

Integrated Estimation and Tracking of Performance Model
Parameters with Autoregressive Trends

Tao Zheng

Dept. of Systems and Computer
Engineering

Carleton University
Ottawa, Ontario, Canada

zhengtao@sce.carleton.ca

Marin Litoiu

Dept. of Information Science
York University

Toronto, Ontario, Canada

mlitoiu@yorku.ca

Murray Woodside

Dept. of Systems and Computer
Engineering

Carleton University
Ottawa, Ontario, Canada

cmw@sce.carleton.ca

ABSTRACT
Adaptive management of a software service system can take
advantage of a performance model which can predict the effect of
proposed changes, before they are deployed. As the system varies
over time the model parameters can be tracked by an estimator
such as a Kalman Filter, so that decisions can be updated. The
filter is valuable when parameters are “hidden” and cannot be
directly measured without excessive cost (as is usually the case
for the CPU time of a service). Because there may be significant
delays in some management control actions (especially in
deploying a new replica of a service), it is also important to be
able to predict the changes ahead somewhat in time, that is, to
predict the trends. The trend predictor itself needs to be estimated
from observed trends in the model parameters. This work uses an
autoregressive model for trend prediction and integrates it with
the parameter estimator, in a single Kalman Filter, using auxiliary
states for the parameter evolution process. This paper describes
how the trend model is constructed, and evaluates its
effectiveness. It compares the overall performance predictions to a
simpler trend predictor using linear extrapolation of the fitted
parameter time-series, which turns out to be almost as good. The
approach is validated on a real system running a benchmark web
application.

Categories and Subject Descriptors
D.4.8 [Performance]: trend prediction, tracking, queuing theory,
simulation

General Terms
Experimentation, Measurement, Performance and Theory.

Keywords
Performance model, Layered Queueing, Autoregressive model,
Tracking, Estimation, Extended Kalman filter and Simulation

1. INTRODUCTION
Large-scale service systems are dynamic and must adapt to
maintain adequate quality of service (QoS) [14][4][11] under
changing operating conditions. Changes occur in traffic volumes
and in the operational profile of services, due to shifting needs of
users and to the replacement of some services by alternatives in a
service-oriented architecture. Adaptation may require provisioning
of services, allocation of storage or communications resources, or
re-tuning of a server. Adaptation decisions may be based directly
on system measures, with a change triggered by the passing of a
threshold, or by considerations involving a performance model
[15][16], which is assumed here. The performance model is
initially derived from the system specification (e.g. [23]) or from
other knowledge of the system.

A performance model provides a powerful means to evaluate
complex decisions, such as trading off QoS in one service against
another, or considering additional buffer space versus additional
processing power. However, in a dynamic system, the performance
model can quickly become outdated if it is not adapted
automatically to keep up with the changes in the system parameters
or structure. This requires a run time observation of the changes in
system parameters. However, some performance parameters may
not be observed directly because it is too expensive or too
disruptive (an example is the CPU demand of an operation).
Because they are not observed, they called here hidden. In [22][24]
such parameters were estimated indirectly through their effect on
the performance calculation, by an Extended Kalman Filter (EKF)
estimator, which is a kind of Bayesian estimator [3][10].
Combining direct observation with estimation of hidden
parameters, as described in [15][22][24], yields an up to date
tracked model. Management using this model, to make decisions
by evaluating the system performance under different options was
shown to be effective in [24].

In many practical situations, there is a substantial delay in applying
some of the control decisions, particularly in provisioning servers
for a clustered application [6]. In those situations, it is desirable to
also predict the performance forward in time and thus improve the
quality of control. Predictions with no parameter trend model, as
in [22], are simply the value of the current estimate, constant into
the future.

For parameters which are directly measurable (not hidden) there
are simple approaches. In [24][28] the arrival rate of requests
(which was measured directly) was predicted by fitting a straight-
line trend to the measured values, which significantly enhanced the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

157

model predictions for future times. A more sophisticated predictor
such as an autoregressive model [2] could also be applied. In [7]
and [18], diurnal and weekly variations of workload were
represented by a “trend” term derived from recent observations (a
different meaning for “trend”). A term is added from a predictive
time-series model fitted to the residual. This approach is excellent
but it cannot predict hidden parameters and it responds very slowly
(over weeks) to changes in user behaviour.

This paper describes a comprehensive method for predicting the
performance trends of a system with hidden parameters. It
combines a performance model to estimate performance, with an
autoregressive model to predict hidden parameters ahead in time,
with estimation and prediction via an Extended Kalman Filter.

An AR model predicts a future value of a time-series as a linear or
non-linear function of its own past values. The estimation of an AR
model for an observed process is well documented in [2]. It can be
based on regression techniques, or on a tracking filter which can
update the AR model over time. An example of estimation of an
AR model by a Kalman Filter [27] describes tracking changes in
gear vibrations, which were observed by sensors.

In the present work the estimators for the AR trend model and for
the performance model parameters are combined in a single EKF.
The combination greatly improves the prediction of future values,
as will be shown. The approximations that justify the combination
depend on the adequate separation of the two time scales, one for
measuring performance, and the second for time variation of the
parameters.

 Over a measurement interval (called here a step), we assume
the system properties are approximately invariant, with
stationary random processes governing arrivals, execution
demands and user behaviour. This justifies using a stationary
performance model for estimation and prediction, conditional
on values for the parameters.

 Over a longer time scale of several steps, the time-varying
parameters of the system are assumed to be represented by a
stationary autoregressive (AR) process and we will call this
time-variation the local trend (or simply trend) of the
attributes (this trend is in general not linear in time).

