
Metric-based Selection of Timer Methods
for Accurate Measurements

Michael Kuperberg
Karlsruhe Institute of

Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
michael.kuperberg@kit.edu

Martin Krogmann
Karlsruhe Institute of

Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
krogmann@kit.edu

Ralf Reussner
Karlsruhe Institute of

Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
reussner@kit.edu

ABSTRACT
Performance measurements are often concerned with accu-
rate recording of timing values, which requires timer meth-
ods of high quality. Evaluating the quality of a given timer
method or performance counter involves analysing several
properties, such as accuracy, invocation cost and timer sta-
bility. These properties are metrics with platform-dependent
values, and ranking and selecting timer methods requires
comparisons using multidimensional metric sets, which make
the comparisons ambiguous and unnecessary complex. To
solve this problem, this paper proposes a new unified metric
that allows for a simpler comparison. The one-dimensional
metric is designed to capture fine-granular differences be-
tween timer methods, and normalises accuracy and other
quality attributes by using CPU cycles instead of time units.
The proposed metric is evaluated on all timer methods pro-
vided by Java and .NET platform APIs.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.2.8 [Software]: Software Engineering–Metrics

General Terms
Performance, timer selection

Keywords
Timer Method, Performance Counter, Accuracy, Resolution,
Invocation Cost, Quality Metric, Precision, Granularity

1. INTRODUCTION
For measuring timing values and time intervals, timer

methods are provided by APIs of performance counter li-
braries, operating systems, virtual machines, etc. When
using timer methods to perform fine-granular or accuracy-
sensitive measurements, scientists need to select suitable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

timer methods among the available ones. For example, to
measure an operation that takes 250 ns, a timer method
that uses a counter which is updated once every 15 ms is
not appropriate.

However, the accuracy of timer methods depends on the
underlying hardware (e.g. performance counters), whose ac-
curacy is often platform-specific and unknown. Published
values as in [11] or [15] are mostly platform-specific, vague,
outdated and provided without the code that produced them,
so it is not possible to transfer these results to other hard-
ware/software platforms without re-running the original code.
In addition to accuracy, other quality attributes (e.g. in-
vocation cost) also play a significant role and need to be
considered.

Recently, techniques for quantifying the accuracy and in-
vocation cost of black-box timer methods have been devel-
oped in the form of the TimerMeter approach [10]. How-
ever, TimerMeter provides the user with several metrics
and often, a timer method is better than another in one met-
ric and worse in another. To make it easier for humans to
compare and rank timer methods, it is needed to unify these
metrics into one well-designed quality metric. Also, in the
context of measurements requiring high accuracy, it makes
sense to compare timer methods not only on one platform,
but also across platforms. Comparing accuracy and other
metrics needs to account for platform differences, as shown
by the following example: an accuracy of 1000 ns on a CPU
with 1 GHz is better than an accuracy of 700 ns on a CPU
with 2 GHz, because the first accuracy value corresponds to
1000 CPU cycles and the second to 1400 CPU cycles.

The contribution of this paper is a novel quality metric for
timer methods that allows for dependable and precise com-
parison and ranking of timer methods, even across execu-
tion platforms. The metric unifies and encapsulates several
quality metrics, such as accuracy, invocation cost and invo-
cation cost spread. The metric value range is normalised to
[0.00, 1.00], which allows to interpret the quality values as
percentage values. The design of the metric computation
formula ensures that even the finest differences of the input
metrics are captured and can be expressed using at most
two decimal places of the metric value in %.

The properties and advantages of the introduced metric
are evaluated by computing the quality metric values for
eight different timer methods on four execution platforms
that differ significantly in hardware and software. The re-
sults of the evaluation demonstrate how platform-dependent
timer method quality values are, and show that there is no

151

clear universal winner among the timer methods. The stud-
ied timer methods include all methods for measuring timing
values that are available on the Java and .NET platform
APIs.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses the foundations, incl. the computation of
the metric inputs using the TimerMeter approach. Sec-
tion 3 presents related work. Section 4 introduces the new
timer method quality metric, and explains its design deci-
sions. Section 5 applies the metric to 8 timer methods on
4 platforms, and discusses the results as well as conclusions
we have made from them. Section 6 concludes with the dis-
cussion of the presented approach and future work.

