 0.0262 13.27 0.0674 0.0438 35.01 

2. Fast change 
workload, Sec 4.3 0.0055 0.0546 0.0251 54.04 0.1594 0.0824 48.29 

3. Fast change 
workload, Sec 4.3, 

(first order AR trend, 
to compare) 0.0059 0.0553 0.0242 56.32 0.1605 0.0939 41.46 

4. Autoregressive 
random workload 
trace of Sec 4.6 0.0067 0.0152 0.0125 17.66 0.0325 0.0203 37.44 
5. AR random 

workload Sec 4.6, 
(first order AR trend, 

to compare) 0.0070 0.0151 0.0131 13.30 0.0325 0.0216 33.58 
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The choice of the drift variance parameter Qfac for the filter needs 
to be examined. With a small value, the tracked and predicted 
values are smoother, but if it is too small the filter becomes 
sluggish. When the value of Qfac was varied over a wide range, 
from 0.001 to 0.1, the results for the performance prediction were 
as shown in Table 3. The results do vary, and there appears to be a 
shallow optimum around Qfac = 0.005. Thus for this system our 
default value of 0.02 overestimates the change in parameter values 
over a single step. Reflection confirms this is the case, since the 
largest change in a parameter (at the point where the sinusoid is 
zero) is less than 1% of the parameter value. Still, a larger value 
such as 0.02 is a sound defensive strategy against more rapid 
changes. 

4.3 Rapid Sinusoidal Variation 
It is the separation of the intermediate time scale (a few steps) and 
the long time scale in which the sinusoidal variation is imposed (a 
period of 100 steps in Section 4.1) that makes it possible to track 
the trends. The rate of variation of the parameters in the simulation 
was speeded up by a factor of 2.5, giving a period of 40 steps. 

The errors are larger for the faster changes, as shown by line 3 in 
Table 4. This rate of change begins to violate the separation of the 
“intermediate” time scale (at which the trend can be approximated 
by the AR model) of the actual variation of x.  

4.4 A Second-order Time-Series Model 
The first trend model used a first-order AR model for each of Sw, 
Sd, and Z. Here we use the same data as in Section 4.2 but employ 
a second-order  AR model, giving: 

x = [Sd, Sw, Z]T 

xi(k+1) = g(+1 xi(k) + g( xi(k-1) + i(k),  i = 1,..,3; 

 

When the six autoregressive coefficients are gathered into the 
vector g, we obtain 

(k)T = (x(k)T, x T(k-1), gT) 

and in the Kalman Filter, the state projection equation (k+1) = 
F(k)(k) has the 12x12 matrix F: 

F(k) = [G*3x6                   03x6 

             I3x3       03x3         03x6 

             06x6                      I6x6    ] 

where 

G*3x6=[g1(k)  0       0      g2(k)  0          0   

            0      g3(k)    0       0     g4(k)      0          

            0        0     g5(k)    0       0       g6(k)] 

and I and 0 are the identity and null matrix. 

The sensitivity matrix A is: 

A(k) =      [ G*3x6                X*3x6 

                  I3x3      03x3         03x6 

                  06x6                     I6x6    ] 

where 

X*(k) = [ x1(k)   x1(k-1)     0         0         0         0 

                  0         0          x2(k)   x2(k-1)  0         0 

                  0         0             0         0      x3(k)    x3(k-1)] 

Table 4 shows the errors in response time prediction when the 2nd 
order model was applied to all the cases in the Section. Comparing 
row 1 to Table 1 where the first order model was used, the second 
order model performs always better. This is also true for the other 
cases in the paper. Because some the changes are sinusoidal and a 
sinusoid is exactly second order in dynamics, there is no surprise 
the second order model provides better performance. For 3-step 
prediction, the improvement of using 2nd order model is 30% - 
50%. 

4.5 A Simplified Performance Model 
The question of how complex a performance model should be is 
always important. In general we would prefer to work with the 
simplest model that fits the data.  

We can address this question by considering a simplified model for 
the Web Server. The simulation data is the same as in Section 4.2, 
but the performance model is simplified as shown in Figure 6, with 
just the WebServer. That is, the delays due to the database service 
and disk are folded into the service time of the web server in this 
model. 

In the simplified model, the tracking parameters are x = [Z, S]. The 
measurement set z consists of the response time and throughput of 
the web server only. The experiment in this part is to investigate if 
a simplified model is good enough to predict the future response 
time, when the same simulated data trace is presented to the filter. 

 

WebServer retrievePage 

[S ms] 

WSProc 

User  

(100 users) 

requestPage 

[thinkTime=Z s.] 