1.1 Related work
Trend prediction has an enormous literature; a recent survey is [8].
Autoregressive (AR) and related predictors [2] are the most
successful, and are fitted to measured data by various methods,
including an EKF [27]. Similarly the use of the EKF to estimate
hidden states in dynamic systems has a substantial literature. The
authors are not aware of any previous attempt to combine these, as
in the present work: the EKF estimates the parameters of the
performance part, and also the dynamic trend parameters of the AR
part of the model.

However the resulting estimator is similar to many studies in
dynamic systems in which an EKF is used to estimate the
parameters of the system as well as its states. Compared to such
studies, the performance model parameters are the states, the AR
submodel represents the dynamics, and the performance model is
an “output function” computing outputs (performance measures)
from the states.

An AR trend model is an approximation. Even if the actual process
is not AR, a tracked AR model may be adequate. For example
long-range dependent time series have been shown to be common
in web services requests and responses [1]. There is some evidence
that an AR approximation which adapts to the process may be
satisfactory. In [7] the coefficients of an AR model for arrival rates
in long-range-dependent traffic were tracked, and gave adequate
predictions. In [26], a useful AR model was generated for a long-
range dependent request rate, expressing the rate as a linear
function of its immediate past values, with parameters that
depended on the local average rate. In [13] a fixed function for
diurnal and weekly variations was found, and an AR model fitted
successfully to the residuals. It was capable of predicting over a
few steps of 5 minutes each, but at longer prediction horizons the
long-range dependency become important and the predictions had
low accuracy. Reference [19] considers the selection of the best
order for an autoregressive model.

2. MODELS OF CHANGES IN A SERVICE

SYSTEM
A time-varying performance model will be written as a vector
function y(k) = h(x(k)), for the kth time interval, with changes
occuring between time intervals. In interval k the elements of y(k)
may be average response times, rates or throughputs, and resource
utilizations; the elements of x(k) may be average performance
parameter values such as CPU demands of service operations,
mean storage operations required for a service operation, and
arrival rates of service requests, or they may be parameters of
probability distributions for these and similar quantities. The
parameter vector x(k) changes with time and h is a non-linear
function representing a performance model such as a Queuing
Network Model (QNM) or Layered Queuing Model (LQM).
Within the kth time interval we assume that the system is
effectively in a steady state, with a constant parameter vector x(k).

To model the random variation of x(k) over time, we assume that
x(k) evolves according to some law which in general could be
written x(k+1) = (x(k), x(k-1), ..., x(k-+1), x(k)) where x is an
independent random vector and is the maximum lag. This
defines x as a discrete-time random process. Here we will consider
each element xi of x to be governed by an approximate time-
varying auto-regressive model of order 

xi(k+1) =  



 1

 g+ (-1)(k) xi(k+1-) + x,i(k), i = 1, …, n (1)

where the AR weights are gathered in a vector g, in which the ith
group of  elements gives the AR weights for past values of xi.

The trend model may change over time, and to represent this g is
modeled by a random walk defined by:

g(k+1) = g(k) + g(k) (2)

where g is an independent normal process. Together, x and g are
combined in a state vector  of size 2L, where L=nμ:

T(k) = (xT(k), xT(k-1), ... xT(k-+1), gT(k))
(3)

and the state-transition equations (1) and (2) can be expressed as

(k+1) = f((k)) + (k)) (4)

where (k)T = (x(k)T, 0, 0, ..., 0, g(k)T).

158

The AR model (1) is expressed by the first n state equations as:

i(k+1) = =1 to   n + i -1)+ (k) n(-1)+i(k); i = 1, …, n

and the time-delayed values of x are included by equations of the
form i+n (k+1) = i+n(-1)(k) , for i = 1, …, n and  = 1, …, 

Then the assumed time evolution of the performance model is
described by the random process (4) together with:

x(k+1) = Sel((k+1)) = the first n elements of (k+1)
(5)

y(k+1) = h(x(k+1)).

Sel() is a selector function that returns the first n elements of any
larger vector. h(x) is the performance model calculation. Equations
(4), (5) describe a nonlinear model because f(.) and h(.) are
nonlinear functions of (k).

2.1 State-transition Jacobian Matrix
The state-transition function in (4) is bilinear, that is it is linear in
each component of (k). Thus it can be written in the form

(k+1) = F((k)) (k) + (k),

with a matrix F((k)) that has terms that are linear in . The 2L x
2L matrix F((k)) is (remember, L = n):

F((k))= (6)

in which the upper left quadrant of F has x blocks of size nxn
and the submatrices G*i((k)) depend on the AR coefficients for
xi(k+1)). Putting in the equivalent AR parameters g, we see that:

G*i ((k)) = diag(g(i-1)+τ(k)) , τ = 1, …, and i = 1, …, n 

The estimator below uses the Jacobian or sensitivity matrix of
f((k)), denoted by A((k)) but for brevity written as A(k):

A(k) = ∂f((k))/∂, = F((k)) + ∂F((k))/∂. (8)

The matrix A(k) is obtained from (8), as:

A(k) = [G*1(k) G*2(k) G*(k) X**(k) (8)

 Inxn 0nxn 0nxn 0nxn 0(L-1)xL

 0nxn Inxn 0nxn 0nxn

 0nxn 0nxn Inxn 0nxn

 0Lxn 0Lxn 0Lxn 0Lxn ILxL]

where X** is a nxL matrix, all zeros except for these entries:

 X**i,j(k) = (i-1)+j(k) = xi(k-j + (i-1)) , i = 1, …, n; (i-1)+1 <
j < i

That is, the ith row contains a subvector of the -1 past values of
xi, which are the derivatives of xi(k) with respect to the AR
weights.