2. FOUNDATIONS OF TIMER METHODS
A timer method is a software method that accesses a hard-

ware timer, i.e. a counter which is incremented at regular
intervals by a non-negative constant value. An example of
a periodic counter is the HPET (High-Performance Event
Timer) [1]. The counter’s value can be converted to tim-
ing values when the interval between two subsequent incre-
ments is known. When reading the counter’s value, the timer
method reads the last (i.e. most recent) value of the counter
– this is hinted by the dashed line in Figure 1.

Accuracy is described by Lilja [12, p. 44] as “the absolute
difference between a measured value and the correspond-
ing reference value”. As Figure 1 shows, the distance be-
tween the real timing value and the measured value (based
on counter reading) is up to one counter update interval.

Thus, for timer methods, [10] equates timer method accu-
racy with the resolution of the underlying counter, and uses
Lilja’s definition of resolution as the “smallest incremental
change that can be detected and displayed”. Note that the
timer method accuracy (and the counter resolution on which
it is based) are different from a timer method’s unit. For ex-
ample, the unit of java.lang.System.nanoTime() is 1 ns,
although in practice, its resolution (and resulting accuracy of
measurements) are often hundreds of ns [8, 10]. The Timer-
Meter approach quantifies the timer method accuracy as it
is seen by the application which invokes the timer method.

Invocation cost of a timer method is a synonym for exe-
cution duration of that timer method and spans the interval
from the timer method invocation until it returns a value,
as seen by the method’s invoker. The invocation cost can be
smaller than the accuracy or larger than it. The invocation
cost may vary from call to call due to CPU interrupts, OS
scheduling and other runtime influences, as well as due to
Just-in-Time compilation.

When calculating the average invocation cost, outliers (e.g.
caused by Garbage Collection of Java Virtual Machines) can
bias the obtained value very significantly. Instead of using
the average, the median value can be used as it captures
the “normal” case more accurately. Still, the “spread” of in-
vocation costs observed in practice should be captured in
a metric that quantifies the platform-specific quality of a
timer method, as this spread impacts the statistic validity
of measurements.

For calculating the platform-specific accuracy and invoca-
tion cost of timer methods, this paper uses the TimerMe-
ter approach [10]. This approach treats the timer method
implementation as a black box, i.e. it does not analyse its
implementation and does not require information about the
elements of the execution platform. The most interesting

part of TimerMeter is the quantification of accuracy and
its main principle is sketched in the remainder of this sec-
tion; for further details, the reader is referred to [10].

TimerMeter works both in the case where the invoca-
tion cost of the timer method is larger than its accuracy,
and in the case where it is smaller. Both cases occur fre-
quently, and a given timer method can fall in different cases
on different platforms; TimerMeter can recognise which of
the two cases applies for a given method in a given envi-
ronment. We only outline the approach for the first case,
and a visual explanation for it is shown in Figure 1 and ex-
plained in the following. The considered timer method is
denoted as time(), and it reads the last value of the under-
lying counter/timer (hinted by the dashed line), processes it
and then returns it.

As the upper part of Figure 1 shows, invoking two timer
methods in a row can return a time interval of length 0
when the timer method invocation cost is smaller than its
accuracy. To obtain a time interval of non-zero length,
TimerMeter inserts a small amount of work between timer
method invocations and re-measures the time interval. The
work amount is increased until the measured interval“jumps”
from 0 to a non-zero value which corresponds to the value
of timer method accuracy. The work amount is further in-
creased to obtain further jumps (i.e. 2·accuracy, 3·accuracy,
etc.), and the measurements are sorted and clustered to ad-
dress outliers and other challenges.

Figure 1: Quantifying the timer method accuracy
(for the case accuracy > invocation cost)

3. RELATED WORK
The question of designing quality metrics that unify other

metrics has been researched in software complexity [7], soft-
ware QoS [2] as well as in computer vision and video quality
[5, 16, 17], but there is no general approach or design guide-
lines beyond these domains. Machine learning approaches
such as neural networks, genetic algorithms and others can
be used to approximate a function that computes known out-
put values from given input values - however, this requires
existing results to which the function is fitted, which is not
the case for the challenge of timer method quality addressed

152

in this paper. Analytic Hierarchy Process (AHP [14]) or
other decision making approaches from operations research
require the user to state her preferences and assign weights
to the individual decision criteria, while the presented uni-
fied metric does not need this level of interaction.