(host) 

Workstations

(host) 

(1) 

 

Figure 6.  The simplified LQN model of a web server system 

Comparing Table 5 to Table 3 shows that the performance 
prediction error (fMARE) is a little larger with the simplified 
model, for all values of Qfac. Thus, the additional detail in Section 
4.2 is probably justified.  

The question of whether the additional detail is significantly better 
should be decided by a statistical test on the residuals for the two 
models. The calculation requires the sums of squares of the 
residuals for the performance prediction (the residuals are the 
amounts in the absolute value expression used in defining MARE 
or fMARE). If SSE1 is the (larger) sum of squares for the smaller 
model in this section (with n1 estimated parameters), and SSE2 is 
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for the more elaborate model reported in Section 4.2 (with n2 
estimated parameters), and the errors are assumed normally 
distributed and independent, then an approximate F statistic for the 
fit is 

F = ((SSE1-SSE2)/(n2 - n1)) / (SSE2/no. of data points - n2 -1) 

with degrees of freedom (n2 - n1, data points - n2 -1). The results 
for tracking (zero steps ahead) with Qfac = 0.02 and 990 data 
points in the trace gave: 

SSE1 = 8.472 with n1 = 2, SSE2 = 7.732 with n2 - n1 = 3. 

F = (SSE1-SSE2/1)/(SSE2/988) = 94.5 

while for the three-step predictions, they gave: 

SSE1 = 5.956, SSE2 = 4.559 

F = 302.7 

The critical value at the 5% level and (1, 988) degrees of freedom 
is 3.84. If F>3.84 (as in both of these cases) we can reject the 
hypothesis that the simpler model is as good as the more elaborate 
one, with 95% confidence 

TABLE 5.  The quality of prediction in the simplified 
model  

 Errors in tracked and predicted User response time 

  No trend tracking (A = I) 
With trend tracking (A 

varying) 

QFac 
 

MARE 
 

fMARE 
(1step) 

fMARE 
(2 steps) 

fMARE 
(3 steps) 

fMARE 
(1step) 

fMARE
(2 steps)

fMARE 
(3 steps)

0.001 0.0254 0.0353 0.0524 0.0718 0.0315 0.0353 0.0403 

0.005 0.0293 0.0367 0.0517 0.0695 0.0310 0.0367 0.0439 

0.02 0.0354 0.0421 0.0552 0.0720 0.0320 0.0420 0.0553 

0.1 0.0387 0.0449 0.0576 0.0738 0.0323 0.0449 0.0622 

0.5 0.0394 0.0455 0.0581 0.0743 0.0323 0.0455 0.0639 

 

Since the assumptions required for the F-test cannot be 
substantiated for this kind of estimation, its application is an 
approximation and the conclusion is only tentative. However, these 
results indicate that the simpler model is very probably less 
accurate, and the conclusion is stronger for the predictions, than for 
the tracking. That indicates that the trend modeling is effective. 

4.6 Random Workload 
This case replaces the sinusoidal variation of the arrivals by a 
randomly varying rate of arrivals. A somewhat smooth random 
arrival sequence was generated by the third-order AR model 

Arr(k+1)=2.1Arr(k) -1.43 Arr(k-1) +0.315 Arr(k-2) +0.015 (k) 

(with  being a normal independent process of unit variance). This 
rate in arrivals/ms was scaled by a factor of 0.01 and then biased 
by a constant 0.01 so as to always be positive. A closed workload 
with 1000 users was assumed. 

The think time Z(k) was derived from the sequence using: 

 N = 1000 = assumed size of the pool of users 

 Z(k) = N/Arr(k) = think time that would give Arr(k) if the 
response time is much less than Z(k)  

Since the mean think time Z(k) is around 100000 ms, which is 
much bigger than the response time (mean value < 300ms), the 
simulated arrival rate is close the Arr(k). 

This series was used as input to the Web Server simulation, with 
sinusoidal variation of the demand parameters Sw and Sd as in 
Section 4.2, and the estimation was carried out as before. With a 
first-order AR trend model, the results in Figure 6 (and in Table 4, 
line 5) were obtained. 
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Figure 7.  Results for tracking and predicting with autoregressive 
trace 

Generally the tracking results were excellent, similar to the results 
in Section 4.2. The second-order AR trend gives even better results 
(Table 4, line 4). 

4.7 Separate Regression for Prediction 
Over the ensemble of cases described here, the question of separate 
trend prediction by regression on the history of estimates can be 
revisited. Table 2 includes results for the cases considered later in 
the section. The integrated predictor is able to predict the trend of 
the service demands in addition to the arrival rates, thus it is not 
surprising that it performs better than a separate predictor. 