2.2 Some Special cases
No Trend: Without dependence on the past, there is no g. Each xi
is an independent random walk, xi (k+1)= xi(k) + i(k), making
A(k) = I (as used in [28]). This assumes the least about the nature
of the parameter change from one step to the next, and in particular
it does not model any trends that extend over multiple steps.

One Parameter, First Order AR Forecast: For one estimated
parameter x(k), a first-order AR model x(k+1) = g(k) x(k) + 1(k),
and a random walk for g(k), the state model is:

1(k+1) = x(k+1) = g(k) x(k) + 1(k) = 2(k) 1(k) + 1(k)

2(k+1) = g(k+1) = g(k) + 2(k) = 2(k) + 2(k)

The sensitivity matrix A is:

A = [2 

 0 1]

One Parameter, Second Order AR Forecast: For a single estimated
parameter and trend model x(k+1) = g1(k) x(k) + g2(x(k-1)) + 1(k),
the state model is:

1(k+1) = x(k+1) = g1(k) x(k) + g2(k) x(k-1) + 1(k)

 = 3(k) 1(k) + 4(k) 2(k) + 1(k)

2(k+1) = x(k) = 1(k)

3(k+1) = g1(k+1) = g1(k) + 3(k) = 3(k) + 3(k)

4(k+1) = g2(k+1) = g2(k) + 4(k) = 4(k) + 4(k)

The sensitivity matrix A(k) is:

A(k) = [3(k) 4(k) 1(k) 2(k)) = [g 1(k) g 2(k) x (k) x(k-1)

 1 0 0 0 1 0 0 0

 0 0 1 0 0 0 1 0

 0 0 0 1] 0 0 0 1]

3. TRACKING FILTER WITH AR

PARAMETER FORECASTING
The tracking filter assumes a known covariance matrix Q(k) for
(k) (see [24] for how to determine Q). The measured performance
values z(k) can reasonably be assumed to include unbiased
independent normal errors of measurement v(k) with a known
covariance matrix R(k) (found from sample measurements):

z(k) = y(k) + v(k), Cov(v(k)) = R(k) (9)

R may not in fact be constant in time, this is discussed in [24].

Estimation of x and y requires an Extended Kalman filter (EKF)
because the state change f in equations (4)(5) and the output
function h are both nonlinear. The EKF is described in [3][10].
The EKF estimator for y(k) is given by the following steps, in

which ̂ (k) and ŷ(k) are the current estimates of the state  and

G*1((k)) G*((k))

 Inxn 0nxn 0nxn 0nxn

 0nxn Inxn 0nxn 0nxn

 0nxn 0nxn Inxn 0nxn

0LxL

 0LxL ILxL

159

the performance value y, found after processing the measurements
z(k).

Step 1. project the state one step ahead and select out the projected
performance model parameters:

 ̂¯(k+1) = f(̂ (k)) = F(k) ̂ (k)

x̂¯(k+1) = Sel(̂¯(k+1)) (select the first n elements)

 Step 2. project P(k+1), the estimated covariance matrix for the
estimates of :

P¯(k+1) = A(k+1)P(k+1)AT(k+1) + Q(k+1)

 Step 3. compute the Kalman gain K(k+1) as:

K(k+1) = P¯(k+1)H(k+1)T(H(k+1)P¯(k)H(k+1)T + R(k+1))-1

 Step 4. using the measurement z (k+1), correct the state vector,
select the parameters, and find the performance prediction:

̂(k+1) = ̂¯(k+1) + K (k+1)(z(k+1) – h(x̂¯(k+1)))

x̂(k+1) = Sel(̂(k+1)) (parameter estimates)

ŷ(k+1) = h(x̂(k+1)) (performance calculations)

 Step 5. correct the error covariance P k+1:

P (k+1)=(I - K(k+1)H(k+1)) P¯(k+1)

In these steps,

 the matrix A(k) is the Jacobian of f(k,) as derived above,

evaluated at ̂(k).

 the matrix H(k) is the Jacobian of h(x) evaluated at x̂(k).

The optimal predictor x̂(k+j|k) for values j steps ahead from
step k applies the projection step 1, j times [10]:

̂¯(k+j|k) = F(k) ̂¯(k+j-1|k), j = 1, 2, 3...

̂¯(k|k) = F(k) ̂¯(k),

x̂¯(k+j|k) = Sel(̂¯(k+j|k)) (10)

Without the trend modeling, x̂¯(k+j|k) = x̂(k).

4. A TRACKING EXPERIMENT
Our research uses a layered queueing network (LQN) performance
model, a kind of extended queueing network which explicitly
includes attributes of service systems. Figure 1 shows a diagram of
an example of an LQN. There are hardware servers or processors
(shown as ovals) and software servers called tasks (shown as bold
rectangles, with attached rectangles called entries describing their
classes of service). Tasks and processors are labeled to show their
multiplicity, e.g. (100), entries are labeled to show their processor
demand, e.g. [50 ms], and arrows indicating requests made by one
entry for service by another are labeled by the mean number of
requests, e.g. (0.4). LQNs are described in [17][21] and references
to applications may be found in [5].

The tracking parameters are those three parameters, i.e. xT = (Sd,
Sw, Z) and n = 3. The measurements include the response times and

cpu utilizations of the three related components, and the
throughput of the system.