Discussions of quality properties of timer methods are
mostly limited to accuracy, and only a few publications at-
tempt to quantify it. Books on performance measurement,
evaluation and benchmarking (e.g. [9, 12]) discuss the im-
portance of timer accuracy for quantifying the errors in mea-
surements, but do not provide algorithms for computing the
accuracy or other quality metrics.

Some technology-specific books (e.g. [4, 15] for Java),
make statements on the accuracy of two popular Java plat-
form API timer methods, but do not provide any algorithms
or explanations on the origin of the accuracy values. In [8],
Holmes provides an overview of clocks, timers and schedul-
ing events accessible from Java, but does not provide any
reusable means to obtain precise characteristics of timer
methods. For example, he states (in 2006) that “typically, a
Windows machine has a default 10 ms timer interrupt pe-
riod, but some systems have a 15 ms period”.

In [13], Meyerhoefer describes time measurements from
and within Java. He computes the accuracy of current-

TimeMillis() in Java using an algorithm that does not
consider the effects of the timer invocation cost and hence
would not be applicable to the nanoTime() timer method
or other fine-granular timers where the invocation costs are
often larger than the accuracy.

In [6], Danzig and Melvin describe how to measure time in-
tervals that are shorter than the precision of available timers
(in their case, the precision corresponds to the accuracy of
the hardware clocks they use). In [6], the authors assume
that the clock accuracy/resolution (i.e. timer resolution) is
known, and disregard the cost of timer invocations. They
compute the number of measurements needed to achieve a
given confidence level for a given number of significant dig-
its, using statistical techniques and approximations. In [3],
Beilner describes a stochastic measurement technique and
corresponding statistical evaluation that are applied to sub-
accuracy operations in a distributed, message-based system;
however, Beilner has to guess the (smallest) duration of the
operations to be measured.

While TimerMeter [10] provides platform-independent
algorithms for computing accuracy and invocation cost of
timer methods, it does not provide a unified,“one-stop”qual-
ity metric, which is the focus of this paper.

4. A UNIFIED TIMER QUALITY METRIC
Most users prefer a single metric as a simple way to com-

pare things, instead of using multidimensional metric sets.
Therefore, the individual timer method quality properties
such as accuracy, invocation cost etc. should be composed
to form a new unified (i.e. single-valued) and pragmatic
metric. The value range of the unified quality metric should
be intuitively understandable without in-depth knowledge
of timer method quality attributes.

A value range of “0 % to 100 %” is fulfilling this re-
quirement, and it is clear that “larger is better” applies to
it; it also has an advantage of making the metric unitless.
Therefore, this value range (which can also be interpreted as
[0.00, 1.00]) was defined as a requirement during the devel-
opment of the metric. The metric values should be floating-

point numbers rather than integers to allow for a more fine-
granular expression of timer method differences.

In the following, we describe a new metric (referenced
as Qualitytimer) which was developed according to these
considerations.

4.1 Accounting for Different CPU Clock Fre-
quencies

Quality properties of timer methods are computed from
measurements collected at runtime and they are valid for
the specific execution platform and the settings in which
the measurements were performed. A unified timer qual-
ity metric should depend on the properties of the execution
platform, in particular on its processing speed.

For example, consider two execution platforms: platform
P1 has a 1.0 GHz CPU and platform P2 has a CPU with
2.0 GHz. A timer method that is available on both plat-
forms has an accuracy of 1000 ns on platform P1 and an
accuracy of 700 ns on platform P2. At the first glance, the
timer method is more accurate on platform P2, yet the timer
method accuracy on platform P1 corresponds to 1000 cycles
but on platform P2, the timer method accuracy corresponds
to 1400 cycles.

For an algorithm implementation which takes a constant
number of cycles to execute independent of a concrete CPU
and platform, measurements should be done on platform P1
rather than on platform P2, as the timer accuracy will result
in lesser measurement error on P1 than on P2. Not only
accuracy, but also the timer method invocation cost should
be expressed in CPU cycles, rather than in time units.