4.8 Validation on a Real System 
Trade 6 benchmark application [29] is a web based end-to-end 
benchmark and performance sample application developed by 
IBM. It implements the basic functions for stock trading. By 
accessing a servlet in the application, different types of user 
requests will be generated randomly with specific probabilities 
according to a benchmark. We deployed the Trade 6 application on 
a platform consisting of IBM WebSphere® Application Server 
version 6.1 and IBM DB2® Universal Database (DB2 UDB) 
Version 8.2. WebSphere and DB2 run on two virtual machines 
using CentOS 5 as the OS.  The structure of the performance 
model of the system is similar to the model shown in Figure 1, 
while the network delay and disk operation are not considered in 
this case.  

We used a workload generator that generates a traffic that is 
common to most e-commerce website. In the experiment, the 
number of users increases gradually to a peak, then decreases 
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gradually to a minimum number in a repetitive pattern that reflects 
the daily usage.  

The run time performance metric such as the response times, 
invoke rates, CPU utilizations etc are collected from WebSphere 
application server using Java Management Extensions (JMX) 
technology. The sampling interval is 60 minutes.  

The fMARE of the tracking with 1 step ahead trend prediction is 
0.0245, while the fMARE of the tracking without trend is 0.0306. 
The accuracy improves by 20%.  For 3 steps ahead prediction, the 
accuracy improves by 37.5% (0.0474 vs 0.0759). The findings 
are consistent with those found through simulation.  

5. CONCLUSIONS 
This work represents the first attempt to combine on-line tracking 
of performance parameters with estimate of their current short-
term trends, in the same estimator. This makes it possible to 
estimate trends for hidden parameters, that is parameters that are 
fitted but not observed directly. 

The results show that an autoregressive model can successfully be 
fitted to the time variation of hidden parameters using an Extended 
Kalman Filter estimator. The autoregressive model is used to 
predict the parameter values forward in time, provided the local 
trends change slowly enough. 

Integrated tracking of trend coefficients provides much better 
predictions of performance measures such as response time, than 
separate regression on the history of the tracking estimates or the 
observations themselves. However its unique capability is, to 
predict hidden parameter values. 

Experiments with smoothly varying parameters and measurement 
errors compared different filter settings, and investigated the effect 
of variation speed and model complexity. Prediction errors of a 
few percent in performance measures, and somewhat smaller 
errors in parameter values, were obtained. The predictions were 
not very sensitive to the filter disturbance variance setting (here 
represented by Qfac). 

Experiments with large-amplitude random swings in the arrival 
rate showed an equal capability to make predictions. With long-
range dependent variations in the arrival rate, the filter could not 
predict arrivals accurately in all cases but recovered quickly from 
momentary errors, indicating a useful robustness. 

As described in [28] there is condition for convergence of the 
Kalman Filter, on an identifiability matrix:  

rank [HT, (HA)T, … , (HAi)T, … , (HAn-1)T] = n.  

In estimators without trend tracking (as considered in [22][24][28]) 
this condition requires that there be as many measurements as there 
are parameters to be estimated. With trends there are more 
quantities to estimate, but an equal number of additional 
measurements are not required because of the relationships of 
estimates across time, through the trends. The condition above 
should be tested, and may still fail if the model is not sensitive to 
some parameter, or is sensitive only to a linear combination such 
as the sum of two parameters. This sometimes limits the amount of 
system detail that can be modeled and calibrated. 

There is a significant limitation to tracking parameters with a trend 
predictor integrated in the estimator: by assuming gradual trends in 

parameter values, it makes the filter less agile. There is a necessary 
separation of time-scales between the parameter variation and the 
sampling steps for the estimator. In our experiments stable tracking 
required that a trend should continue for one the order of steps. By 
contrast, in [24] an estimator without trend tracking was shown 
capable of tracking large jumps in value separated by just a few 
steps. The difference is that the filter in [24] assumed a random 
change in parameter values at every step, and the only smoothness 
assumption was in the size of the assumed random change. 

This agility limitation points up a potential conflict in the goals of 
tracking: a goal in a smoothly varying regime, to home in on 
excellent tracking with a capability to make predictions by using 
trend tracking, versus a different goal in a chaotic regime, to try to 
keep up with rapid changes. The smoothly varying regime is an 
important one for routine business operations, and is able to 
accommodate and predict large changes in behaviour provided 
they are not too rapid. In those situations the agility limitation is 
not a serious disadvantage. 
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