The performance measures taken from the simulation were:

z1 = response time of retrievePage, as seen by the Users

z2 = response time of dbOp

z3, z4 = processor utilizations of WebServer and Database,
respectively

z5,6 = throughput of WebServer and Database, respectively

WebServer retrievePage

[Sw ms]

Database dbOp

[Sd ms]
Net

(delay)

netdelay

[50 ms]

diskOp

[15 ms]

DDisk

NetP

(physical)

WSProc

DiskProDBProc

User

(100)

requestPage

[thinkTime=Z s.]

(host)

Workstations

(0.4) (0.2)

(host)

(host) (host)

(1)

(1)

(host)

Figure 1. The LQN model of a web server system

and these were measured as averages over a step. The step length
was chosen so the estimation errors in the mean values gave a 95%
confidence of no more than 5% of the mean value, across all the
estimates in a trial experiment.

4.1 Case 1: Periodic Trend Variation
The web server system shown in Fig. 1 was simulated with a
periodic variation imposed on the three parameters which are
shown by symbols: the user think time (Z) and the execution
demands of the web server (Sw) and the database server (Sd).

 x = (Sd, Sw, Z) (10’)

 Sd = 20 + 10 cos(kπ /50) ms

 Sw = 25 + 15 sin(kπ /50 - π / 2) ms

 Z = 5000 + 1000sin(kπ /250) ms

This made Sd vary from 10 to 30 and Sw vary from 10 to 40 in a
cycle of 100 steps, and Z to vary from 4000 to 6000 with a cycle of
500 steps. The CPU utilization of the WebServer is up to 0.7.

The average values of measurements have a sampling error due to
the finite step length, which gives the measurement errors v(k) in
(9). The variance matrix R was made a diagonal matrix (assuming
independent sampling errors) and step size was chosen so its

160

entries correspond to a 95% confidence interval which is about
5% of the mean:

Rii = ((95% confidence interval half-width)/1.96)2 (11)

A first-order autoregressive model was assumed for the time-
variation of x(k) = (x1(k), x2(k), x3(k))T, of the form

xi(k+1) = gi(k) xi(k) + i(k), i = 1, 2, 3

Then the state-transition matrix F is

F= [G*3x3 03x3

 03x3 I3x3]

where

G*3x3 = diag (g1(k), g2(k), g3(k))

During an increasing trend of xi(k), gi(k) will be estimated as
greater than 1, and in a decreasing trend, less than 1.

In the tracking filter, the covariance matrix Q(k) was a diagonal
matrix set according to:

Qii = (Qfac * xi(0))2 (12)

with default value of Qfac = 0.02. xi(0) is the initial value of the i-
th parameter, where xT(0)= [30, 10, 5000]. This models a standard
deviation of i which is about 0.02 times the initial value of
parameter xi. It prepares the filter for substantial parameter
changes, but significantly less than the current parameter value.
Various values of Qfac were used to evaluate their impact.

The output function h(x) was the LQN solution for the model with
parameter values x. It was found by applying the LQNS solver [5]
to the LQN with the estimated parameters.

The tracking and prediction errors found by simulation
experiments will be summarized using the measures

 MARE (mean absolute relative error), for tracking and

 fMARE (forwarding looking MARE), for prediction,

We first define the j-steps-ahead prediction of the parameters x and
the performance y as follows:

̂ (k+j|k) = prediction of (k+j) based on data up to step k.

 = F(k) ̂ (k+j-1|k)

̂ (k+0|k) = ̂ (k)

x̂ (k+j|k) = Sel(̂ (k+j|k))

y (k+j|k) = prediction of y(k+j) based on data up to step k.

 = h(x̂ (k+j|k))

For errors in performance prediction over a trace of K steps,
MARE(zi) for the i-th measurement component zi is defined as

)(/|)()(|)/1()(
1

kzkzkyKzMARE i

K

k iii  


For j-steps-ahead predictions, fMARE(zi, j) is defined as

)(/|)()|(|)/1(),(
1

jkzjkzkjkyKjzfMARE i

K

k iii   

Similarly, for the model parameters xi:

 )(/|)()(ˆ|/1)(
1

kxkxkxKxMARE i

K

k iii  


 )(/|)()|(ˆ|/1),(
1

jkxjkxkjkxKjxfMARE i
K

k iii   

4.2 Results for Slow Sinusoidal Variation
The system was simulated with the slow sinusoidal variation of
parameters as in Eq (10’) above, and the three parameters and three
AR coefficients were tracked. Figure 2 shows a trace of the Sd, and

Sw parameters and their tracked values. Tracking is excellent.
Remember that, although the parameter variation is deterministic,
the measurements have errors due to statistical sampling, so the
estimator must filter these errors.

Real and Tracked Service Demands (Qfac = 0.02)

0
5

10
15
20
25
30
35
40
45

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Step Sequence (Step 1 - 100)

S
er

vi
ce

 D
em

an
d

s

Real Database Demand
Tracked Database Demand
Real WebServer Demand
Tracking WebServer Demand

Figure 2. Real and tracked service demands (Qfac = 0.02)

Figure 3 and 4 show 3-step predictions of service demands and the
user response time against the future simulated values. Clearly the
errors are small and the predictions are good, with slightly larger
errors as the trend reverses, at the peak and trough of the curve.

Figure 3. Real and predicted service demands (Qfac = 0.02)

161

Figure 4. Measured and predicted response time (Qfac = 0.02)

Figure 5 shows the estimates found for the autoregressive
coefficients g as well, showing how they oscillate around 1.0 as the
trend goes from increasing to decreasing and back.