Based on the fact that the smallest unit of time-related
measurements is 1 CPU cycle, the following discussion pre-
sumes that the minimum value of accuracy and invocation
cost is 1 CPU cycle. We assume that the CPU frequency
of the execution platform on which the measurements were
performed remained constant over the course of the mea-
surements, and therefore the effective CPU processing speed
remained constant as well.

Of course, modern CPUs provide dynamic (runtime) fre-
quency scaling, which means that the CPU frequency adapts
to the CPU load. So far, our observations have shown that
a changed CPU frequency does not alter the accuracy values
(in time units) of timer methods, while invocation costs of
timer methods (in time units) do change proportionally.

This behavior can be explained by the fact that many
hardware counters operate independently of the CPU fre-
quency (e.g. HPET [1]). For example, when decreasing
the CPU frequency of a Core 2 Duo processor (platform
MBP53 in Section 5) from 2793 MHz to 1596 MHz (1596

2793
=

4
7
≈ 0.571), the accuracy of System.nanoTime (cf. Table 1)

remains at 1000 ns. However, its invocation costs increase
from 97 ns to 172 ns, i.e. proportionally (97

172
≈ 0.564).

Further research is needed to study the impacts of CPU fre-
quency and CPU voltage on timer methods.

4.2 Designing the Unified Quality Metric
Qualitytimer is computed by Formula (1), which shows

that it is a product of three elements, and each element is
in the range [0.0, 1.0], as explained below.

Qualitytimer : = accuracy−0.1 · invocationCostmedian
−0.1

·invocationCostSpread0.5 (1)

The first element of Formula (1) is based on timer method

153

accuracy, for which it holds that “smaller value is better”.
Yet for the quality metric to design, it applies that “larger
value is better” – thus, a negative exponent is chosen (next
section explains why −0.1 was chosen over −1). Since 1 ≤
accuracy, it holds that 0 < accuracy−0.1 ≤ 1. The accu-
racy value is expressed in CPU cycles (with the minimum
value being 1) and not in conventional time units such as
nanoseconds for the above reasons; the unit is dropped to
make Qualitytimer unitless.

The second element of Formula (1) is based on the timer
method invocation cost, again with minimum value of 1 CPU
cycle. As with accuracy, “smaller value is better” applies to
invocation cost. While there is a minimal invocation cost,
the execution duration of the timer method varies from in-
vocation to invocation, and the median invocation cost is a
realistic statistic for the majority of samples. For the same
reasons as for accuracy, invocation costs are expressed in
CPU cycles, the units are dropped and a negative exponent
is chosen; it holds that 0 ≤ invocationCostmedian

−0.1 ≤ 1.
Since the second element of Formula (1) uses the median in-
vocation cost, Formula (1) needs to express how the entirety
of all recorded invocation cost values is spread around the
median invocation cost. This need is addressed by the next
element in Formula (1).

The third element of Formula (1) is called invocation-
CostSpread and it is based on the percentage of invoca-
tion cost values (samples) within ±1 accuracy of the me-
dian invocation cost. To make invocationCostSpread have
the value range [0.00, 1.00], the percentage values are di-
vided by 100%. For invocationCostSpread, it holds that
“larger value is better”, since the less invocation cost sam-
ples are too far away from the median, the easier it is to
capture the timer method overhead. invocationCostSpread
will never become 0 as long as there is at least one sample
invocation value and therefore also a median invocation cost
which makes the aforementioned percentage non-zero. The
definition of invocationCostSpread allows it to become 1.00
even if the invocation cost varies between samples – as long
as all samples remain within ±1 accuracy. Note that the
distribution of timer method invocation costs does not fol-
low a Gaussian distribution, and thus we decided not to use
standard deviation or variance for expressing the invocation
cost spread.

4.3 Choice of the Exponents for the Unified
Timer Quality Metric

The choice of decimal-point exponents for the first two
contributions is motivated by the range of the raw values
accuracy and invocationCostmedian. For example, assume
that we were using exponents−1, −1 and +1, i.e. Qualitytimer

were computed as accuracy−1 · invocationCostmedian
−1 ·

invocationCostSpread1. Then, for a timer method with
1 ms accuracy, 200 ns invocation cost and invocation cost
spread of 1.0 on a CPU running at 2 GHz, it would have re-
sulted in a metric value of 1

2,000,000
· 1
200
·1.0 = 0.0000000025

=̂ 0.00000025 %, which is a very small value compared to
the range [0.0, 1.0]. For another timer method with a smaller
invocation cost of 100 ns instead of 200 ns (and same val-
ues otherwise, on the same machine), the formula with the
trivial exponents would yield 0.000000005. While the values
are clearly different (by the factor of 2), they are hard to
compare because they are too small.

With the exponents in Formula (1), things look differently

and better for these two timers: Qualitytimer is ≈ 13.79 %
for the first timer and ≈ 14.79 % for the second timer. The
quality values do not differ by the factor of two anymore,
but this is an advantage: since the (identical) accuracy is
rather poor, the differences in invocation cost are not so im-
portant anymore, which is made clear by the quality values.
In Section 5, the quality values for different timer meth-
ods on different platforms will be compared, which will add
further empirical justification to the choice of exponents in
Formula (1).

For the invocation spread, the exponent is set to 0.5 to
decrease its impact onto the total result; it holds that
0 < invocationCostSpread0.5 ≤ 1 since
0 < invocationCostSpread ≤ 1. To see the reasons for ad-
justing the impact of the spread, consider the following two
results (which are real-life values, obtained on the same ex-
ecution platform): Timer a has an accuracy of 2400 CPU
cycles, an invocation cost of 4800 CPU cycles, and an in-
vocation cost spread of 0.993. Timer b has an accuracy of
168 CPU cycles, invocation cost of 1680 CPU cycles and a
spread of 0.578.

For a, the resulting quality metric value is ≈ 19.60 %
for spread’s exponent being 0.5 and would be ≈ 19.53 % if
the exponent were 1.0. For b, the quality metric value is
≈ 21.67 % for exponent 0.5 but would be ≈ 16.48 % for
exponent 1.0. Despite its higher spread, b is more accurate
and causes less overhead: thus, its quality should be higher
than that of a – this is the case when the exponent of the
spread’s contribution is 0.5 but is not the case when the
exponent is 1.0. This small example illustrates the need to
decrease the impact of the spread – still, note that the choice
of the concrete exponent value has no formal underpinning.

4.4 Further Considerations
In Formula (1), all three contributions are within the in-

terval (0.0, 1.0], and thus so is their product. This allows
to “reserve” the value 0.0 of Qualitytimer for special use:
Qualitytimer = 0.0 iff the timer method is non-monotonic,
unstable, not thread-safe or a combination thereof (the iden-
tification of such problems is outside the scope of this paper).
In all other cases, Qualitytimer > 0.0.

Another advantage of the presented choice of exponents
is that values of Qualitytimer are not too small. Consider
the following “worst-case” scenario where a timer has an
accuracy of 15 ms (i.e. 15,000,000 ns) and a median in-
vocation cost of 16 µs, with the CPU running at 4.0 GHz.
Such a coarse accuracy was in fact observed for java.lang.-
System.currentTimeMillis() on Windows XP computers.
An invocation cost of 16 µs would correspond to 64,000
CPU cycles on the 4 GHz CPU, which is also a rather high
value, though invocation costs of 47,709 CPU cycles have
in fact been found for java.lang.management.ThreadMX-

Bean.currentThreadCpuTime() on modern machines (Core
2 Duo CPU) running Linux for the getCurrentThreadCpu-

Time method of the Java API class ThreadMXBean.
The worst-case scenario assumes an invocation spread of

0.3, although until now, we did not observe values below 0.5
in practice. The value of Qualitytimer for the worst case
scenario is calculated from timing values using the relation
that 1 ns correspond to 4 CPU cycles on a 4 GHz CPU. Thus,
Qualitytimer = (4∗(15∗106))−0.1 ·(4∗(16∗103))−0.1 ·0.30.5 ≈
0.1668 · 0.3307 · 0.5477 ≈ 0.03021 ≡ 3.02%. Thus, while the
value of Qualitytimer is very low, it still can be expressed

154

as integer-typed percentage, i.e. even rounding would not
make it 0.0.