Figure 5. Tracked trend parameters gi (Qfac = 0.02)

Table 1 shows quantitative results (MARE and fMARE) for the
tracking and prediction errors. The response time error (MARE) is
less than 1% for tracking, and for 3-step prediction (fMARE) the
trend estimation improves the quality nearly 20% (from nearly
6.7% error without trend tracking, down to 5.5%). Thus, trend
tracking is effective. The parameter tracking accuracies show
similar relationships, with smaller relative errors. The table also
shows that the improvement for 3-step prediction is more
significant than that for 1-step prediction.

An alternative way to predict the performance for some steps
ahead is to extrapolate from the recent filter estimates with no
prediction of the hidden parameters. This was used effectively to
predict, in lab-scale experiments reported in [24]. We used linear
regression over the 10 preceding arrival rate estimates to obtain the
prediction for the arrival rates with an external predictor. These
predicted arrival rates were then used as input for the LQM, that is,
the function h(x), to calculate the response time for 3 steps ahead.
The errors of the external predictor and of integrated one (proposed
by this paper) are shown in Table 2. By using our proposed
integrated predictor, the prediction errors are reduced by about
50%, slightly smaller for one step, larger for three steps (Table 2,
line 1). Thus on relatively clean data and slow parameter variation,
the separate regression is worse. It is considered again in Section
4.5 and 4.6 below, for other cases.

TABLE 1. The Mean Absolute Relative Errors of
estimation and prediction, for Qfac=0.02

fMARE

1 step ahead
fMARE

3 steps ahead What is
Est./Pred

 MARE
no trend
tracking

trend
tracking

benefit
%

no trend
tracking

trend
tracking

benifit
%

User Resp. 0.0077 0.03039 0.02900 4.5872 0.06753 0.05419 19.7459

Sd 0.0053 0.02734 0.02268 17.0690 0.06808 0.03709 45.5273

Sw 0.0140 0.03489 0.02316 33.6362 0.08776 0.03984 54.6021

TABLE 2. fMARE for errors in user response time
predicted by linear regression over the 10 previous estimates

Compare: Integrated estimator vs
separate regression (Qfac = 0.02)

Case and Section
fMARE,

1 step
fMARE,
2 steps

fMARE,
3 steps

1. Sinusoidal Demand,
Section 4.2 0.029 vs 0.061 0.041 vs 0.079 0.054 vs 0.098

2. Simplified Model,
Section 4.5 0.032 vs 0.068 0.044 vs 0.091 0.056 vs 0.114

3.Auto Regressive
Workload, Section 4.6 0.013 vs 0.029 0.016 vs 0.038 0.022 vs 0.047

TABLE 3. Errors in response time prediction, when Qfac
is varied

 Errors in tracked and predicted User response time

 No trend tracking (A = I) With trend tracking (A varying)

QFac MARE
fMARE
(1 step)

fMARE
(2 steps)

fMARE
(3 steps)

fMARE
(1step)

fMARE
(2 steps)

fMARE
(3 steps)

0.001 0.0185 0.0323 0.0505 0.0707 0.0254 0.0317 0.0401

0.005 0.0118 0.0301 0.0475 0.0673 0.0252 0.0330 0.0402

0.02 0.0077 0.0304 0.0478 0.0675 0.0290 0.0414 0.0542

0.1 0.0064 0.0307 0.0479 0.0678 0.0313 0.0465 0.0626

0.5 0.0063 0.0311 0.0491 0.0696 0.0314 0.0470 0.0629

TABLE 4. Errors in response time prediction, with 2nd
order AR trend applied to various cases, and Qfac = 0.02

Errors in tracked and predicted User response time

fMARE

1 step ahead
fMARE

3 steps ahead

Case and Section MARE
no trend
tracking

trend
tracking

benefit
%

no trend
tracking

trend
tracking

benefit
%

1. Full model of Sec.
4.2 0.0069 0.0302 0.0262 13.27 0.0674 0.0438 35.01

2. Fast change
workload, Sec 4.3 0.0055 0.0546 0.0251 54.04 0.1594 0.0824 48.29

3. Fast change
workload, Sec 4.3,

(first order AR trend,
to compare) 0.0059 0.0553 0.0242 56.32 0.1605 0.0939 41.46

4. Autoregressive
random workload
trace of Sec 4.6 0.0067 0.0152 0.0125 17.66 0.0325 0.0203 37.44
5. AR random

workload Sec 4.6,
(first order AR trend,

to compare) 0.0070 0.0151 0.0131 13.30 0.0325 0.0216 33.58

162

The choice of the drift variance parameter Qfac for the filter needs
to be examined. With a small value, the tracked and predicted
values are smoother, but if it is too small the filter becomes
sluggish. When the value of Qfac was varied over a wide range,
from 0.001 to 0.1, the results for the performance prediction were
as shown in Table 3. The results do vary, and there appears to be a
shallow optimum around Qfac = 0.005. Thus for this system our
default value of 0.02 overestimates the change in parameter values
over a single step. Reflection confirms this is the case, since the
largest change in a parameter (at the point where the sinusoid is
zero) is less than 1% of the parameter value. Still, a larger value
such as 0.02 is a sound defensive strategy against more rapid
changes.

4.3 Rapid Sinusoidal Variation
It is the separation of the intermediate time scale (a few steps) and
the long time scale in which the sinusoidal variation is imposed (a
period of 100 steps in Section 4.1) that makes it possible to track
the trends. The rate of variation of the parameters in the simulation
was speeded up by a factor of 2.5, giving a period of 40 steps.

The errors are larger for the faster changes, as shown by line 3 in
Table 4. This rate of change begins to violate the separation of the
“intermediate” time scale (at which the trend can be approximated
by the AR model) of the actual variation of x.