5. EVALUATION
Tables 1 and 2 show the values of quality attributes and

the quality metric for four different execution platforms. For
the validation, we selected these execution platforms so that
we could study the impacts of differences in hardware char-
acteristics and operating system in isolation:

1. MBP53: a MacBook Pro notebook (model identi-
fier “MacBookPro5,3”) with 2.8 GHz Intel Core 2 Duo
CPU (T9600), 4 GB of RAM, running Mac OS X 10.6.4
and Apple JVM (JDK 1.6.0 21) / Mono 2.6.7.

2. MBP62: a MacBook Pro notebook (model identifier
“MacBookPro6,2”) with 2.66 GHz Intel Core i7 CPU,
8 GB of RAM, running Mac OS X 10.6.4 and Apple
JVM (JDK 1.6.0 21) / Mono 2.6.7.

3. SAMSa: a Samsung notebook with Intel Pentium M
1.73 GHz CPU, 1 GB of RAM, running openSUSE
Linux with Kernel 2.6.34, and Oracle JDK 1.6.0 20 /
Mono 2.6.7

4. SAMSb: same as SAMSa, but running Windows XP
Professional and Oracle JVM (JDK 1.6.0 21) and .NET
4.0 in addition to Mono 2.6.7

The validation covers all timer methods provided by Java
SE and .NET Platform APIs:

• CTCT is java.lang.management.ThreadMXBean.getCur-
rentThreadCpuTime(), a method which returns the
calling thread’s used CPU time in nanoseconds

• CTM is java.lang.System.currentTimeMillis(), a static
wall-clock timer method with milliseconds as units

• CTUT is java.lang.management.ThreadMXBean.getCur-
rentThreadUserTime(), a method which returns the
time a thread has spent in user mode

• HRC is sun.misc.Perf.highResCounter()

• NANO is java.lang.System.nanoTime(), a static wall-
clock timer method with nanoseconds as units

• PCT is com.sun.management.OperatingSystemMXBean.-
getProcessCpuTime() or com.sun.management.Unix-

OperatingSystemMXBean.getProcessCpuTime(), depen-
ding on the JVM

• .DAT: .NET API’s DateTime.Now structure in the Sys-

tem namespace

• .STO: .NET API’s start/stop methods in the Stop-

Watch class (System.Diagnostics namespace)

Several observations can be made on the basis of Tables 1
and 2. The .NET methods .DAT and .STO have identical
quality on Mac OS X platforms MBP53 and MBP62, but
are slightly different on Linux (SAMSa) and very differ-
ent on Windows (SAMSb). Also note the large differences
of their accuracy values on the same hardware depending
on the operating system: 156,250 ticks on Windows but 10
ticks on Linux, i.e. more than five orders of magnitude. On

SAMSb, the .NET timer method .STO has better quality
than any Java SE platform API timer method.

Comparing Java timer methods, none of them has the
best quality on all four platforms, though HRC has highest
quality on all platforms but SAMSb, where its difference to
NANO is less than 4 percentage points. The invocation cost
differs by more than three orders of magnitude between the
fastest (HRC on MBP62, 70 ns) and the slowest (CTCT on
SAMSa, 30000 ns as confirmed by repeated measurements).
The invocation cost spread decreases with the accuracy.

Quality metric values for CTCT and CTUT are very close on
individual platforms, although they differ across platforms
and are significantly better on MBP53 and MBP62. PCT

has a low quality on all four platforms, due to its unex-
pectedly bad accuracy. Same observation holds for CTCT

and CTUT on SAMSa and SAMSb. Note that the quality
metric captures even finest differences: on MBP53, CTCT

quality is 18.86 % and and CTUT quality is 18.88 % due to a
very slight difference of median invocation costs.

For the same hardware running different operating sys-
tems and JVMs (SAMSa and SAMSb), the quality is bet-
ter on Windows (SAMSb) for one half of the timer meth-
ods, and better on Linux (SAMSa) on the other. For
the same OS and JVM on different hardware, the quality
metric’s values are substantially different (cf. MBP53 vs.
MBP62).

Of course, there exist scenarios in which only one qual-
ity attribute (and not the entire metric) are important. For
example, if a timer method is called very frequently but
high accuracy is not needed, the person selecting the timer
method to use needs to “drill down” and investigate the con-
stituents of Qualitytimer in addition to the metric.

Finally, it should be noted that due to the use of exponents
in Qualitytimer, a difference of 5 % has different meanings
depending on the compared values. For example, the differ-
ence between 15 % and 20 % has a different weight than the
difference between 55 % and 60 % .

6. CONCLUSION
This paper has devised a novel quality metric for timer

methods, which simplifies comparison and selection of timer
methods to be used for accurate and precise measurements.
The developed quality metric unifies the quality attributes
accuracy, invocation cost and invocation cost spread into one
value with the convenient range [0.0, 1.0], i.e. [0 % , 100 %].
The design of the metric ensures that these attributes are
balanced, and it accounts for the impact of hardware char-
acteristics such as CPU clock frequency.

The metric has been evaluated on all timer methods of
the Java SE and .NET 4.0 platform APIs, including meth-
ods which measure “thread time”, “process time” and “user
time”, i.e. not only wall-clock time. In future work, we plan
to apply the presented approach to countdown and periodic
timers, as well as to timer methods provided by operating
systems and to hardware performance counters. Addition-
ally, the impact of dynamic CPU frequency scaling onto the
devised metric needs to be studied.

A further challenge that we plan to address in future work
is brought by the increased popularity of virtualisation: if
the virtualiser/hypervisor must emulate the CPU and its
counters/registers, the quantitative properties of the emu-
lated CPU (update frequency of counters, etc.) can differ

155

Timer Accuracy Cost Spread Quality

Execution platform MBP53 (1 ns = 2.8 CPU cycles)
CTCT 1,000 ns 2,232 ns ? 0.999 18.86 %
CTM 1 ms 101 ns ? 1.000 12.89 %
CTUT 1,000 ns 2,204 ns ? 0.999 18.88 %
HRC 3 ticks � 51 ticks � 0.778 54.08 %
NANO 1,000 ns 97 ns ? 1.000 25.82 %
PCT 10,000,000 ns 2,298 ns ? 1.000 7.49 %
.DAT 10 ticks ♣ 2 ticks ♣ 1.000 24.01 %
.STO 10 ticks ♣ 2 ticks ♣ 1.000 24.01 %

Execution platform MBP62 (1 ns = 2.66 CPU cycles)
CTCT 1,000 ns 1,756 ns ? 0.983 19.36 %
CTM 1 ms 70 ns ? 1.000 13.51 %
CTUT 1,000 ns 1,643 ns ? 0.984 19.50 %
HRC 1 tick � 36 ticks � 0.648 41.44 %
NANO 1,000 ns 70 ns 1.000 26.95 %
PCT 10,000,000 ns 1,712 ns ? 1.000 7.79 %
.DAT 10 ticks ♣ 2 ticks ♣ 1.000 24.26 %
.STO 10 ticks ♣ 2 ticks ♣ 1.000 24.26 %

Table 1: Timer quality metric for execution plat-
forms MBP53 and MBP62 (Legend: ?: invoca-
tion cost measured using System.nanoTime() method;
�: 1 tick = 1 ns; ♣: 1 tick = 100 ns.)

from the “real” one. This reaffirms the need to quantify the
value of timer method quality metrics in a given scenario,
rather than to use look-up tables. Finally, we plan to inves-
tigate more refined measures for invocation cost spread, for
example by identifying the type and parameters of stochas-
tic distribution of the observed method’s invocation costs.

The authors would like to thank Jörg Henß, Samuel Kou-
nev, Klaus Krogmann, Anne Koziolek, Omar-Qais Noor-
shams, Mircea Trifu, Erik Burger and the anonymous re-
viewers for their valuable comments and suggestions.

7. REFERENCES
[1] Intel 82801EB I/O Controller Hub 5 (ICH5)

Datasheet, 2003. http://www.intel.com/Assets/PDF/-
datasheet/252516.pdf, last visit: Jan 3rd, 2011.

[2] P. Alipio, S. R. Lima, and P. Carvalho. A unified
metric for quality of service quantification. In
Simutools ’09: Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, pages
1–7, ICST, Brussels, Belgium, Belgium, 2009. ICST.

[3] H. Beilner. Measuring with Slow Clocks. Technical
report, ICSI-Technical Report-88-O03, 1988.