4.4 A Second-order Time-Series Model
The first trend model used a first-order AR model for each of Sw,
Sd, and Z. Here we use the same data as in Section 4.2 but employ
a second-order AR model, giving:

x = [Sd, Sw, Z]T

xi(k+1) = g(+1 xi(k) + g( xi(k-1) + i(k), i = 1,..,3;

When the six autoregressive coefficients are gathered into the
vector g, we obtain

(k)T = (x(k)T, x T(k-1), gT)

and in the Kalman Filter, the state projection equation (k+1) =
F(k)(k) has the 12x12 matrix F:

F(k) = [G*3x6 03x6

 I3x3 03x3 03x6

 06x6 I6x6]

where

G*3x6=[g1(k) 0 0 g2(k) 0 0

 0 g3(k) 0 0 g4(k) 0

 0 0 g5(k) 0 0 g6(k)]

and I and 0 are the identity and null matrix.

The sensitivity matrix A is:

A(k) = [G*3x6 X*3x6

 I3x3 03x3 03x6

 06x6 I6x6]

where

X*(k) = [x1(k) x1(k-1) 0 0 0 0

 0 0 x2(k) x2(k-1) 0 0

 0 0 0 0 x3(k) x3(k-1)]

Table 4 shows the errors in response time prediction when the 2nd
order model was applied to all the cases in the Section. Comparing
row 1 to Table 1 where the first order model was used, the second
order model performs always better. This is also true for the other
cases in the paper. Because some the changes are sinusoidal and a
sinusoid is exactly second order in dynamics, there is no surprise
the second order model provides better performance. For 3-step
prediction, the improvement of using 2nd order model is 30% -
50%.

4.5 A Simplified Performance Model
The question of how complex a performance model should be is
always important. In general we would prefer to work with the
simplest model that fits the data.

We can address this question by considering a simplified model for
the Web Server. The simulation data is the same as in Section 4.2,
but the performance model is simplified as shown in Figure 6, with
just the WebServer. That is, the delays due to the database service
and disk are folded into the service time of the web server in this
model.

In the simplified model, the tracking parameters are x = [Z, S]. The
measurement set z consists of the response time and throughput of
the web server only. The experiment in this part is to investigate if
a simplified model is good enough to predict the future response
time, when the same simulated data trace is presented to the filter.

WebServer retrievePage

[S ms]

WSProc

User

(100 users)

requestPage

[thinkTime=Z s.]

(host)

Workstations

(host)

(1)

Figure 6. The simplified LQN model of a web server system

Comparing Table 5 to Table 3 shows that the performance
prediction error (fMARE) is a little larger with the simplified
model, for all values of Qfac. Thus, the additional detail in Section
4.2 is probably justified.

The question of whether the additional detail is significantly better
should be decided by a statistical test on the residuals for the two
models. The calculation requires the sums of squares of the
residuals for the performance prediction (the residuals are the
amounts in the absolute value expression used in defining MARE
or fMARE). If SSE1 is the (larger) sum of squares for the smaller
model in this section (with n1 estimated parameters), and SSE2 is

163

for the more elaborate model reported in Section 4.2 (with n2
estimated parameters), and the errors are assumed normally
distributed and independent, then an approximate F statistic for the
fit is

F = ((SSE1-SSE2)/(n2 - n1)) / (SSE2/no. of data points - n2 -1)

with degrees of freedom (n2 - n1, data points - n2 -1). The results
for tracking (zero steps ahead) with Qfac = 0.02 and 990 data
points in the trace gave:

SSE1 = 8.472 with n1 = 2, SSE2 = 7.732 with n2 - n1 = 3.

F = (SSE1-SSE2/1)/(SSE2/988) = 94.5

while for the three-step predictions, they gave:

SSE1 = 5.956, SSE2 = 4.559

F = 302.7

The critical value at the 5% level and (1, 988) degrees of freedom
is 3.84. If F>3.84 (as in both of these cases) we can reject the
hypothesis that the simpler model is as good as the more elaborate
one, with 95% confidence

TABLE 5. The quality of prediction in the simplified
model

 Errors in tracked and predicted User response time

 No trend tracking (A = I)
With trend tracking (A

varying)

QFac

MARE

fMARE
(1step)

fMARE
(2 steps)

fMARE
(3 steps)

fMARE
(1step)

fMARE
(2 steps)

fMARE
(3 steps)

0.001 0.0254 0.0353 0.0524 0.0718 0.0315 0.0353 0.0403

0.005 0.0293 0.0367 0.0517 0.0695 0.0310 0.0367 0.0439

0.02 0.0354 0.0421 0.0552 0.0720 0.0320 0.0420 0.0553

0.1 0.0387 0.0449 0.0576 0.0738 0.0323 0.0449 0.0622

0.5 0.0394 0.0455 0.0581 0.0743 0.0323 0.0455 0.0639

Since the assumptions required for the F-test cannot be
substantiated for this kind of estimation, its application is an
approximation and the conclusion is only tentative. However, these
results indicate that the simpler model is very probably less
accurate, and the conclusion is stronger for the predictions, than for
the tracking. That indicates that the trend modeling is effective.

4.6 Random Workload
This case replaces the sinusoidal variation of the arrivals by a
randomly varying rate of arrivals. A somewhat smooth random
arrival sequence was generated by the third-order AR model

Arr(k+1)=2.1Arr(k) -1.43 Arr(k-1) +0.315 Arr(k-2) +0.015 (k)

(with  being a normal independent process of unit variance). This
rate in arrivals/ms was scaled by a factor of 0.01 and then biased
by a constant 0.01 so as to always be positive. A closed workload
with 1000 users was assumed.