[4] J. Bloch. Effective Java. Addison-Wesley Professional,
2. edition, 2008.

[5] L. Boroczky and Y. Yang. Artifact reduction for
MPEG-2 encoded video using a unified metric for
digital video processing. In Proceedings of SPIE,
volume 5150, page 1390, 2003.

[6] P. B. Danzig and S. Melvin. High Resolution Timing
with Low Resolution Clocks and Microsecond
Resolution Timer for Sun Workstations. ACM
SIGOPS Operating Systems Review, 24(1):23–26, 1990.

[7] R. Gonzalez. A unified metric of software complexity:
Measuring productivity, quality, and value. Journal of
Systems and Software, 29(1):17–37, 1995.

Execution platform SAMSa (1 ns = 1.73 CPU cycles)

Timer Accuracy Cost Spread Quality
CTCT 10,000,000 ns 30,000 ns ? 0.999 6.37 %
CTM 1 ms 1,267 ns ? 1.000 11.02 %
CTUT 10,000,000 ns 8,000 ns ? 1.000 7.28 %
HRC 1 tick � 1,283 ns ? 0.999 21.95 %
NANO 69 ns 978 ns ? 0.736 25.29 %
PCT 10,000,000 ns 555 ns ? 1.000 9.51 %
.DAT 10 ticks ♣ 10 ticks ♣ 0.996 22.47 %
.STO 1 tick ♣ 11 ticks ♣ 0.944 27.27 %

Execution platform SAMSb (1 ns = 1.73 CPU cycles)
CTCT 15,625,000 ns 896 ns ? 1.000 8.66 %
CTM 16 ms 127 ns ? 1.000 10.51 %
CTUT 15,625,000 ns 889 ns ? 1.000 8.67 %
HRC 1 tick � 5 ticks � 0.999 24.74 %
NANO 279 ns 1,876 ns 0.997 24.00 %
PCT 15,625,000 ns 476 ns ? 1.000 9.22 %
.DAT 156,250 ticks ♣ 8 ticks ♣ 1.00 8.76 %
.STO 1 tick ♣ 5 ticks ♣ 0.992 30.25 %

Table 2: Timer quality metric for execution plat-
forms SAMSa and SAMSb (Legend: ?: invoca-
tion cost measured using System.nanoTime() method;
�: 1 tick = 1,000 ns, calculated from frequency;
♣: 1 tick = 100 ns; �: 1 tick = 1

3579545
s ≈ 279 ns.)

[8] D. Holmes. Inside the Hotspot VM: Clocks, Timers
and Scheduling Events, 2006.
http://blogs.sun.com/dholmes/entry/, last visit: Jan
3rd, 2011.

[9] L. K. John and L. Eeckhout. Performance Evaluation
And Benchmarking. CRC Press, 2006.

[10] M. Kuperberg, M. Krogmann, and R. Reussner.
TimerMeter: Quantifying Accuracy of Software Times
for System Analysis. In Proceedings of the 6th
International Conference on Quantitative Evaluation
of SysTems (QEST) 2009, 2009.

[11] C. Larman and R. Guthrie. Java 2 Performance and
Idiom Guide. Prentice Hall PTR, 2000.

[12] D. J. Lilja. Measuring Computer Performance: A
Practitioner’s Guide. Cambridge University Press,
2000.

[13] M. Meyerhöfer. Messung und Verwaltung von
Komponenten für die Performancevorhersage. PhD
thesis, University of Erlangen-Nürnberg, Germany,
2007.

[14] T. Saaty. Multicriteria decision making: the analytic
hierarchy process: planning, priority setting, resource
allocation. RWS publications Pittsburgh, 1990.

[15] J. Shirazi. Java Performance Tuning. O’Reilly, 2
edition, 2003.

[16] N. Venkatasubramanian and K. Nahrstedt. An
integrated metric for video QoS. In Proceedings of the
fifth ACM international conference on Multimedia,
page 380. ACM, 1997.

[17] Y. Yang and L. Boroczky. A unified metric for digital
video processing and its applications in home video
systems. In 2003 IEEE International Conference on
Consumer Electronics, 2003. ICCE, pages 338–339,
2003.

156