The think time Z(k) was derived from the sequence using:

 N = 1000 = assumed size of the pool of users

 Z(k) = N/Arr(k) = think time that would give Arr(k) if the
response time is much less than Z(k)

Since the mean think time Z(k) is around 100000 ms, which is
much bigger than the response time (mean value < 300ms), the
simulated arrival rate is close the Arr(k).

This series was used as input to the Web Server simulation, with
sinusoidal variation of the demand parameters Sw and Sd as in
Section 4.2, and the estimation was carried out as before. With a
first-order AR trend model, the results in Figure 6 (and in Table 4,
line 5) were obtained.

Autoregressive Trace Tracking (Qfac = 0.02)

0

20

40

60

80

100

120

140

160

180

1 28 55 82 109 136 163 190 217 244 271 298 325 352 379 406 433 460 487

Step Sequence
R

es
po

ns
e

T
im

es

Measured Response Time

Predicted Response Time (3 steps ahead)

Figure 7. Results for tracking and predicting with autoregressive
trace

Generally the tracking results were excellent, similar to the results
in Section 4.2. The second-order AR trend gives even better results
(Table 4, line 4).

4.7 Separate Regression for Prediction
Over the ensemble of cases described here, the question of separate
trend prediction by regression on the history of estimates can be
revisited. Table 2 includes results for the cases considered later in
the section. The integrated predictor is able to predict the trend of
the service demands in addition to the arrival rates, thus it is not
surprising that it performs better than a separate predictor.

4.8 Validation on a Real System
Trade 6 benchmark application [29] is a web based end-to-end
benchmark and performance sample application developed by
IBM. It implements the basic functions for stock trading. By
accessing a servlet in the application, different types of user
requests will be generated randomly with specific probabilities
according to a benchmark. We deployed the Trade 6 application on
a platform consisting of IBM WebSphere® Application Server
version 6.1 and IBM DB2® Universal Database (DB2 UDB)
Version 8.2. WebSphere and DB2 run on two virtual machines
using CentOS 5 as the OS. The structure of the performance
model of the system is similar to the model shown in Figure 1,
while the network delay and disk operation are not considered in
this case.

We used a workload generator that generates a traffic that is
common to most e-commerce website. In the experiment, the
number of users increases gradually to a peak, then decreases

164

gradually to a minimum number in a repetitive pattern that reflects
the daily usage.

The run time performance metric such as the response times,
invoke rates, CPU utilizations etc are collected from WebSphere
application server using Java Management Extensions (JMX)
technology. The sampling interval is 60 minutes.

The fMARE of the tracking with 1 step ahead trend prediction is
0.0245, while the fMARE of the tracking without trend is 0.0306.
The accuracy improves by 20%. For 3 steps ahead prediction, the
accuracy improves by 37.5% (0.0474 vs 0.0759). The findings
are consistent with those found through simulation.

5. CONCLUSIONS
This work represents the first attempt to combine on-line tracking
of performance parameters with estimate of their current short-
term trends, in the same estimator. This makes it possible to
estimate trends for hidden parameters, that is parameters that are
fitted but not observed directly.

The results show that an autoregressive model can successfully be
fitted to the time variation of hidden parameters using an Extended
Kalman Filter estimator. The autoregressive model is used to
predict the parameter values forward in time, provided the local
trends change slowly enough.

Integrated tracking of trend coefficients provides much better
predictions of performance measures such as response time, than
separate regression on the history of the tracking estimates or the
observations themselves. However its unique capability is, to
predict hidden parameter values.

Experiments with smoothly varying parameters and measurement
errors compared different filter settings, and investigated the effect
of variation speed and model complexity. Prediction errors of a
few percent in performance measures, and somewhat smaller
errors in parameter values, were obtained. The predictions were
not very sensitive to the filter disturbance variance setting (here
represented by Qfac).

Experiments with large-amplitude random swings in the arrival
rate showed an equal capability to make predictions. With long-
range dependent variations in the arrival rate, the filter could not
predict arrivals accurately in all cases but recovered quickly from
momentary errors, indicating a useful robustness.

As described in [28] there is condition for convergence of the
Kalman Filter, on an identifiability matrix:

rank [HT, (HA)T, … , (HAi)T, … , (HAn-1)T] = n.

In estimators without trend tracking (as considered in [22][24][28])
this condition requires that there be as many measurements as there
are parameters to be estimated. With trends there are more
quantities to estimate, but an equal number of additional
measurements are not required because of the relationships of
estimates across time, through the trends. The condition above
should be tested, and may still fail if the model is not sensitive to
some parameter, or is sensitive only to a linear combination such
as the sum of two parameters. This sometimes limits the amount of
system detail that can be modeled and calibrated.

There is a significant limitation to tracking parameters with a trend
predictor integrated in the estimator: by assuming gradual trends in

parameter values, it makes the filter less agile. There is a necessary
separation of time-scales between the parameter variation and the
sampling steps for the estimator. In our experiments stable tracking
required that a trend should continue for one the order of steps. By
contrast, in [24] an estimator without trend tracking was shown
capable of tracking large jumps in value separated by just a few
steps. The difference is that the filter in [24] assumed a random
change in parameter values at every step, and the only smoothness
assumption was in the size of the assumed random change.

This agility limitation points up a potential conflict in the goals of
tracking: a goal in a smoothly varying regime, to home in on
excellent tracking with a capability to make predictions by using
trend tracking, versus a different goal in a chaotic regime, to try to
keep up with rapid changes. The smoothly varying regime is an
important one for routine business operations, and is able to
accommodate and predict large changes in behaviour provided
they are not too rapid. In those situations the agility limitation is
not a serious disadvantage.

6. ACKNOWLEDGMENT
The authors wish to acknowledge useful conversations with
Johnny Wong and Cristina Amza, and members of the IBM Center
for Advanced Studies, Toronto.

7. REFERENCES
[1] M. Arlitt and C. Williamson. “Web Server Workload

Characterization: The Search for Invariants”, Proc. ACM
SIGMETRICS ’96, May 1996.

[2] G.E.P. Box, G. Jenkins G. Reinsel, Time Series Analysis:
Forecasting and Control, Prentice Hall, third edition, 1994.

[3] E. Brookner, Tracking and Kalman Filtering Made Easy,
Wiley Interscience, 1998.

[4] E. DiNitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K.
Pohl, "A journey to highly dynamic self-adaptive service-
based applications," Automated Software Engineering, vol.
15, no. 3-4 pp. 313-341, 2008.

[5] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S.
Derisavi, "Enhanced Modeling and Solution of Layered
Queueing Networks," IEEE Trans. on Software Eng., vol. 35,
no. 2 pp. 148-161, 2009.

[6] S. Ghanbari, G. Soundararajan, J. Chen, C. Amza, Adaptive
Learning of Metric Correlations for Temperature-Aware
Database, Proc. Fourth Int. Conf. on Autonomic Control, p
26, 2007

[7] Gmach D., Rolia J., Cherkasova L., Kemper A.,
“Workload Analysis and Demand Prediction of Enterprise
Data Center Applications,” Proc. 10th IEEE Int. Symp. on
Workload Characterization, pp. 171-180, Sept. 2007.

[8] J.G. De Gooijer, R.J. Hyndman, “25 years of time series
forecasting”, Int. J. of Forecasting v 22 pp 443– 473, 2006.

[9] R. Jain, The Art of Computer Systems Performance Analysis.
Wiley, 1991.

[10] A. H. Jazwinski, Stochastic Processes and Filtering Theory.
New York: Academic Press, 1970

[11] J. O. Kephart and D. M. Chess, "The Vision of Autonomic
Computing," Computer, vol. 6, no. 1 pp. 41-50, 2003

165

[12] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, “On
the Self-similar Nature of Ethernet Traffic (Extended
Version)”, IEEE/ACM Trans. on Networking, v. 2 n. 1, 1994

[13] T.-H. Li, "A Hierarchical Framework for Modeling and
Forecasting Web Server Workload," Journal of the American
Statistical Association, vol. 100, no. September 2005 pp.
748-763, 2005.

[14] M. Litoiu, M. Woodside, T. Zheng, “Hierarchical model
based autonomic control of software systems”, Proc. of
Design and Evolution of Autonomic Software (DEAS’05)
Workshop, St. Louis, May 2005.

[15] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, and X. Liu, "Feedback
Control with Queueing-Theoretic Prediction for Relative
Delay Guarantees in Web Servers," Proc 9th IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS03), May 2003.

[16] D.A. Menascé, M.N. Bennani, "On the use of performance
models to design self-managing computer systems," Proc.
2003 Computer Measurement Group Conf., Dallas, 2003.

[17] J. A. Rolia and K. A. Sevcik. The method of layers. IEEE
Trans. Software Engineering, 21(8):689–700, Aug. 1995.

[18] Shen D., Hellerstein J.L., “Predictive Models for Proactive
Network Management: Application to a Production Web
Server,” Proceedings of IEEE NOMS 2000, pp 833-846,
2000.

[19] R. Shibata, "Asymptotically Efficient Selection of the Order
of the Model for Estimating Parameters of a Linear Process,"
Annals of Statistics, vol. 8, no. 1 pp. 147-164, 1980.

[20] VMware Capacity Planner. http://www.vmware.com

[21] C.M. Woodside, J. E. Neilson, D. C. Petriu, and S.
Majumdar, “The stochastic rendezvous network model for
performance of synchronous client-server-like distributed
software,” IEEE Trans. Computers, vol. 44, no. 8, pp. 20–34,
Aug. 1995

[22] M. Woodside, T. Zheng, M. Litoiu , “The use of optimal
filters to track parameters of performance models”, Proc.
2nd Int. Conf. on Quantitative Evaluation of Systems
(QEST05), Torino, Sept. 2005.

[23] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, J.
Merseguer, “Performance by Unified Model Analysis
(PUMA)”, Proc. 5th Int. Workshop on Software and
Performance (WOSP 2005), pp 1-12, July 2005

[24] M. Woodside, T. Zheng, M. Litoiu, “Service System
Resource Management Based on a Tracked Layered
Performance Model”, Proc 3rd IEEE International
Conference on Autonomic Computing, 2006.

[25] Xen, http://xen.xensource.com/, a virtual machine monitor.

[26] C. You and K. Chandra, "Time Series Models for Internet
Data Traffic," Proc. Conf on Local Computer Networks 1999
(LCN '99), Lowell, MA, USA, Oct 1999, pp. 164-171.

[27] Y. M. Zhan and A. K. S. Jardine, "Adaptive autoregressive
modeling of non-stationary vibration signals under distinct
gear states. Part 1: modeling," Journal of Sound and
Vibration, v. 286, pp. 429–450, 2005.

[28] Zheng T., Woodside C. M., Litoiu M., “Performance Model
Estimation and Tracking Using Optimal Filters”, IEEE
Transactions on Software Engineering, Vol. 34, No 3, pp.
391-406, June

[29] http://www.ibm.com/developerworks/data/tutorials/dm0506l
au/section2.html, IBM Trade 6 Performance Benchmark

166

